
CSC2532 Winter 2021

Statistical Learning Theory

Murat A. Erdogdu∗

March 18, 2022

Lectures

0 Introduction 3

1 Warm-up: Gaussian Mean Estimation 4
1.1 SURE: Stein’s Unbiased Risk Estimator . 5
1.2 James-Stein Estimator . 6

2 Exponential Families and Information Inequality 8
2.1 Moments of exponential families . 9
2.2 MLE, Score, Information . 10
2.3 Information inequality . 12

3 Asymptotic Statistics 14
3.1 Supervised learning setting . 14

3.1.1 Parametric Models . 14
3.2 MLE Framework . 15
3.3 Asymptotics of MLE . 17

3.3.1 Asymptotic normality . 17
3.3.2 Consistency . 19

4 Uniform Convergence =⇒ Generalization 21
4.1 From excess risk to empirical process . 21
4.2 Finite function classes, |F| <∞ . 22

5 Covering with ε-nets 25
5.1 ε-covers of sets in Rd . 25
5.2 Generalization for parametrized function classes . 26

6 Rademacher Complexity: Definition 30
6.1 Generalization based on Rademacher complexity . 30
6.2 Symmetrization . 32

∗Department of Computer Science and Department of Statistical Sciences at University of Toronto, and Vector
Institute erdogdu@cs.toronto.edu

1

7 Rademacher Complexity: Properties & Applications 36
7.1 Properties of Rademacher complexity . 36
7.2 Rademacher complexity of constrained linear models 38
7.3 Massart’s Finite Lemma . 39

8 Combinatorial Measures of Complexity 42
8.1 Shattering Coefficient . 42
8.2 Vapnik-Chervonenkis Dimension . 44

9 Chaining and Dudley’s Theorem 47
9.1 ε-Nets revisited . 47
9.2 Simple discretization . 48
9.3 Chaining . 50

10 Stability and PAC-Bayes Bounds 52
10.1 Stability based generalization bounds . 52
10.2 PAC-Bayes bounds . 57

11 Kernel Methods: Basics 60
11.1 Basics of Hilbert Spaces . 61
11.2 Kernels: formal definitions . 62
11.3 Hilbert Space defined by the Reproducing Kernel . 63

12 Kernel Methods: Properties & Applications 68
12.1 Basic properties and examples . 68
12.2 Learning with kernels . 70
12.3 Maximum mean discrepancy (MMD) . 73

2

0 Introduction

Machine learning (ML) is a set of algorithms/tools that learn and improve from data and/or past
experience. It has many applications in areas such as computer vision, healthcare, physics, biology,
etc. Since ML has become a cruical part of our daily life, it is important that we understand the
principles that govern these algorithms. For this reason, practitioners generally use terms such as
overfitting, underfitting, fast convergence, model complexity, do well on test data etc. to assess the
performance of ML algorithms.

In this course, we will

• focus on formal definitions of the above concepts,
• and explain the behavior of ML algorithms using (mostly) probability theory, calculus, and

linear algebra.

Example. Assume that you trained a binary classifier (e.g. logistic regression) on a dataset of n

samples D(1)
n = {(yi, xi)}ni=1 where xi ∈ Rd (i.e. you had d features), and this classifier achieved

training and test errors of errtrain and errtest, respectively.

• If you had another dataset D
(2)
n and you train the same model on it, would you achieve the

same errtrain and errtest? Do you need them to be from the same distribution?

• What would happen to errtrain and errtest if you combine datasets D
(1)
n and D

(2)
n and train

your model?
• For each sample, assume that you collected d more features, i.e. xi ∈ R2d by keeping the

number of samples n constant. How would this affect errtrain and errtest?
• Instead of cross-entropy, you decided to use another loss function which has different smooth-

ness properties. How would the smoothness of loss function affect errtrain and errtest?

We will use theory to answer questions similar to the above ones. In general, the answers we get
using theory can explain the observed behavior (or if it cannot, there is room for future research).
The insights we gain from these can offer troubleshooting, or even suggest new ML algorithms.
However, the theoretical guarantees we derive usually cannot tell if algorithm X is better than
algorithm Y. They usually rely on generic tools and on assumptions that are violated in practice.

Our recipe in majority of this course will be

• assume a parametric model on data (data distribution),
• choose a suitable loss function,
• minimize the loss over training data (training error), and hope that you achieve small test

error.

3

1 Warm-up: Gaussian Mean Estimation

Suppose we have i.i.d. random variables x1, x2, . . . , xn ∼ N (θ∗, σ
2I) where θ∗ ∈ Rd is unknown

and σ2 is known. Our goal is to estimate θ∗ with an estimator θ̂ such that, d(θ̂, θ∗) < ε for some
small ε, where d : Rd × Rd → R+ is some metric measuring the distance between θ̂ and θ∗. It is
understood that θ̂ is a random variable whereas θ∗ is deterministic.

There are many approaches that we can take to tackle this estimation problem. For example,
we can use

• Sample mean estimator: θ̂ = 1
n

∑n
i=1 xi;

• Maximum Likelihood Estimator (exercise: in fact it reduces to sample mean)
• Maximum A posteriori Probability under some prior on θ∗
• . . .

Let’s take a look at the sample mean estimator as given by θ̂ = 1
n

∑n
i=1 xi, and find its perfor-

mance.
Since xi’s are i.i.d. Gaussian random vectors, their linear combination is also Gaussian. One

way to see this is by using the moment generating function (MGF) for Gaussian random vectors.

Lemma 1. Given Z1 ∼ N (0,Σ1), Z2 ∼ N (0,Σ2) independent random vectors, we have

Z1 + Z2 ∼ N (0,Σ1 + Σ2).

Proof. Recall the definition of the MGF of a random variable X as mX(t) = E[e
1
2
〈t,X〉]. We have

mZ1+Z2(t) = E[e
1
2
〈t,Z1+Z2〉] = E[e

1
2
〈t,Z1〉e

1
2
〈t,Z2〉] = E[e

1
2
〈t,Z1〉]E[e

1
2
〈t,Z2〉] = mZ1(t)mZ2(t)

by the independence of Z1 and Z2. Using the fact that the MGF for a Gaussian random variable
Z ∼ N (0,Σ) is mZ(t) = e

1
2
〈t,Σt〉, we have

mZ1+Z2(t) = mZ1(t)mZ2(t) = e
1
2
〈t,Σ1t〉e

1
2
〈t,Σ2t〉 = e

1
2
〈t,(Σ1+Σ2)t〉

which is the MGF of N (0,Σ1 + Σ2). Therefore, Z1 + Z2 ∼ N (0,Σ1 + Σ2).

If we look at the difference between the sample mean estimator and the true mean, we have

θ̂ − θ∗ =
1

n

n∑
i=1

(xi − θ∗)

Since each xi − θ∗ ∼ N (0, σ2I), applying Lemma 1 iteratively, we obtain

θ̂ − θ∗ ∼ N
(

0,
σ2

n
I

)
. (1.1)

Definition 2. We define the notion of loss and risk as follows.

• Loss measures the distance. We will denote it by ` : Rd × Rd → R+. For example, squared
L2-norm can be a loss `(θ, θ′) = ‖θ − θ′‖2.

4

• Risk is the expected loss (so it is a population quantity). Risk between an estimator and true
parameter

R(θ̂, θ∗) = E[`(θ̂, θ∗)].

Here, the expectation is over θ̂.

Next, let’s choose the loss function as the squared L2-norm, i.e., `(θ, θ′) = ‖θ − θ′‖2. Then the
risk function is given as R(θ̂, θ∗) = E[`(θ̂, θ∗)] = E[‖θ̂ − θ∗‖2]. For the sample mean estimator, we
have

`(θ̂, θ∗) = ‖θ̂ − θ∗‖2, and R(θ̂, µ) = E[‖θ̂ − θ∗‖2] =
σ2d

n
, (1.2)

where in the last step we used (1.1). Note that the risk R(θ̂, θ∗) increases with dimension d and
decreases with the number of samples n. This dependence structure is commonly observed for most
loss minimization problems. This intuitively means that estimation is harder in higher dimensions,
but gets better with more observations.
Remark. The loss `(θ̂, θ∗) ∼ χ2

d where χ2
d denotes the chi-square distribution.

One concern about this estimator is that E[||θ̂||2] = ||θ∗||2 + σ2d
n > ||θ∗||2. This means that the

second moment of our estimator is always significantly larger than that of the true parameter we
are estimating. To resolve this, we can simply multiply θ̂ by a factor (1−η) to shrink it. This type
of estimators called shrinkage estimator. In what follows, we show that MLE can be beaten.

1.1 SURE: Stein’s Unbiased Risk Estimator

Lemma 3 (Stein’s Lemma). Suppose x ∼ N (µ, σ2I), and g : Rd → Rd is weakly differentiable.
Then

E[〈x− µ, g(x)〉] = σ2E[Tr(∇g(x))].

Remark. We are not giving a definition of weak differentiablity, but hereby we will assume g is
differentiable which is a stronger assumption.

Proof. Let φ(x) denote the distribution of an isotropic Gaussian random vector. We can write

E[〈x− µ, g(x)〉] =

∫ ∞
−∞
〈x− µ, g(x)〉φ(x−µσ) dx.

Using the fact that

dφ(x−µσ) = −x− µ
σ2

φ(x−µσ) dx

and integration by parts, we have∫ ∞
−∞
〈x− µ, g(x)〉φ(x−µσ) dx = −σ2

∫ ∞
−∞
〈dφ(x−µσ), g(x)〉

= σ2

∫ ∞
−∞

φ(x−µσ) Tr(∇g(x)) dx = σ2E[Tr(∇g(x))].

Remark. The above results is also referred to as Stein’s identity, and has remarkable applications
ranging from probability theory (non-asymptotic CLTs) to machine learning (Stein’s variational
gradient descent) and optimization (Newton-Stein method, Scaled Least Squares).

5

In the following we will consider the risk of estimators of a particular form and show that MLE
can be beaten in terms of risk. Let θ̂s be an estimator of the form

θ̂s = θ̂ + g(θ̂), (1.3)

where θ̂ is the sample mean and g : Rd → Rd is any differentiable function. Then

R(θ̂s, θ∗) =E[‖θ̂s − θ∗‖2] = E[‖θ̂ + g(θ̂)− θ∗‖2], (1.4)

=E[‖θ̂ − θ∗||2] + E[‖g(θ̂)‖2] + 2E[〈θ̂ − θ∗, g(θ̂)〉],

=
σ2d

n
+ E[‖g(θ̂)‖2] +

2σ2

n
E[Tr(∇g(θ̂))],

where in the last step, we applied Stein’s Lemma 3 on the last term.
This leads to the definition of the Stein’s Unbiased Risk Estimator:

Definition 4 (SURE: Stein’s Unbiased Risk Estimator). For an estimator of the form θ̂s = θ̂+g(θ̂),
we have the following unbiased estimator of the risk,

SURE(θ̂) =
σ2d

n
+ ||g(θ̂)||2 +

2σ2

n
Tr(∇g(θ̂)).

The fact that SURE(µ̂) is an unbiased estimator for R(µ̂s, µ) follows from (1.4). In other words,
any estimator of the form (1.3), has the risk E[SURE(µ̂)]. Also note that the first term on the
right hand side is the risk of MLE.

In the following, we will specify the function g in (1.3).

1.2 James-Stein Estimator

Definition 5 (James-Stein Estimator). Define the estimator

θ̂js =

(
1− d− 2

||θ̂||2
σ2

n

)
θ̂.

The above estimator is of the form (1.3) with

g(x) = −σ
2

n

d− 2

||x||2 x, and ∇g(x) = −σ
2

n

d− 2

||x||2 I + 2(d− 2)
σ2

n

xxT

||x||4 .

This gives

‖g(x)‖2 =
σ4

n2

(d− 2)2

‖x‖2 and Tr(∇g(x)) =
−d(d− 2) + 2(d− 2)

||x||2
σ2

n
= −(d− 2)2

||x||2
σ2

n
.

Therefore the risk of the James-Stein estimator is given as

R(θ̂js, θ∗) =
σ2d

n
+
σ4

n2
E

[
(d− 2)2

‖θ̂‖2

]
− 2

σ4

n2
E

[
(d− 2)2

‖θ̂‖2

]
=
σ2d

n
− σ4

n2
E

[
(d− 2)2

‖θ̂‖2

]
<R(θ̂, θ∗),

where the last step follows from R(θ̂, θ∗) = σ2d/n as derived in (1.2) Therefore, the James-Stein
estimator is a strictly better estimator than the sample mean estimator based on the measure of
the risk function. Note that this result holds for d > 2.

6

If we go one step further by applying Jensen’s inequality (x → 1/x is convex for x > 0), we
obtain

E

[
1

‖θ̂‖2

]
≥ 1

E[‖θ̂‖2]
=

1

‖θ∗‖2 + σ2d
n

.

Using this in the last step above, our bound for the risk of James-Stein estimator yields

R(θ̂js, θ∗) =
σ2d

n
− σ4

n2
E[

(d− 2)2

‖θ̂‖2
],

≤σ
2d

n
− σ4

n2

(d− 2)2

‖θ∗‖2 + σ2d
n

.

Remark. A more careful treatment yields the following bound

R(θ̂js, θ∗) ≤
σ2d

n
− σ4

n2

(d− 2)2

‖θ∗‖2 + σ2(d−2)
n

.

• James-Stein is one the most significant advances in statistics.

• It shows that MLE can be beaten (inadmissable) for d > 2.

• This phenomenon is also known as Stein’s paradox.

7

2 Exponential Families and Information Inequality

• Exponential families form a basis for many statistical methodology such as generalized linear
models (GLMs), undirected graphical models, etc.

• They define a broad class of distributions covering distributions such as Gaussian, Bernouilli,
beta, Poisson etc.

• They also arise as the solutions of interesting optimization problems.

Definition 6. Exponential families are defined as a collection of densities with respect to a base
measure ν (either counting or Lebesgue)

P = {pθ(x) : θ ∈ Θ} where pθ(x) = exp{〈θ, φ(x)〉 − ψ(θ)}p0(x).

Above,

• θ ∈ Θ ⊂ Rd: Natural parameter
• φ : X → Rd: Sufficient statistics
• ψ : R→ R: log-partition function, cumulant generating function (CGF)
• p0(x): carrying density w.r.t. carrying measure ν(dx) on X . We will ignore this part mostly

as it can be combined with the carrying measure ν.

The natural parameter θ lives in a parametric space where the CGF is finite: Θ = {θ : ψ(θ) <
∞}. Since pθ is a density, we have

1 =

∫
pθ(x) dν(x) and ψ(θ) = log

{∫
exp{〈θ, φ(x)〉}p0(x) dν(x)

}
.

Note that in this class we only consider the measure dν(x) either as the Lebesgue measure when
the random variable is continuous or as the counting measure when it is discrete.

Example. Let X be a Bernoulli random variable with mean µ, i.e., P(X = 1) = µ and
P(X = 0) = 1 − µ. We can write the probability mass function as pθ(x) = µx(1 − µ)1−x =
exp{x logµ+ (1− x) log(1− µ)} where x ∈ {0, 1}. One way to write the Bernoulli distribution as
an exponential family is through the following natural parameter and sufficient statistic

θ =

[
logµ

log(1− µ)

]
, φ(x) =

[
x

1− x

]
We say that an exponential family is minimal if there is no linear relations/constraints between
the entries of the sufficient statistic and the natural parameter vectors. Notice that the above
formulation is not minimal. Re-write the PMF, natural parameter, and CGF:

p(x) = exp
{
x log

µ

1− µ + log(1− µ)
}

with

θ = log
µ

1− µ, ψ(θ) = log(1 + eθ), µ =
eθ

1 + eθ
.

Proposition 7. Θ is a convex set, and ψ(θ) is a convex function.

8

Proof. Θ is a convex set if for θ1, θ2 ∈ Θ, θλ = λθ1 + (1− λ)θ2 ∈ Θ, ∀λ ∈ [0, 1].

ψ(θ) <∞ ⇔ eψ(θ) <∞ ⇔
∫

exp{〈θ, φ(x)〉}dν(x) <∞

exp
(
ψ(θλ)

)
=

∫
exp{〈θλ, φ(x)〉}dν(x) =

∫ (
e〈θ1,φ(x)〉

)λ(
e〈θ2,φ(x)〉

)1−λ
dν(x)

≤
(

exp
(
ψ(θ1))

∫
pθ1(x)dν(x)

)λ(
exp

(
ψ(θ2))

∫
pθ2(x)dν(x)

)1−λ

= exp
(
ψ(θ1)

)λ
exp

(
ψ(θ2)

)1−λ
<∞.

Where the inequality is justified above from Hölder’s inequality for integrals:
∫
|fg|du ≤ (

∫
|f |p)1/p(

∫
|g|q)1/q,

p−1 + q−1 = 1. This completes the proof of first part. The second part follows applying logs to
both sides,

ψ(θλ) ≤ λψ(θ1) + (1− λ)ψ(θ2).

2.1 Moments of exponential families

It can be shown that the moments of the sufficient statistic associated with an exponential family
can be linked to the corresponding orders of differentiation of that family’s CGF.

• Mean: We can write

1 =

∫
pθ(x) dν(x) =

∫
e〈θ,φ(x)〉−ψ(θ) dν(x) differentiating both sides w.r.t θ

0 =

∫
e〈θ,φ(x)〉−ψ(θ)

(
φ(x)−∇ψ(θ)

)
dν(x)

0 = E[φ(x)]−∇ψ(θ)

∫
e〈θ,φ(x)〉−ψ(θ)dν(x)︸ ︷︷ ︸

1

⇔ E[φ(x)] = ∇ψ(θ) := µ

• Variance: Taking one more derivative yields that Cov(φ(x)) = ∇2ψ(θ).
• Higher-order moments: Similarly, by taking more derivatives of the above equation, we

can obtain higher-order moments.

Proposition 8 (Invertibility). If ψ is strictly convex, then ∇ψ : Θ → M is invertible for M =
{µ : µ = ∇ψ(θ) for θ ∈ Θ}.

Proof. We need to show that for θ1, θ2 ∈ Θ,

θ1 = θ2 ⇔ ∇ψ(θ1) = ∇ψ(θ2).

One side is trivial. For the other side, we write

∇ψ(θ2) = ∇ψ(θ1) +

∫ 1

0
∇2ψ(θ1 + τ(θ2 − θ1))(θ2 − θ1)dτ.

9

https://en.wikipedia.org/wiki/H%C3%B6lder%27s_inequality

Suppose it was the case that ∃θ1, θ2, θ1 6= θ2 such that ∇ψ(θ1) = ∇ψ(θ2), then it would be that
0 =

∫ 1
0 ∇2ψ(θ1 + τ(θ2 + θ1))(θ2 − θ1)dτ . However, because ψ is strictly convex, ∇2ψ > 0, so the

previous integral must be greater than zero and therefore ∇ψ(θ1) 6= ∇ψ(θ2).

Since the mapping ∇ψ : Θ→M is invertible, we can write

1. (∇ψ)−1(µ) = θ

2. Σ = ∇2
θψ(θ) = ∇θ∇θψ(θ) = ∇θµ or equivalently, Σ = dµ

dθ where Σ is the covariance matrix

of φ(X). Intuitively (from Leibniz notation), we have dθ
dµ = Σ−1. This can be shown using

chain rule.

µ = ∇ηψ(η) =⇒ dµ

dµ
=
dη

dµ
∇2
ηψ(η) =⇒ dη

dµ
= Σ−1.

2.2 MLE, Score, Information

In this section, we consider the basic MLE setup where we assume x = [x1, . . . , xn] where xi
iid∼ pθ(x).

Using the iid assumption, we can write the joint density as

pθ(x) =
n∏
i=1

pθ(xi) = exp

{〈
θ,

n∑
i=1

φ(xi)

〉
− nψ(θ)

}
n∏
i=1

p0(xi)

= exp
{
n[〈θ, φ̄〉 − ψ(θ)]

}
p0(x), where φ̄ =

1

n

n∑
i=1

φ(xi).

The corresponding log-likelihood, and score with respect to θ and µ are therefore:

• Log-likelihood: `θ(x) = n[〈θ, φ̄〉 − ψ(θ)] + const

• Score w.r.t. θ: ∇θ`θ(x) = n[φ̄−∇ψ(θ)]

• Score w.r.t. µ: ∇µ`θ(x) = Σ−1n[φ̄−∇ψ(θ)]

• Information w.r.t. θ: Iθ = E[∇`θ∇`Tθ] = −E[∇2`θ] = nΣ.

• Information w.r.t. µ: Iµ = nΣ−1.

Remark. Information matrix quantifies how much information the observable statistic φ(x)
contains about the parameter of interest.

We compute the MLE of natural parameter θ by solving the following equation for θ.

∇`θ(x) = 0⇔ φ̄ = ∇ψ(θ̂MLE) ⇔
θ̂MLE = (∇ψ)−1(φ̄) by the invertibility of ∇ψ.

Similarly, we can also find the MLE for the mean µ by differentiating the log-likelihood w.r.t.
µ and setting it to 0. Since we focus on strictly convex CGFs (which imply Σ � 0), the MLE can
be computed to be µ̂MLE = φ̄. Therefore, we notice that the mapping ∇ψ also maps the MLEs.
Remark. As a side note, we can see that the score function has 0 expectation:

E[∇`θ(x)] = E[φ̄]−∇ψ(θ) = µ− µ = 0.

10

Asymptotics of MLE: We can leverage the sample average structure of φ̄ and obtain its
asymptotic distribution using Central Limit Theorem (CLT). That is, with a slight abuse of notation

µ̂MLE = φ̄ =
1

n

n∑
i=1

φ(xi) ≈∼ N (µ,Σ/n).

Here, it is worth noting that the distribution N is approximate, but the mean and the variance
are exact. The correct way to state this result is

√
n(µ̂MLE − µ)

d→ N (0,Σ). (2.1)

The asymptotic distribution of θ̂MLE requires an extra derivation. Notice that there is a non-
linearity (∇ψ)−1 applied to the sample average form φ̄. We know, by CLT, that φ̄ will be Gaussian,
but we need a way of dealing with the non-linear function applied to it.

Proposition 9 (Delta Method). Assume that a random variable is asymptotically normal, i.e.,
√
n(µ̂− µ)

d→ N (0,Σ). Then, for a differentiable function f , we have

√
n(f(µ̂)− f(µ))

d→ N (0,∇f(µ)>Σ∇f(µ)).

Using the Delta method on the asymptotic result obtained for µ̂MLE in (2.1), and also recalling
that θ̂MLE = ∇ψ−1(µ̂MLE), we can write

√
n(θ̂MLE − θ) d→ N (0,∇µ(∇ψ)−1(µ)>Σ∇µ(∇ψ)−1(µ)). (2.2)

We can compute the quantity ∇µ(∇ψ)−1(µ) using the chain rule (left as exercise), but below we
just use the Leibniz notation.

∇µ(∇ψ)−1(µ) =
dθ

dµ
=

[
dµ

dθ

]−1

= Σ−1.

Therefore, the variance term in (2.2) becomes

∇µ(∇ψ)−1(µ)>Σ∇µ(∇ψ)−1(µ) = Σ−1.

Thus,

θ̂MLE ≈∼ N (θ,Σ−1/n) (2.3)

or equivalently
√
n(θ̂MLE − θ) d→ N (0,Σ−1). In (2.3), distribution N , as well as the mean and the

variance are approximate.
Remark. Proof for the delta method was hinted using the Taylor Series expansion of the function
under consideration. This is a very handy theorem.

11

2.3 Information inequality

In this section, we will derive a lower bound on the variance of a generic estimator which we call
as the information inequality. Later, we will use our main result here to derive the celebrated
Cramer-Rao lower bound. Information inequality is very much related to the Fisher information
which is where it get its name from. It is a classical concept and defines the notion of efficiency
for estimators.

As in the previous section, suppose that we have data from an exponential family and we have
a statistic of the form T : Rd → Rp with

Eθ[T (φ̄)] = ξ(θ)

for some differentiable function ξ.
Remark. If we have two matrices A and B, we write A � B if A−B � 0, i.e., A−B is positive
semi-definite. This is equivalent to saying ∀u, 〈u, (A−B)u〉 ≥ 0.

Theorem 10 (Information Inequality). Variance of any estimator of the above form can be lower
bounded as

Var(T (φ̄)) � 1

n
∇ξ(θ)>Σ−1∇ξ(θ).

Proof. In the first step of the proof, we compute a useful expression for the ∇ξ. We write

∇ξ(θ) =

∫
∇pθ(x1, .., xn)T (φ̄)> dν

=

∫
n[φ̄−∇ψ(θ)]T (φ̄)>pθ(x1, .., xn) dν

=nEθ
[
(φ̄−∇ψ(θ))T (φ̄)>

]
=nEθ

[
(φ̄−∇ψ(θ))(T (φ̄)− ξ(θ))>

]
The first term inside the expectation is in Rd and the second term belongs to Rp. Therefore, the
above expectation is a d× p matrix.

Next, choose any vector u ∈ Rp and compute the quantity,

1

n
〈∇ξ(θ)u,Σ−1∇ξ(θ)u〉 = u>Eθ

[
(T (φ̄)− ξ(θ))(φ̄−∇ψ(θ))>

]
Σ−1∇ξ(θ)u

= Eθ
[
〈T (φ̄)− ξ(θ), u〉〈φ̄−∇ψ(θ),Σ−1∇ξ(θ)u〉

]
(by Cauchy-Schwartz) ≤ Eθ

[
〈T (φ̄)− ξ(θ), u〉2

]1/2
Eθ
[
〈φ̄−∇ψ(θ),Σ−1∇ξ(θ)u〉2

]1/2

≤ 〈u,Var(T (φ̄))u〉1/2
[
〈Σ−1∇ξ(θ)u,Var(φ̄)Σ−1∇ξ(θ)u〉

]1/2
= 〈u,Var(T (φ̄))u〉1/2

[
1

n
〈∇ξ(θ)u,Σ−1∇ξ(θ)u〉

]1/2

where in the last step we used the fact that Var(φ̄) = 1
n . We notice that the second term on the

last line is the square root of the left hand side. Canceling these and squaring both sides concludes
the proof.

An immediate corollary of this result is the celebrated Cramer-Rao lower bound.

12

Corollary 11 (Cramer-Rao Lower Bound). If T (φ̄) is an unbiased estimator for θ, i.e., Eθ[T (φ̄)] =
θ, then

Var(T (φ̄)) � 1

n
Σ−1.

The lower bound in the above corollary is the inverse Fisher information with respect to the
parameter being estimated. That is, the bound reads Var(T (φ̄)) � I−1

θ .
If we were to estimate another parameter such as µ, we can derive a similar bound using the

information inequality. In this case, our unbiased estimator T (φ̄) (for µ) has an expectation

Eθ[T (φ̄)] = ξ(θ) = µ.

Notice that in this case ξ = ∇ψ and consequently ∇ξ = ∇2ψ = Σ. Plugging this into the
information inequality yields a lower bound on the variance of the estimator as

Var(T (φ̄)) � 1

n
ΣΣ−1Σ =

1

n
Σ = I−1

µ .

Remarkably in this case, information inequality yields a lower bound which is again the inverse
Fisher information with respect to the parameter being estimated.
Remark. Estimators that achieve Cramer-Rao lower bound are called efficient. For example,
MLE for µ, φ̄, has the variance 1

nΣ which is the Cramer-Rao lower bound! So MLE already
achieves this bound in this case. Although it is worth noting that MLE in general may not be
efficient, yet it is asymptotically efficient.

13

3 Asymptotic Statistics

In this section, we discuss the asymptotic properties of the parametric models. We will start with
describing the supervised learning setup which will be the focus of next few lectures.

3.1 Supervised learning setting

We assume that we observed n pairs of feature/response pairs (xi, yi) ∼ p(x, y) for i = 1, 2, ..., n
where x ∈ X ⊂ Rd and y ∈ Y ⊂ R (which could be a real number or discrete class label). Data
pairs are i.i.d. and underlying joint distribution ∼ p(x, y) is unknown to us. Our goal is to learn
some function f̂ : X → Y using the observed data that will help us predict yi given features xi,
i.e., yi ≈ f̂(xi).

We will need to define a measure to evaluate the quality of learned function f̂ .

• Loss: For this, we choose a loss function `(y, f(x)) : Y ×Y → R+. For example, a commonly
used loss function is the squared error loss function `(y, f(x)) = (y − f(x))2, or another one
is the absolute value of the error `(y, f(x)) = |y− f(x)|. Loss function evaluates the error on
only one sample.

• Risk: However, we would like to measure the error on average which is why we define the
risk R : F → R+ of this function to be R(f) = E[`(y, f(x))]. Hereby, the expectation will be
implicitly over all random variables inside brackets, and F denotes the set of functions. The
risk is a function of f and it also depends on the joint density p(x, y), and loss `.

• Goal (revised): Find f ∈ F such that R(f) is small (to be revised again).

Example. [Bias-Variance Decomposition (first step)] We choose the loss as the squared error loss,
`(y, f(x)) = (y − f(x))2 and write the risk as

R(f) = E[(y − f(x))2]

= E[E[(y − f(x))2|x]] (Law of iterated expectations)

= E
[
E[(y − E[y|x] + E[y|x]− f(x))2|x]

]
= E

[
E[(y − E[y|x])2|x] + E[(f(x)− E[y|x])2|x] + 2E[(y − E[y|x])(E[y|x]− f(x))|x]︸ ︷︷ ︸

=0

]
= E[Var(y|x)]︸ ︷︷ ︸

Irreducible error

+E[(f(x)− E(y|x))2] =Irreducible error + Variance + Bias2

Since the irreducible error is not a function of f , the lower bound on the risk of f is obtained when
f∗(x) = E[y|x]. This is attainable if f∗ ∈ F . That is,

inf
f∈F

R(f) = E[Var(y|x)] + inf
f∈F

E[(f(x)− E(y|x))2].

We will return to bias-variance decomposition later.

3.1.1 Parametric Models

When we are searching for a function f satisfying yi ≈ f(xi) for i = 1, ..., n, we need to restrict
ourselves to a specific set of functions F to avoid overfitting. Otherwise, we can simply choose any
function satisfying yi = f(xi) for ∀i.

14

In this subsection, we focus our attention on a parametric function class F = {fθ : θ ∈ Θ}
where fθ is a function (or hypothesis) and Θ is the parameter space.
Example. Consider the set of linear functions that have weights constrained in a ball of radius λ,

F = {fθ(x) = 〈x, θ〉 : ‖θ‖2 ≤ λ}

Notice that the parameter space is given by Θ = {θ : ‖θ‖2 ≤ λ}.
In the case of parametric models, it is generally redundant to write the function fθ, instead we

will simply use the parameter θ to describe it. For example,

`(y, fθ(x)) , `((y, x), θ) and R(fθ) , R(θ),

is more compact and conveys the same information for parametric function classes.
We would like to minimize the population risk R(θ), that is, we want

θ∗ ∈ arg min
θ∈Θ

R(θ) = E[`((x, y), θ)]

for (x, y) ∼ p. But we don’t have access to the joint density p, therefore we cannot minimize this
objective. Instead, what we can estimate the population risk with the empirical risk using our n
training samples. The empirical risk is just a sample mean estimator for the population risk and
given as

θ̂ ∈ arg min
θ
R̂(θ) :=

1

n

n∑
i=1

`((xi, yi), θ).

Notice the hat in R̂ and θ̂ which indicates that these are estimators that depend on data. These
quantities are random variables (or vectors) whereas R(θ) and θ∗ are deterministic values (R(θ̂) is
also random).

• The quantity R̂(θ̂) is the training error.
• The quantity R(θ̂) is simply test error. It is worth noting that in machine learning courses,

we define test error as an estimator to this quantity.

Notice that when n is large, we expect to have R(θ) ≈ R̂(θ); thus, it would makes sense to have
the minimizers of these functions close together θ̂ ≈ θ∗.

The following quantity will be used repeatedly as a notion of generalization error.

Definition 12 (Excess risk). We define the excess risk of an estimator θ̂ as the distance between
the test error and the minimum achievable error

Excess risk = R(θ̂)−R(θ∗).

3.2 MLE Framework

In the MLE framework, we assume that data pairs are sampled in the following hierarchical way

yi|xi ∼pθ∗(y|x)

xi ∼p(x)

15

where θ∗ is the true but unknown parameter. However, we make the very strong assumption that
the parametric form pθ(x) is known. This is like assuming that we know a random variable z is
Gaussian z ∼ N (θ∗, 1) but we don’t know the value of θ∗.

The MLE is motivated as a finding “the most likely” parameter. If we translate this to our
framework, we simply choose a loss function that is the negative of the log-likelihood, i.e.

`((y, x), θ) = − log pθ(y|x).

We give two examples below.
Example. Parametric distribution is normal with mean 〈x, θ〉 and some variance σ2 (which doesn’t
matter). That is

y|x ∼ N (〈x, θ〉, σ2)

pθ(y|x) =
1√

2πσ2
exp

{
− (y − 〈x, θ〉)2

2σ2

}
`((x, y), θ) = − log pθ(y|x) = (y − 〈x, θ〉)2 + const.

which is the squared error loss yielding linear regression.

Example. Parametric distribution is Bernoulli with mean σ(〈x, θ〉) where σ, in this case, is the
sigmoid function. That is

y|x ∼ Ber(σ(〈x, θ〉))
pθ(y|x) = σ(〈x, θ〉)y(1− σ(〈x, θ〉))1−y

`((x, y), θ) = − log pθ(y|x) = −y log(σ(〈x, θ〉))− (1− y) log(1− σ(〈x, θ〉))

which is the cross-entropy loss yielding logistic regression. Both of above settings belong to large

class of regression models called generalized linear models (GLMs). They are obtained by modeling
the natural parameter in exponential families with a linear function of feature vector. As seen
above, Gaussian leads to linear regression whereas Bernoulli leads to logistic regression.

MLE problem: We observe n data point: (yi, xi) ∼ pθ∗(y|x)p(x), i = 1, . . . , n. Our goal here
is to estimate the true parameter θ∗, by minimizing the empirical risk:

θ̂ = arg min
θ

R̂(θ) =
1

n

n∑
i=1

`((xi, yi), θ) = − 1

n

n∑
i=1

log pθ(yi|xi).

Let’s see how this is related to population risk minimizer. We start investigating by writing out
the gradient and the Hessian of R(θ).

• ∇R(θ∗) = E[−∇ log pθ∗(y|x)] = 0. Therefore, the true parameter is a critical point of the
population risk.

• ∇2R(θ∗) = E[−∇2 log pθ∗(y|x)] = E[∇ log pθ∗(y|x)∇ log pθ∗(y|x)T] = Iθ∗ � 0. This still
doesn’t prove that θ∗ is a local minimum. Note that the Hessian of the risk must be positive
semi-definite (PSD) since zzT is PSD as uT zzTu = (uT z)2.

In what follows, for simplicity we assume that Iθ∗ � 0 which clearly implies that true parameter
θ∗ is a local minimum. Actually, if we assume identifiability of our parametric family, that is
θ 6= θ′ =⇒ pθ 6= pθ′ , then θ∗ can be shown to be a unique global minimum.

16

3.3 Asymptotics of MLE

First, we need a few definitions.

Definition 13 (Convergence of random variables).

(a) Convergence in probability: We write θ̂n
p→ θ∗, if for every ε > 0 we have

P(|θ̂n − θ∗| > ε) −→ 0 as n→∞.

(b) Convergence in distribution: We write θ̂n
d→ θ∗, if Xn and X have CDFs Fn(x) and

F (x), respectively and for every continuity point of F (x), we have limn→∞ Fn(x) = F (x).
This is also called weak convergence as it is a very weak notion of convergence. The letter

d in the symbol
d→ is to specify that the convergence is in distribution, and it should not be

confused be the dimension d.

(c) Consistency: We say θ̂n is a consistent estimator for θ∗ if θ̂n
p→ θ∗.

In our asymptotic setting, we fix the dimension d and let number of samples n→∞. We drop
the subscript n to ease the notation.

3.3.1 Asymptotic normality

The following theorem is charactering the asymptotics of the MLE.

Theorem 14 (Asymptotics of MLE). Assume that θ̂ is consistent for θ∗, and the Fisher informa-
tion satisfies Iθ∗ � 0, and that supθ ‖∇3 log pθ‖op < B. Then,

1.
√
n(θ̂ − θ∗) d→ N (0, I−1

θ∗
).

2. n(R(θ̂)−R(θ∗))
d→ 1

2χ
2
d.

Remark. We make two important remarks about the above theorem.

1. The first result is giving us the asymptotic distribution of the MLE. We observe that the
variance of this distribution is the inverse Fisher information which validates its name: larger
the Fisher information is, lower the variance of this distributions. Therefore, the estimator
gives more information about the true parameter.

It is worth noting that these types of distributional results are useful in constructing confidence
intervals; hence quantifying uncertainty in models.

2. The second item above is the asymptotic distribution of the excess risk. Since χ2
d is a random

variable with mean d and variance 2d, the right hand side is roughly of order d/n. That is,

R(θ̂)−R(θ∗) ≈ O
(
d

n

)
.

The excess risk gets worse with increased dimension buy gets better with increased number
of samples. We should emphasize that this is an asymptotic rate and it is quite fast compared
to the non-asymptotic rates that we will obtain in the future lectures. It is also worth noting
that this is an equality rather than a upper bound.

17

Proof sketch.
We start by proving the first item, the normality of the MLE. The distribution of excess risk

will follow. Our proof outline is 1- we apply Taylor’s theorem, 2- identify a term that is an iid sum
which converges to a Gaussian random variable by central limit theorem (CLT), 3- show that the
other quantities converge in probability to deterministic quantities. We finally apply the Slutsky’s
theorem to conclude the proof.

Lemma 15 (Slutsky’s Theorem). For a sequence of random variables {xn, yn, zn}n∈N satisfying

xn
d→ x, yn

p→ a and zn
p→ b where a, b are constants, then we have xnyn + zn

d→ ax+ b.

We omit the proof as it is a simple application of the continuous mapping theorem.
We notice that ∇R(θ∗) = ∇R̂(θ̂) = 0. We expand the latter using the Taylor’s theorem around

the true parameter θ∗.

∇R̂(θ̂) = ∇R̂(θ∗) +∇2R̂(θ∗)(θ̂ − θ∗) +
1

2
∇3R̂(θ̄)[θ̂ − θ∗, θ̂ − θ∗].

Above, the last term is a tensor in ∇3R̂(θ̄) ∈ Rd×d×d, when multiplied by a vector (e.g. θ̂ − θ∗) it
reduces to a d× d matrix. Also, θ̄ is chosen somewhere on the line of and between θ̂ and θ∗ (it is
worth noting that mean value theorem doesn’t hold for vector valued functions which can be easily
fixed by using the integral form Taylor’s theorem).

We notice that the left hand side is zero. Rearranging terms, we get

−∇R̂(θ∗) = [∇2R̂(θ∗) +
1

2
∇3R̂(θ̄)(θ̂ − θ∗)](θ̂ − θ∗) (3.1)

Multiplying both sides with
√
n, we obtain

−√n∇R̂(θ∗)︸ ︷︷ ︸
iid sum/

√
n

= [∇2R̂(θ∗)︸ ︷︷ ︸
iid sum/n

+
1

2
∇3R̂(θ̄)(θ̂ − θ∗)︸ ︷︷ ︸

p→0

]
√
n(θ̂ − θ∗)︸ ︷︷ ︸
of interest

We observe that the left hand side of (3.1) is a iid sum divided by
√
n. By the CLT, we obtain

−√n∇R̂(θ∗) =
1√
n

n∑
i=1

∇ log pθ∗(yi|xi)
d→ N (0,Cov(∇ log pθ∗(yi|xi))).

Here, the expected value is 0 since E[∇ log pθ∗(yi|xi)] = 0, and Cov(∇ log pθ∗(yi|xi)) = Iθ∗ .
For the first term on the right hand side of (3.1), we have another iid sum but this time divided

by n. We use law of large numbers (LLN) to obtain

∇2R̂(θ∗) =
1

n

n∑
i=1

∇2 log pθ∗(yi|xi)
p→ ∇2R(θ∗) = Iθ∗ .

The second term on the right hand side of (3.1) converges to 0 in probability by the consistency
assumption. Therefore, multiplying both sides with I−1

θ∗
, we obtain that

√
n(θ̂ − θ∗) d→ I−1

θ∗
N (0, Iθ∗). (3.2)

We proceed by using a very useful property of Gaussian random vectors.

18

Lemma 16. Let z ∼ N (µ,Σ) be a d-dimensional Gaussian random vector. Then for a matrix
A ∈ Rl×d we have Az ∼ N (Aµ,AΣA>).

Using the above lemma together with (3.2) and obtain

√
n(θ̂ − θ∗) d→ N (0, I−1

θ∗
). (3.3)

This concludes the proof of the first part. For the proof of second part, we again use Taylor’s
theorem and write

R(θ̂)−R(θ∗) =
〈
∇R(θ∗), θ̂ − θ∗

〉
+

1

2

〈
∇2R(θ∗)(θ̂ − θ∗), θ̂ − θ∗

〉
+

1

6
∇3R̂(θ̄)[θ̂ − θ∗, θ̂ − θ∗, θ̂ − θ∗],

where again the first term on the right hand side disappears, and θ̄ is in between θ∗ and θ̂ (this
time without any issue since R is real-valued). Multiplying both sides with n and rearranging, we
obtain

n{R(θ̂)−R(θ∗)} =
1

2

〈√
n(θ̂ − θ∗), {∇2R(θ∗) +

1

3
∇3R(θ̄)[θ̂ − θ∗]}

√
n(θ̂ − θ∗)

〉
.

Using the previous result (3.3), we know that
√
n(θ̂ − θ∗) d→ z where z ∼ N (0, I−1

θ∗
), and the term

multiplying ∇3R vanishes due to consistency. Therefore, as n→∞, the right hand side converges
in distribution to

n{R(θ̂)−R(θ∗)} d→ 1

2
〈z, Iθ∗z〉.

We use Lemma 16 to deduce that

1

2
〈z, Iθ∗z〉 =

1

2
〈I1/2
θ∗
z, I1/2

θ∗
z〉 =

1

2
‖z̃‖2 ∼ 1

2
χ2
d

where z̃ ∼ N (0, I) with I denoting the identity matrix. This concludes the proof of the second
statement.

It is important to identify the contribution of each assumption. It is obvious that the CLT
follows from the iid average structure of the MLE problem (also there for many learning tasks).
The bounded third derivative is needed to control higher-order terms. Lastly, consistency is needed
to kill the third-order term which reduces everything to a quadratic problem in the asymptotic
limit.

3.3.2 Consistency

It turns out that the consistency assumption is actually true for the MLE, under certain assumptions
(Note that the below assumptions are stronger than what is in fact needed).

Theorem 17 (MLE is consistent). Assume that the following assumptions are satisfied.

(a) Uniform convergence: The empirical process satisfies sup
θ∈Θ
|R̂(θ)−R(θ)| p→ 0.

(b) Identifiability: For every ε > 0, inf
θ:‖θ−θ∗‖≥ε

R(θ) > R(θ∗).

19

(c) Compactness: Θ is non-empty and compact.

Then, θ̂ = argmin
θ∈Θ

R̂(θ) is consistent.

Remark. The first assumption above is a very strong notion of convergence and it will be quite
handy when we talk about generalization. The second assumption simple means that we can identify
the function has a unique minimizer θ∗ and around that point, R grows. The last assumption is
only needed to ensure that θ∗ and θ̂ belong to the set Θ.

Proof. By the compactness assumption, we have θ̂, θ∗ ∈ Θ. Next, notice that since θ̂ minimizes
R̂ in Θ, we have R̂(θ̂) ≤ R̂(θ∗). We can write

R̂(θ̂) ≤R̂(θ∗)

=R̂(θ∗)−R(θ∗) +R(θ∗)

≤ sup
θ∈Θ

∣∣∣R̂(θ)−R(θ)
∣∣∣+R(θ∗)

p→ R(θ∗) by assump (a). (3.4)

Also, since θ∗ minimizes R, we write

0 ≤ R(θ̂)−R(θ∗) ≤R(θ̂)− R̂(θ̂) as n→∞ by (3.4),

≤ sup
θ∈Θ

∣∣∣R̂(θ)−R(θ)
∣∣∣ p→ 0, by assump (a). (3.5)

Notice that we squeezed the excess risk between zeros. So for every ε > 0, the following holds for
the events {

‖ θ̂ − θ∗ ‖≥ ε
}

⊆
by assumption (b)

{
R(θ̂)−R(θ∗) > δε

}
Probability of the right hand side above goes to 0 as we let n→∞ due to (3.5).

20

4 Uniform Convergence =⇒ Generalization

Most of this section will rely on the notation introduced in Section 3.1. Our objective is to relate
the generalization performance of a learning algorithm to certain properties of the problem at hand.
We have already done this in the case MLE, where we characterized the behavior of the excess risk
as R(θ̂) − R(θ∗) ≈ d/n where d is the dimension of the features and n is the number of samples.
This characterization tells us that as the number of samples increase, the excess risk decrease with
a rate of n−1, and as the dimension of the features increase, the excess risk also increase with a rate
of d. But there were a couple of limitations of this result. First, this result was asymptotic, i.e. it
only holds when n→∞. Second, the entire MLE setup assumes that we know the true parametric
form of the data distribution. These are very strong assumptions which do not hold in practice.

In the sequel, our objective is modified. We do not assume that the data distribution is known
anymore. We only assume that data samples are iid from some distribution. The problem we
consider can be summarized as follows.

f∗ = argmin
f∈F

R(f) := E[`((y, x), f)]

As before the expectation is over the true unknown distribution (y, x) ∼ p(y, x); thus, we cannot
compute this expectation. Luckily, we can estimate this risk with a sample mean estimator (aka
empirical risk). That is,

f̂ = argmin
f∈F

R̂(f) :=
1

n

n∑
i=1

`((yi, xi), f)

Notice that R̂(f) is an estimator to R(f) and when n is large, they will be close to each other. The
hope is that, their minimizers are also close, and we will show that they actually are!

Two quantities have a big impact on the generalization performance of our learning algorithm:
1- the complexity of the function class F , and 2- the number data points used in training. We
would like to characterize the behavior of the excess risk in the following way.

R(f̂)−R(f∗) ≤
a func of comp of F

a func of n
. (4.1)

In the case of MLE, we sort of achieved this (d is not really a complexity measure of the function
class but ...).

We notice that the left hand side of (4.1) is a random variable. Therefore, we need to make a
probabilistic argument for this statement to make sense (e.g. almost sure, or high probability etc).
We choose high probability. More formally:

P
(
R(f̂)−R(f∗) ≥ ε︸ ︷︷ ︸

bad event

)
< δ︸︷︷︸

small probability

Here, ε and δ are ideally smaller numbers.

4.1 From excess risk to empirical process

We can decompose the excess risk in three terms.

R(f̂)−R(f∗) = [R(f̂)− R̂(f̂)]︸ ︷︷ ︸
not iid sum

+ [R̂(f̂)− R̂(f∗)]︸ ︷︷ ︸
≤0

+ [R̂(f∗)−R(f∗)]︸ ︷︷ ︸
iid sum/n

.

21

The first term above is the main term we need heavy lifting. This is because f̂ is a random variable,
and it breaks the iid sum structure of the empirical risk (as we will see soon, iid structure is very
handy). The second term is less than or equal to 0 since f̂ minimizes the empirical risk. The last
term is an iid sum since f∗ is deterministic (not random). As before, we can consider uniform
bounds over the feasible set to solve issues that come from non-iid structure.

R(f̂)−R(f∗) ≤ |R̂(f̂)−R(f̂)|+ 0 + |R̂(f∗)−R(f∗)|
≤ sup

f∈F
|R̂(f)−R(f)|+ 0 + sup

f∈F
|R̂(f)−R(f)|

R(f̂)−R(f∗)︸ ︷︷ ︸
excess risk

≤ 2 · sup
f∈F
|R̂(f)−R(f)|︸ ︷︷ ︸

empirical process

(4.2)

The right hand side is called empirical process in statistics. If we can control the empirical process,
we can control the generalization error. Intuitively we have bounded the risk of the empirical
estimator by the “worst-case” function possible from the function class. We see that the bound in
(4.2) translates immediately to

P
(
R(f̂)−R(f∗) ≥ ε

)
≤ P

(
sup
f∈F

∣∣∣R̂(f)−R(f)
∣∣∣ ≥ ε

2

)
, (4.3)

where the inequality in (4.3) is due to the fact that if the event R(f̂) − R(f∗) ≥ ε happens, since

we have (4.2), the event supf∈F

∣∣∣R̂(f)−R(f)
∣∣∣ ≥ ε

2 will also happen.

Uniform convergence generally refers to that the empirical process supf∈F

∣∣∣R̂(f)−R(f)
∣∣∣ con-

verges to 0 in probability. Because of (4.3), we see that uniform convergence implies generalization.
But we can also talk about explicit convergence rates.

4.2 Finite function classes, |F| <∞
Our first result in this direction is for finite function classes. Denoting the number of elements in
a set with | · |, in the following, we assume |F| <∞.

Theorem 18 (Generalization of Finite Function Classes). If the function class is finite (i.e. |F| <
∞) and loss is bounded ` ≤ B, then we have,

P

(
R(f̂)−R(f∗) < B

√
2 log(2|F|) + 2 log δ−1

n

)
> 1− δ. (4.4)

Remark.

• The above theorem reads, with probability at least 1− δ, we have

R(f̂)−R(f∗) < B

√
2 log(2|F|) + 2 log δ−1

n
,

This is true in a non-asymptotic sense.

• The complexity measure of the function class F turns out to be very intuitive in this case,
simply the number of functions. The generalization error depends on this quantity in a
logarithmic way. This is a good dependence since log grows very slow.

22

• δ is the confidence level for the bad event. Smaller it is, more risk averse the bound is. It
should be chosen in a way that the convergence rate is not affected. In the above bound we

observe that δ−1 = 2|F| is a good choice. The resulting convergence rate is O
(√

log(|F|)
n

)
.

• We see that the dependence on number of sample dropped to
√
n from n (compared to MLE).

This is the price we paid to make this result very general, i.e. non-asymptotic and unknown
distribution.

• Clearly, this setup doesn’t cover any interesting function class since |F| < ∞ almost never
holds. For example, think of class of linear functions. How many functions are there in that
set?

• The assumption on the loss is also restrictive. It doesn’t cover, for example, square loss; yet
it does cover 0-1 loss.

Proof. The proof will follow from three steps. In the first step we use a concentration of measure
argument for iid averages. In the second, we use the uniform convergence argument derived in
(4.3). In the last step, we control the empirical process to obtain a bound on the generalization
error. We start with a classical concentration result that will be handy.

Lemma 19 (Hoeffding’s inequality). Suppose z1, z2, . . . , zn are independent random variables (not
necessarily iid) where ai ≤ Xi ≤ bi almost surely. For the partial sums Sn = n−1

∑
i zi and ∀ε > 0,

we have

P
(
|Sn − E[Sn]| > ε

)
≤ 2 · exp

{
− 2n2ε2∑

i(bi − ai)2

}
.

Remark. The one sided version is also holds without the factor 2 on the right hand side.

1. Concentration: We notice that for a non-random f (this excludes f̂), R̂(f) − R(f) is the
same as Sn−E[Sn] if we let zi := `((yi, xi), f). Since loss is bounded by B, by the Hoeffding’s
inequality, the sample average is concentrating around the true average. That is,

P
(
|R̂(f)−R(f)| ≥ ε/2

)
≤ 2 · exp

{
− n2ε2

2
∑

iB
2

}

≤ 2 · exp

{
− nε2

2B2

}

2. Union bound: Next, we make use of the finite function class assumption to handle the
empirical process.

P

(
sup
f∈F
|R̂(f)−R(f)| ≥ ε/2

)
= P

(⋃
f∈F

{
|R̂(f)−R(f)| ≥ ε/2

})
≤
∑
f∈F

P
(
|R̂(f)−R(f)| ≥ ε/2

)
(by the union bound)

≤ 2|F| exp
{
− nε2

2B2

}
.

23

3. Uniform convergence =⇒ Generalization: Finally, we use the inequality derived in
(4.3) to conclude

P
(
R(f̂)−R(f∗) ≥ ε

)
≤ P

(
sup
f∈F
|R̂(f)−R(f)| ≥ ε/2

)

≤ 2|F| exp
{
− nε2

2B2

}
:= δ.

Solving for the δ in the above equation, we obtain

ε2 =
2B2

n
log(2|F|δ−1).

By substituting ε(δ) we recover (4.4).

24

5 Covering with ε-nets

The main objective in this lecture is to relax the strong and impractical assumption of Theorem 18,
namely the finite function class condition. This assumption is valid only if the practitioner is
allowed to choose among a finite number of functions.

In the majority of machine learning methodology, we train our models (weights) by assuming
a parametric structure on the function class and the parameter space is infinitely rich (more like
uncountably rich).

Model Setup: Suppose that we have a family of functions parametrized in the following sense

F = {fθ : θ ∈ Θ ⊆ Rd}
and a loss function `((x, y), fθ) := `((x, y), θ). In the sequel, we assume that the parameter space
is a d-dimensional ball with radius R, i.e. Θ = {θ : ||θ|| ≤ R}, while the loss function ` is bounded
by B and is L-Lipschitz continuous in θ. It is worth noting that Θ can be any set that is compact,
which can be confined inside a ball with some radius, so all the arguments we will soon be making
still are valid in general.

Definition 20 (Lipschitz continuous). A function f is L-Lipschitz continuous if

∀θ, θ′, |f(θ)− f(θ′)| ≤ L‖θ − θ′‖.
Functions that satisfy this condition have stable fluctuations, i.e., if θ and θ′ are points that are

close to each other, the function values f evaluated at θ and θ′ should also be close to each other.
For differentiable functions, the above assumption is equivalent to having a uniformly bounded
gradient ‖∇f(θ)‖ ≤ L. We also notice that it enforces function to have at most linear growth, i.e.,
let θ′ = 0. This rules out the options such as quadratic functions like f(θ) = θ2. Functions that
are strongly convex cannot be Lipschitz continuous.

5.1 ε-covers of sets in Rd

Remember in the proof of Theorem 18, we have used a union bound over the finite set of functions.
This is the main obstacle in our new setup where we have an uncountable set of parameter space
Θ. We simply cannot apply union bound over an uncountable sets! But what we can do is to
discretize this uncountable set in a way so that it is a good representation of the original set, but
we can apply union bound. We introduce the following notion of set covers for this task.

Definition 21 (ε-Net). For ε > 0, Nε is an ε-net (or an ε-cover) over the set Θ ⊆ Rd if for all
θ ∈ Θ, there exists θ′ ∈ Nε such that ‖θ − θ′‖ ≤ ε. That is,

∀θ ∈ Θ, ∃θ′ ∈ Nε such that ‖θ − θ′‖ ≤ ε.
The size of the ε-net with smallest size |Nε| is called the covering number.

In our applications, we are ideally looking for ε-nets over our parameter space Θ, that have
small number of points. But it is worth noting that we are not looking for the optimal ε-net. The
following examples will demonstrate the level of optimality we require for our purposes.

Example: Suppose Θ = [0, 1]. To find the ε-net of Θ, one can divide the interval into shorter
intervals, each with length 2ε. By defining the set Nε to include all the endpoints of each small
interval, for any point θ in the [0, 1] interval, we can always find a point θ′ ∈ Nε such that |θ−θ′| ≤ ε.
This is demonstrated in Figure 1, and it gives us a valid Nε with |Nε| = 1

2ε + 1.

25

Figure 1: ε-Net for Θ = [0, 1]

Example: Suppose Θ = {θ ∈ Rd : ‖θ‖ ≤ R}. We can do something similar by dividing the ball
into grids of size a. Since the number of points required in 1 dimension is 2R

a + 1, the total number
of points required in the d-dimensional space is (2R

a + 1)d. Within each d-dimensional cube of edge
length a, the largest distance between the interior points and the vertices comes from the center

of the cube, which is a
√
d

2 . This is demonstrated in Figure 2. Therefore, to guarantee a full cover

of all the points in the ball, the largest grid size should satisfy ε = a
√
d

2 . This leads to the upper
bound of the size of an ε-net for θ, which is

|Nε| ≤
(
R
√
d

ε
+ 1

)d
≤
(

2R
√
d

ε

)d
. (5.1)

2R
<latexit sha1_base64="QCQJWN8LzWl/QHQfdW/Pwe8KtvM=">AAAHW3ic3VVNb9NAEJ020BRTaMvHiYshqsQpclpEi4RQIRe4RE1K2qpNhWxnk1rd2Ja9QUQRP4Er/DYO/Bfejt3US2Lg3LXsnR2/mXkznvV6sQxS5Tg/l5Yrt26vVFfvWHfX7t1f39h8cJRG48QXXT+SUXLiuamQQSi6KlBSnMSJcEeeFMfeZVO/P/4skjSIwo9qEovzkTsMg0Hguwqqw+2O9Wmj5tQdHva80MiFGuXjINqsPKUe9Skin8Y0IkEhKciSXEpxnVGDHIqhO6cpdAmkgN8L+koWbMdACSBcaC/xHGJ1lmtDrLXPlK19RJG4E1jatJVj+pAHrM1mHd8uYMtiTNm35jjB7OU+R9AquoD2X3ZXyP+10zkpMNzjXALwjFmjs/SNjAaYJdYK/PVzAqSA1IdVAsmHTkKbaXSMBHNWV535BdfZZZyApDlZ/JW07x77cOEhBY/ejLmHa0odMMm42JAznA2GY66R4CpfVUxXuOi3U+qviAr4CwmuSbKQw2mBwwcDXR77tNSPmbnLdYq4sxZXoG1UwMSblUgN3+1SX0VUyO/HzGRx/FYhfstA/y16q9RTEaV3xQjdpHfflwUWzULspoGdj23Rlv3opl06K+R6yDvO590l/+i69MZmft0nr7k3JK8USy6+/zD/a2f98XamsVGZJP/XCeDNznzDvvQfaog+U/kuvPaGTuJT55UeL2dnzLxwtF1v7NR32i9q++/y82eVntAzeo4zZpf26T0dUBcshvSNvtOPlV/VStWqrmXQ5aXc5iEZo/r4N167QxU=</latexit>

2
R

<latexit sha1_base64="QCQJWN8LzWl/QHQfdW/Pwe8KtvM=">AAAHW3ic3VVNb9NAEJ020BRTaMvHiYshqsQpclpEi4RQIRe4RE1K2qpNhWxnk1rd2Ja9QUQRP4Er/DYO/Bfejt3US2Lg3LXsnR2/mXkznvV6sQxS5Tg/l5Yrt26vVFfvWHfX7t1f39h8cJRG48QXXT+SUXLiuamQQSi6KlBSnMSJcEeeFMfeZVO/P/4skjSIwo9qEovzkTsMg0Hguwqqw+2O9Wmj5tQdHva80MiFGuXjINqsPKUe9Skin8Y0IkEhKciSXEpxnVGDHIqhO6cpdAmkgN8L+koWbMdACSBcaC/xHGJ1lmtDrLXPlK19RJG4E1jatJVj+pAHrM1mHd8uYMtiTNm35jjB7OU+R9AquoD2X3ZXyP+10zkpMNzjXALwjFmjs/SNjAaYJdYK/PVzAqSA1IdVAsmHTkKbaXSMBHNWV535BdfZZZyApDlZ/JW07x77cOEhBY/ejLmHa0odMMm42JAznA2GY66R4CpfVUxXuOi3U+qviAr4CwmuSbKQw2mBwwcDXR77tNSPmbnLdYq4sxZXoG1UwMSblUgN3+1SX0VUyO/HzGRx/FYhfstA/y16q9RTEaV3xQjdpHfflwUWzULspoGdj23Rlv3opl06K+R6yDvO590l/+i69MZmft0nr7k3JK8USy6+/zD/a2f98XamsVGZJP/XCeDNznzDvvQfaog+U/kuvPaGTuJT55UeL2dnzLxwtF1v7NR32i9q++/y82eVntAzeo4zZpf26T0dUBcshvSNvtOPlV/VStWqrmXQ5aXc5iEZo/r4N167QxU=</latexit>

"p
2

<latexit sha1_base64="ayEKMu4GmiVvraOna8dixuOkRZI=">AAAHbnic3VXNbtNAEJ620JTwl0LFBSEMUaWeoqSKBAeECrnAJWoKaas2VbV2NqnVjW3Wm4oQ9V24whvxFjwC347d1m5i4Fxb9s6Ov5n5ZnbW60bKj029/mthcenW7eXSyp3y3Xv3HzysrD7ajcOx9mTXC1Wo910RS+UHsmt8o+R+pKUYuUruuact+33vTOrYD4PPZhLJo5EYBv7A94SB6riy1jsTWkaxr8LA6cVftJlunh9XqvVanS9nVmikQpXSaztcXXpBPepTSB6NaUSSAjKQFQmKcR9Sg+oUQXdEU+g0JJ+/SzqnMmzHQEkgBLSneA8xO0y1AebWZ8zWHqIoPBqWDq2nmD7kAWuT0cZ3MtiiGFP2bTlOMLqpzxG0hk6g/ZfdBfJ/7WxOBgxfcy4+eEassVl6uYwGGBXmBvztewKkhNSHlYbkQaegTTQ2hsaY1NVmfsJ1FoyTkCynMq+S9d1jHwIeYvDoXTJ3cU9pB0wSLg7kBOeA4ZhrJLnKFxWzFc763Sn0l0X5vEKSa6LncjjIcPiYQxfHPij0k89ccJ1C7qz5FejkKpDH5ysR53x3Cn1lUQF/HzOT+fHbmfjtHPpv0duFnrIouytG6Ca7+77OsWhlYrdy2NnYZVp31m7abbNCrp94x3m8u9S1rotvbOZXffKGe0PxzLAksP7D9K+d9Me7S42Dyuj0XyeBz3fmW/Zl/1BD9JlJd+GVN3QSTp3G9TNmVtjdrDWatWanWd16n54/K/SUXtIGzphXtEUfaJu6YPGNvtMP+rn8u/Sk9Kz0PIEuLqQ2jyl3lTb+AL5GS0E=</latexit>

"
p

2

<latexit sha1_base64="ayEKMu4GmiVvraOna8dixuOkRZI=">AAAHbnic3VXNbtNAEJ620JTwl0LFBSEMUaWeoqSKBAeECrnAJWoKaas2VbV2NqnVjW3Wm4oQ9V24whvxFjwC347d1m5i4Fxb9s6Ov5n5ZnbW60bKj029/mthcenW7eXSyp3y3Xv3HzysrD7ajcOx9mTXC1Wo910RS+UHsmt8o+R+pKUYuUruuact+33vTOrYD4PPZhLJo5EYBv7A94SB6riy1jsTWkaxr8LA6cVftJlunh9XqvVanS9nVmikQpXSaztcXXpBPepTSB6NaUSSAjKQFQmKcR9Sg+oUQXdEU+g0JJ+/SzqnMmzHQEkgBLSneA8xO0y1AebWZ8zWHqIoPBqWDq2nmD7kAWuT0cZ3MtiiGFP2bTlOMLqpzxG0hk6g/ZfdBfJ/7WxOBgxfcy4+eEassVl6uYwGGBXmBvztewKkhNSHlYbkQaegTTQ2hsaY1NVmfsJ1FoyTkCynMq+S9d1jHwIeYvDoXTJ3cU9pB0wSLg7kBOeA4ZhrJLnKFxWzFc763Sn0l0X5vEKSa6LncjjIcPiYQxfHPij0k89ccJ1C7qz5FejkKpDH5ysR53x3Cn1lUQF/HzOT+fHbmfjtHPpv0duFnrIouytG6Ca7+77OsWhlYrdy2NnYZVp31m7abbNCrp94x3m8u9S1rotvbOZXffKGe0PxzLAksP7D9K+d9Me7S42Dyuj0XyeBz3fmW/Zl/1BD9JlJd+GVN3QSTp3G9TNmVtjdrDWatWanWd16n54/K/SUXtIGzphXtEUfaJu6YPGNvtMP+rn8u/Sk9Kz0PIEuLqQ2jyl3lTb+AL5GS0E=</latexit>

2"

<latexit sha1_base64="VKFaNeDugg1UvGQGa7zIB6ZE9Gk=">AAAHZXic3VXNbtNAEJ620JRAoYWKCwcMUSVOUVJFggNChVzgEjWFtFWbCK2dTWp1/cPaqYginoMrPBZPwGvw7dhtvU0MnGvL3tnxNzPfzM563Vj5Sdpo/FpaXrl1e7Wydqd69976/Qcbmw8PkmiiPdnzIhXpI1ckUvmh7KV+quRRrKUIXCUP3bO2+X54LnXiR+GndBrLQSDGoT/yPZFCNdjpnwst48RXUeh83qg16g2+nHmhmQs1yq+9aHPlGfVpSBF5NKGAJIWUQlYkKMF9Qk1qUAzdgGbQaUg+f5f0jaqwnQAlgRDQnuE9xuwk14aYG58JW3uIovBoWDq0nWOGkEeszUYT3ylgy2LM2LfhOMXo5j4DaFM6hfZfdhfI/7UzOaVg+Ipz8cEzZo3J0rMyGmFUmKfgb95TICWkIaw0JA86BW2mMTE0xqyuJvNTrrNgnIRkOFV5lYzvPvsQ8JCAR/+SuYt7RvtgknFxIGc4BwwnXCPJVb6omKlw0e9+qb8iyucVklwTvZDDcYHDBwtdHvu41I+dueA6RdxZiyvQtSpg4+1KJJbvbqmvIirk7xNmsjh+pxC/Y6H/Fr1T6qmIMrsiQDeZ3fd1gUW7ELttYedjV2nb2bppt8kKuX7kHefx7lLXui65sZlf9clr7g3Fs5QlgfUf53/trD/eXmocVEbn/zoJvN2Zb9iX+UON0WdpvguvvKGTcOo0r58x88LBTr3Zqre6rdruu/z8WaMn9Jxe4Ix5Sbv0nvaoBxZf6Dv9oJ+rvyvrla3K4wy6vJTbPCLrqjz9A5OtR6w=</latexit>

Figure 2: ε-Net for Θ = {θ ∈ R2 : ‖θ‖ ≤ R}
.

The above dependence O(dd) is not looking good. But we will next see that the exponential
decay in Hoeffding’s inequality will be able to compensate for this.

5.2 Generalization for parametrized function classes

We state the following generalization bound for parametrized function classes.

Theorem 22 (Generalization by covering). Assume that the loss function is bounded by B and
L-Lipschitz continuous in its second argument θ. For the parametric function class F = {fθ :
‖θ‖ ≤ R}, and the corresponding empirical and population risk minimizers

θ̂ = argmin
θ∈Θ

R̂(θ) and θ∗ = argmin
θ∈Θ

R(θ),

26

we have with probability at least 1− 2e−d/2

R(θ̂)−R(θ∗) ≤ c
√
d log(n)

n
where c = 2(B ∨ 8RL),

whenever n ≥ 16.

Remark. We make a few remarks before proving the above theorem.

• Convergence rate is

√
d log(n)

n . This is slower than the previous result by a factor of log(n),
which is due to the covering argument we are about to make.

• Note that the function class is parametrized over a ball of radius R. This is not at all needed
and our proof would still follow for any compact set Θ by simply replacing R with diam(Θ)/2.

• The above probability is decaying exponentially fast with dimension. The constants are
arbitrary and can be improved with a more careful treatment.

Proof. The proof will be similar to the finite function class case, with an additional step where
we discretize the uncountably rich parameter space Θ.

1. Concentration: Since loss is bounded by B, for a non-random θ, by the Hoeffding’s inequal-
ity applied on R̂(θ)−R(θ), we obtain

P
(
|R̂(θ)−R(θ)| ≥ ε/4

)
≤ 2 · exp

{
− nε2

8B2

}
.

2. Discretization: In order to apply union bound, we first discretize our uncountable parameter
space using an ε-net argument. Before we introduce the ε-net, we first derive a few useful
inequalities using the Lipschitz continuity of loss. By the definition of R(θ) and R̂(θ), if
l((x, y), θ) is L-Lipschitz, then both R(θ) and R̂(θ) would also be L-Lipschitz.

First, we notice that since ` is L-Lipschitz, R and R̂ are both L-Lipschitz continuous. Next,
by the triangle inequality,

|R̂(θ)−R(θ)| =|R̂(θ′)−R(θ′) + R̂(θ)− R̂(θ′)−R(θ) +R(θ′)|
≤|R̂(θ′)−R(θ′)|+ |R̂(θ)− R̂(θ′)|+ |R(θ)−R(θ′)|
≤|R̂(θ′)−R(θ′)|+ 2L‖θ − θ′‖.

Now, let N∆ be a ∆-net over Θ ⊆ Rd. For any θ ∈ Θ, there exists θ′ ∈ N∆ such that
‖θ − θ′‖ ≤ ∆. Using this and together with the previous inequality, we obtain that

|R̂(θ)−R(θ)| ≤ |R̂(θ′)−R(θ′)|+ 2L∆.

By first taking maximum over the ∆-net over the right hand side, and next taking a supremum
on the left hand side, we obtain

sup
θ∈Θ
|R̂(θ)−R(θ)| ≤ max

θ∈N∆

|R̂(θ)−R(θ)|+ 2L∆.

27

3. Union bound: Now that we discretized the parameter space, we can apply the union bound.
Using the previous display, we write

P
(

sup
θ∈Θ
|R̂(θ)−R(θ)| ≥ ε/2

)
≤P
(

max
θ∈N∆

|R̂(θ)−R(θ)| ≥ ε/2− 2L∆

)
≤P
(

max
θ∈N∆

|R̂(θ)−R(θ)| ≥ ε/4
)

= (∗)

where we let ∆ = ε/8L in the last step. By the union bound, we get

(∗) = P

 ⋃
θ∈N∆

{|R̂(θ)−R(θ)| ≥ ε/4}

 ≤ ∑
θ∈N∆

P
(
|R̂(θ′)−R(θ′)| ≥ ε/4

)
,

≤2|N∆| exp

{
− nε2

8B2

}
.

The bound on the right hand side is quite explicit and depends on the covering number of
the parameter space Θ. But we already have a bound on this covering number from the

previous example as given in (5.1), that is, |N∆| ≤ (2R
√
d

∆)d where ∆ = ε/8L. Hence, the
above inequality suggests that

P
(

sup
θ∈Θ
|R̂(θ)−R(θ)| ≥ ε/2

)
≤ 2

(
16RL

√
d

ε

)d
exp

{
− nε

2

8B2

}
= (∗∗)

By moving all terms inside the exponent, we get

(∗∗) ≤ 2 exp

{
− nε

2

8B2
+ d log(16RL

√
d) + d log(ε−1)

}
.

At this point, we are ready to identify the convergence rate. We start by trying out ε = c
√

d
n ,

which yields

(∗∗) ≤ 2 exp

{
− d

8B2
+ d log(16RL

√
d)− d log(c

√
d) + d log(c

√
n)

}
.

Notice that the second and third terms can cancel each other with a right choice of c, but the
first and last terms cannot, as one is decaying with d and other is growing with d log(n). In
fact, any rate slower that

√
n would work here. But we can also get away with only losing a

log factor.

By choosing ε = c

√
d log(n)

n , we have

(∗∗) ≤2 exp

{
−c

2d log(n)

8B2
+ d log(16RL

√
d)− d

2
log log(n) +

d

2
log(n)− d log(c

√
d)

}
,

≤2 exp{−d/2},

where we let c = 2(B ∨ 8RL) and n ≥ 16.

28

4. Uniform convergence =⇒ generalization: The last step is to convert the bound on the
empirical process to a bound on the excess risk. We have

P
(
R(θ̂)−R(θ∗) ≥ ε

)
≤ P

(
sup
θ∈Θ
|R̂(θ)−R(θ)| ≥ ε/2

)
,

combining this with the previous result, we obtain

P

(
R(θ̂)−R(θ∗) ≥ c

√
d log(n)

n

)
≤ 2 exp{−d/2},

whenever c = 2(B ∨ 8RL) and n ≥ 16.

29

6 Rademacher Complexity: Definition

So far, our quest to achieve generalization involves three key steps: 1-concentration, 2- union
bound, and 3- uniform conv =⇒ generalization. That is, we used Hoeffding’s lemma to obtain a
concentration result for the empirical risk. We then establish that an empirical process is small, by
either handling the supremum through a union bound over either a finite function class, or using an
ε-net argument to obtain a generalization bound. Lastly, using that unif. conv =⇒ generalization,
we get

P
(
R(f̂)−R(f∗) ≥ ε

)
≤ P

(
sup
f∈F

|R̂(f)−R(f)| ≥ ε

2︸ ︷︷ ︸
empirical process

)
= (∗) (6.1)

≤ func. of

(
ε, complexity of F , n

)
.

In the following, all of the above steps will be modified– steps 1 and 3 change slightly, but 2
entirely. In the concentration step, we will obtain a concentration result directly for the empirical
process (not for empirical risk), showing that it is close to its expectation. Then we will use a
technique called “symmetrization” to show that the expectation of the empirical process depends
on the complexity of the function class. Lastly, by using a slightly modified version of “uniform
conv. =⇒ generalization” we will obtain a generalization bound.

Rademacher complexity of the function class F over n samples will be denoted by Rn(G). We
will be formally defining the Rademacher complexity later in this section, but in the sequel it
should be understood as a measure of complexity of the function class G over n data points.

6.1 Generalization based on Rademacher complexity

Theorem 23 (Generalization based on Rademacher complexity). Define

G = {(y, x)→ `((y, x), f) where f ∈ F},

and assume ` is bounded, ` ∈ [0, B], and (xi, yi)
iid∼ p. Then with probability at least 1− δ,

R(f̂)−R(f) ≤ 4Rn(G) +B

√
2 log(2/δ)

n
. (6.2)

Before proving the above theorem, we make a few remarks.
Remarks

• As stated before, Rademacher complexity measures the complexity of the function class G
over n data points. It should converge to zero as n gets large, and this determines the
generalization error rate.

• It is important to note that in the bound (6.2), Rn(G) is the Rademacher complexity of the
function class G, not F . We will connect this to F later.

• Although what we care about is bounding the generalization error, the above bound is ob-
tained for the empirical process, and the technique used here has applications beyond gener-
alization.

30

Proof. Our proof strategy is as follows.
We will conclude our proof with a modified version of the “uniform conv. =⇒ generalization”.

For this, we start by splitting the inequality (6.1) into two components:

∗ ≤ P

(
sup
f∈F

R̂(f)−R(f) ≥ ε

2

)
+ P

(
sup
f∈F

R(f)− R̂(f) ≥ ε

2

)
. (6.3)

In the remainder of this proof, we will focus on bounding the first term on the right hand side
above. But an equivalent bound can be shown for the second term.

The proof relies on three key steps as before: 1-concentration, 2-symmetrization, and 3- uniform
conv. =⇒ generalization.

1. Concentration: Previously, we relied on Hoeffding’s inequality to obtain a concentration
bound for the empirical risk. In the sequel, we will use a stronger theorem in order to obtain
a concentration result directly for the empirical process.

Lemma 24 (McDiarmid’s inequality). Let g : Z × ... × Z → R be a function satisfying the
bounded difference property

|g(z1, . . . , zj , . . . , zn)− g(z1, . . . , z
′
j , . . . , zn)| ≤ cj

Then for independent random variables z1, z2 . . . , zn, we have

P
(
g(z1, . . . , zn)− E[g(z1, . . . , zn)] ≥ ε

)
≤ exp

{
−2ε2∑n
i=1 c

2
i

}
.

This lemma is stronger than the previously used concentration arguments. Indeed, Hoeffding’s
inequality can be derived by using the above lemma.

Example: [Hoeffding’s inequality] Suppose z1, . . . , zn are independent random variables that
are bounded almost surely ai ≤ zi ≤ bi. We define g as their average and verify the bounded
difference property

g(z1, ..., zn) = Sn =
1

n

n∑
i=1

zi

|g(z1, . . . , zj , . . . , zn)− g(z1, . . . , z
′
j , . . . , zn)| ≤ 1

n
|zj − z′j |

≤ bj − aj
n

.

By the McDiarmid’s inequality, we obtain

P

(
1

n

n∑
i=1

zi − E[z1] ≥ ε
)
≤ exp

{
−2ε2n∑
j(bj − aj)2

}
.

We continue the proof by recalling our goal: We need to bound the empirical process in (6.3).

31

For this, we let the g function from McDiarmid’s inequality be the function of interest.

g(z1, . . . , zn) = sup
f∈F

R̂(f)−R(f)

= sup
f∈F

1

n

n∑
i=1

`((xi, yi)︸ ︷︷ ︸
zi

, f)− E[`((x, y)︸ ︷︷ ︸
z

, f)]

= sup
f∈F

1

n

n∑
i=1

`(zi, f)− E[`(z, f)]

Notice that, in order to ease the notation, we denoted the data pairs (xi, yi) as zi. We first
verify the bounded difference property.

|g(z1, . . . , zj , . . . , zn)− g(z1, . . . , z
′
j , . . . , zn)|

=

∣∣∣∣∣ sup
f∈F

[
1

n

n∑
i=1

`(zi, f)− E[`(z, f)]

]
− sup
f∈F

[
1

n

n∑
i=1

`(zi, f)− E[`(z, f)]− 1

n

{
`(zj , f)− `(z′j , f)

}]∣∣∣∣∣
≤︸︷︷︸
(i)

sup
f∈F

1

n

∣∣`(zj , f)− `(z′j , f)
∣∣

≤ B

n

where the inequality (i) follows from the following simple fact. For function F,G, we have

Fact 25. ∣∣∣ sup
x
F (x)− sup

x
G(x)

∣∣∣ ≤ sup
x

∣∣∣F (x)−G(x)
∣∣∣.

Hence, by the McDiarmid’s inequality, we obtain

P

(
sup
f∈F

R̂(f)−R(f) ≥ t+

Need to show is small︷ ︸︸ ︷
E
[

sup
f∈F

R̂(f)−R(f)
])

≤︸︷︷︸
McDiarmid’s

exp

{
−2nt2

B2

}
.

It is worth highlighting the following again. Previously, we have focused on the concentration
over n−1

∑
i `(zi, f) − E[`(z, f)], followed by a union bound, but now we are looking at the

concentration of the supremum directly supf∈F n−1
∑

i `(zi, f)−E[`(z, f)]. The above bound
is looking good for our goal except that we need to control the additional term that is the
expected value of the empirical process. This will be done by the symmetrization argument.

6.2 Symmetrization

We start with a simple argument. If X,X ′ are iid r.v.’s then X
d
= X ′. If g is a function then

g(X)
d
= g(X ′). Further,

g(X)− g(X ′)
d
= g(X ′)− g(X)

d
= −1 · [g(X)− g(X ′)]

d
= σ · (g(X)− g(X ′)),

32

where σ is a Rademacher random variable, i.e. P(σ = +1) = P(σ = −1) = 1/2, which is
independent of X,X ′. This argument is very useful (as we will see soon), and termed as
symmetrization.

2. Symmetrization: Denote our dataset as: D = {(x1, y1), . . . , (xn, yn)} = {z1, . . . , zn}. In-
troduce a random copy of the dataset D′ = {z′1, . . . , z′n}, where zi and z′i are iid. This new
dataset is called the ghost dataset. Now that we have two datasets D,D′, there are also two
empirical risks R(f ;D) and R(f ;D′) where we denote their dependence on the corresponding
dataset. That is,

R̂(f ;D) =
1

n

n∑
i=1

`(zi, f) and R̂(f ;D′) =
1

n

n∑
i=1

`(z′i, f).

The population risk will be identical for these datasets,

R(f) = E[`(z, f)] = E[R̂(f,D)] = E[R̂(f,D′)].

We write,

E

[
sup
f∈F

R̂(f)−R(f)

]
= E

[
sup
f∈F

R̂(f ;D)− E[R̂(f ;D′)]
]

= E

[
sup
f∈F

{
R̂(f ;D)− E[R̂(f ;D′)|D]︸ ︷︷ ︸

D
indep∼ D′

}]

= E

[
sup
f∈F

{
E
[
R̂(f ;D)− R̂(f ;D′)|D

]}]

≤︸︷︷︸
(i)

E

[
E
[

sup
f∈F

{
R̂(f ;D)− R̂(f ;D′)

}
|D
]]

=︸︷︷︸
(ii)

E

[
sup
f∈F

R̂(f ;D)− R̂(f ;D′)
]

= E

[
sup
f∈F

1

n

n∑
i=1

(
`(zi, f)− `(z′i, f)

)]

= E

[
sup
f∈F

1

n

n∑
i=1

σi

(
`(zi, f)− `(z′i, f)

)]

≤︸︷︷︸
(iii)

E

[
sup
f∈F

1

n

n∑
i=1

σi`(zi, f) + sup
f∈F

1

n

n∑
i=1

−σi`(z′i, f)

]

=︸︷︷︸
σi
d
=−σi

2 · E
[

sup
f∈F

1

n

n∑
i=1

σi`(zi, f)

]

where (i) follows from E[sup] ≥ supE, (ii) follows from the law of iterated expectation, and
(iii) follows from the following fact.

33

Fact 26. supx {F (x) +G(x)} ≤ supx F (x) + supx G(x).

The bound we obtained through the above steps is simply,

E

[
sup
f∈F

R̂(f)−R(f)

]
≤ 2E

[
sup
f∈F

1

n

n∑
i=1

σi`(zi, f)

]
, (6.4)

and the final bound doesn’t include the ghost dataset at all!

Next, we define the Rademacher complexity.

Definition 27 (Rademacher complexity). For a function class G = {g : Z → R}, the
Rademacher complexity is defined as,

Rn(G) = E

[
sup
g∈G

1

n

n∑
i=1

σig(zi)

]
,

where zi
iid∼ p are data points, and σi

iid∼ Rademacher r.v.’s independent from the dataset.

Furthermore, the empirical Rademacher complexity is defined as,

R̂n(G) = E

[
sup
g∈G

1

n

n∑
i=1

σig(zi)|z1:n

]
.

Therefore, defining the function class G as

G = {g : z → `(z, f) such that f ∈ F},

the bound in (6.4) can be written as

E

[
sup
f∈F

R̂(f)−R(f)

]
≤ 2Rn(G).

3. Uniform convergence =⇒ generalization (yet again): We now have the necessary
building blocks to construct our goal of generalization. We write out generalization bound as

P
(
R(f̂)−R(f∗) ≥ ε

)
≤ P

(
sup
f∈F

R̂(f)−R(f) ≥ ε

2

)
+ P

(
sup
f∈F
−R̂(f) +R(f) ≥ ε

2

)
.

We will obtain (already obtained) a bound on the first term on the right hand side. Similar
argument yields the same bound for the second term.

P

(
sup
f∈F

R̂(f)−R(f) ≥ t+ E
[

sup
f∈F

R̂(f)−R(f)
])
≤ exp

{
−2nt2

B2

}
Using that

E

[
sup
f∈F

R̂(f)−R(f)

]
≤ 2 ·Rn(G)

where G = {z → `(z, f) where f ∈ F},

34

we can write,

P

(
sup
f∈F

R̂(f)−R(f) ≥ t+ 2Rn(G)︸ ︷︷ ︸
ε/2

)
≤ exp

{−2nt2

B2

}︸ ︷︷ ︸
δ

Then with probability at least 1− δ := 1− 2 exp
{−2nt2

B2

}
, we have

R̂(f)−R(f) ≤ ε/2 = t+ 2Rn(G)

for t = B

√
log(2/δ)

2n
.

Similar argument holds for P
(

supf∈F −R̂(f) +R(f) ≥ ε
2

)
. Therefore, we obtain

P
(
R(f̂)−R(f∗) ≥ 4Rn(G) +B

√
2 log(2/δ)

n

)
≤ 1− δ,

which concludes the proof.

Outline of the above proof is as follows.

1. Concentration of the empirical process

P

(
sup
f∈F

R̂(f)−R(f) ≤ t+ E
[

sup
f∈F

R̂(f)−R(f)
])

≤︸︷︷︸
McDiarmid’s

exp
{−2nt2

B2

}
.

2. Symmetrization: For G = {z → `(z, f) where f ∈ F},

E

[
sup
f∈F

R̂(f)−R(f)

]
≤ 2 · E

[
sup
f∈F

n−1
n∑
i=1

σi`(zi, f)

]
= 2 ·Rn(G).

3. Uniform convergence implies generalization

P
(
R(f̂)−R(f∗) ≥ ε

)
≤ P

(
sup
f∈F

R̂(f)−R(f) ≥ ε

2

)
+ P

(
sup
f∈F
−R̂(f) +R(f) ≥ ε

2

)
.

where we set ε/2 = t+ 2Rn(G) and δ = exp
{−2nt2

B2

}
and solve for these quantities.

35

7 Rademacher Complexity: Properties & Applications

From now on, we will rely on the following (informal) inequality to establish generalization. With
probability at least 1− δ,

R(f̂)−R(f) ≤ 4Rn(G) +B

√
2 log(2/δ)

n
. (7.1)

where G = {(y, x) → `((y, x), f) where f ∈ F}. Formal statement is given in Theorem 23. Key
observation is that, in order to achieve generalization, we only need to find an upper bound to
Rademacher complexity Rn(G) that decays with n.

7.1 Properties of Rademacher complexity

Below, we state some properties of Rademacher complexity.

1. Monotonicity: if F1 ⊆ F2 then Rn(F1) ≤ Rn(F2)

2. Linear combination: if F1 + F2 = {f1 + f2 : f1 ∈ F1, f2 ∈ F2} then Rn(F1 + F2) =
Rn(F1) + Rn(F2)

3. Scaling: if c ∈ R and cF = {cf : f ∈ F} then Rn(cF) = |c|Rn(F)

4. Convex Hull of F : if |F| <∞ then Rn(convex-hull(F)) = Rn(F)

The above properties follow from the definition of Rademacher complexity, and their proof is left
to reader as an exercise.

We notice that in the generalization bound 7.1, the Rademacher complexity of the function
class G plays a key role. Our objective is to connect this bound to the complexity of the hypothesis
functions F . The following strong result serves to that purpose.

Lemma 28 (Talagrand’s contraction principal). Let g be an L-Lipschitz continuous function,
and F is a function class. Then,

Rn(g ◦ F) ≤ L ·Rn(F).

Proof of the above lemma is involved and skipped in class. We emphasize that Talagrand’s
lemma can be used to map the Rademacher complexity of G, to that of F which is known for
certain function classes. We first go over an example to demonstrate how to use the above result.

Example. [Support Vector Machines] In our first example, we visit a classical learning algorithm.
As before, we denote our data pairs with z = (x, y) and y ∈ {±1}, x ∈ Rd and loss `(z, f) =
max{0, 1 − y · f(x)} which is often called as the hinge-loss. Let’s define the function φ(s) =
max{0, 1− s}, and notice that `(z, f) = φ(yf(x)) and φ is 1-Lipschitz continuous.

Recall that the generalization bound we obtained in (7.1) relies on the Rademacher complexity
of the loss class Rn(G), where G = {z = (y, x)→ φ(yf(x)), f ∈ F}. In order to connect this to the
complexity of F , we define H = {z = (y, x) → yf(x), f ∈ F}, and we notice that G = φ ◦ H. By
the Talagrand’s contraction principal, we can bound the Rademacher complexity of H as

Rn(G) ≤ 1 ·Rn(H),

36

since φ is 1-Lipschitz. But

Rn(H) = E

[
sup
h∈H

1

n

n∑
i=1

σih(zi)

]

= E

[
sup
f∈F

1

n

n∑
i=1

σiyif(xi)

]
, σiyi

d
= σi {∗∗}

= E

[
sup
f∈F

n−1
∑
i

σif(xi)

]
= Rn(F).

Note that in the second line of equality, yi
d
= σiyi comes from the fact that σiyi ⊥⊥ xi even

though yi 6⊥⊥ xi (verify this).
Therefore we can conclude that if we characterize Rn(F), then we can characterize Rn(G). This

still doesn’t complete the whole picture, but we are making progress.

Example. [Smooth relaxations to 0-1 loss] Smooth surrogate relaxations to 0-1 loss are commonly
employed in machine learning. The basic idea is that we would like to minimize the misclassification
error which is based on the 0-1 loss, but in practice we cannot minimize this ill-behaved loss function
due to its discontinuous behavior. For this reason, we consider surrogate losses to 0-1 loss which
are its smoothed versions. In this example, we will see how using a surrogate loss may lead to a
worsened generalization error.

We consider a binary classification problem where we denote the data as z = (y, x), with class
labels y ∈ {±1}, and f ∈ F , then the 0-1 loss function is given as 1{yf(x)≤0} and can be equivalently
written as follows.

`0(z, f) , `0(yf(x)) where `0(s) =

{
1 if s < 0,

0 if s ≥ 0.

We will assume that the product of response and prediction satisfies the following property.

Assumption 1. We assume the following holds

∃C > 0,∀f ∈ F P(0 ≤ yf(x) ≤ τ) ≤ Cτ.

for small τ . The assumption is simply stating that the probability of misclassifying a sample gets
smaller with smaller margin. This assumption is not very transparent as is and it can unpacked for
certain data distributions. For example for x ∼ N (0, 1) and y = sign(x), we get P(0 ≤ yf(x) ≤ τ) ≤√

2/πτ +O(τ3). But for now, let’s work with this assumption to obtain our result.
Let’s introduce a surrogate loss function which will serve as a relaxation to 0-1 loss.

`τ (s) =


1 if s < 0

1− s
τ if 0 ≤ s < τ

0 if s ≥ τ

Another motivation for using the above loss is that the 0-1 loss function assignes the same penalty
for low and high confidence predictions. Instead we would like to encourage higher confidence
predictions with τ -margin sensitivity.

37

The loss function `τ (s) is Lipschitz continuous with constant L = 1/τ . Denote

f̂τ = argmin
f∈F

R̂τ (f)

f∗τ = argmin
f∈F

Rτ (f)

With this notation, we have f∗0 as the minimizer of the population risk R0(f). We make the
following observations:

1. By Theorem 7.1, with probability at least 1− δ, we have

Rτ (f̂τ) ≤ Rτ (f∗τ) + 4Rn(G) +

√
2 log(2/δ)

n

where G = {z → `τ (z, f) : f ∈ F}.

2. By an argument similar to the one in previous example, we have Rn(G) ≤ (1/τ)Rn(F) (by
Talagrand’s contraction principal).

3. Since `τ ≥ `0, we have Rτ ≥ R0 and R̂τ ≥ R̂0.

4. Also, by the Assumption 1, we have

sup
f∈F

Rτ (f)−R0(f) ≤ sup
f∈F

P(0 ≤ yf(x) ≤ τ) ≤ Cτ

for small τ . This allows us to write

Rτ (f∗τ) ≤ Rτ (f∗0) ≤ R0(f∗0) + Cτ.

Combining the above observations, we can write with probability 1− δ

R0(f̂τ)−R0(f∗0) ≤ Cτ +
4

τ
Rn(F) +

√
2 log(2/δ)

n
.

Notice the trade-off on τ in the above bound. As we will see in the next result, we typically
have Rn(F) = O(1/

√
n). Therefore the above is of order

R0(f̂τ)−R0(f∗0) . τ +
1

τ
√
n
,

which yields a rate of 1/n1/4 after optimizing the bound over τ . Notice the sharp drop in the
convergence rate, from 1/n1/2 to 1/n1/4, which is due to using a surrogate loss.

7.2 Rademacher complexity of constrained linear models

So far, we have shown that the generalization bounds can be written in terms of Rn(F). In the
following, we will show that Rn(F) decays with n which completes the picture in terms of achieving
a generalization bound.

Theorem 29 (Rademacher Complexity of linear models). Define the function class of ball
constrained linear models as F = {f(x) = 〈x, θ〉, ‖θ‖ ≤ r}. We have

38

1. R̂n(F) ≤ r
n

√∑n
i=1 ‖xi‖2

2. If E[‖xi‖2] ≤ κ2, then Rn(F) ≤ rκ√
n

.

Remark. The above bound tells us that the Rademacher complexity of decays with a rate 1/
√
n.

Plugging this back in the bound (7.1), we can achieve generalization. For example, using this for
linear SVMs, we obtain a generalization bound of O(1/

√
n).

Proof. We first prove the first result. We write

R̂n(F) = E

[
sup
f∈F

1

n

∑
i

σif(xi)
∣∣∣x1:n

]

= E

[
sup
f∈F

1

n

∑
i

σi〈θ, xi〉
∣∣∣x1:n

]

= E

[
sup
‖θ‖≤r

〈θ, 1

n

∑
i

σixi〉
∣∣∣x1:n

]
,

=
(i)
r · E

[∥∥∥ 1

n

∑
i

σixi

∥∥∥∣∣x1:n

]
≤
(ii)

r · E
[∥∥∥ 1

n

∑
i

σixi

∥∥∥2∣∣x1:n

]1/2

=
r

n
E

[∑
i

σ2
i ‖xi‖2 +

∑
i 6=j

σiσj〈xi, xj〉|x1:n

]1/2

,

=
r

n

(∑
i

‖xi‖2
)1/2

where step (i) follows from the dual formulation of `2-norm, i.e., sup‖θ‖=1 〈θ, u〉 = ‖u‖, step (ii)
follows from Jensen’s inequality.

For the second part, we write

Rn(F) = E
[
R̂n(F)

]
≤ E

[
r

n

√∑
i

‖xi‖2
]

≤ r

n

√∑
i

E[‖xi‖2]

≤ r√
n
κ,

where the second inequality follows from Jensen’s inequality, and the last one follows from the
assumption E[‖xi‖2] ≤ κ2.

We should remark that κ is typically of order
√
d, so the generalization bound we get is like√

d/n as expected.

7.3 Massart’s Finite Lemma

We have already worked out the generalization performance of finite function classes in Section 4.2.
But in this section, we would like to use our new tool, the Rademacher complexity for the same

39

purpose. This will allow us to compare bounds obtained through different techniques. The following
result is very useful in that respect.

We introduce the Massart’s Lemma that will be used throughout next few lectures.

Lemma 30 (Massart’s Finite Lemma). Suppose that F satisfies supf∈F
1
n

∑n
i=1 f(zi)

2 ≤ κ2,
then the empirical Rademacher complexity of the function class is bounded, i.e.

R̂n(F) ≤ κ
√

2 log |F|
n

Remark.

1. The above bound is only useful (for now) when |F| <∞.

2. When the loss is bounded by B, the condition above is immediately satisfied for κ = B.

3. Plugging this into (7.1), we get a generalization bound with probability at least 1− δ

• by Rademacher Complexity: 4B

√
2 log(|F|)

n +B

√
2 log(2/δ)

n

• by union bound: B

√
2 log(|F|)

n + 2 log(1/δ)
n .

Although these two bounds have the same rate of convergence, we notice that the latter bound
is slightly tighter.

4. Perhaps the most important observation we can make is that, the function class F enters the
above bound only through function evaluations over the data points z1:n. This observation
will be crucial in the next section.

Proof. Note that throughout this proof, we denote data with z1:n = {z1, . . . , zn}. We will first
obtain a bound for exp

{
t · R̂n(F)}, and convert this to a bound on R̂n(F).

exp
{
t · R̂n(F)} = exp

{
t · E

[
sup
f∈F

1

n

n∑
i=1

σif(zi)
∣∣∣z1:n

]}
(7.2)

≤ E

[
exp

{
t · sup

f∈F

1

n

n∑
i=1

σif(zi)

}∣∣∣z1:n

]
(by Jensens’s inequality)

= E

[
sup
f∈F

exp

{
t · 1

n

n∑
i=1

σif(zi)

}∣∣∣z1:n

]
(sup on a monotone transformation)

≤
(∗)

∑
f∈F

E

[
exp

{
t · 1

n

n∑
i=1

σif(zi)

}∣∣∣z1:n

]
(F is finite and exp() is positive)

=
∑
f∈F

n∏
i=1

M
(
t
nf(zi)

)
Mσ(t) is the MGF of σ, i.e.,

Mσ(t) = E
[

exp{tσ}
∣∣z1:n

]
= cosh(t).

In the above derivation, in step (∗), we replaced sup over a set with a summation over that set. It
is important to pay attention to this step as in the next section, we will obtain a general bound by
simply tightening this inequality.

40

We proceed by noticing that x2/2 ≥ log cosh(x) (check this!) which implies exp{x2/2} ≥
cosh(x). Therefore, we can write

∑
f∈F

n∏
i=1

M
(
t
nf(zi)

)
≤
∑
f∈F

n∏
i=1

exp

{
t2

2n2
f(zi)

2

}

=
∑
f∈F

exp

{
t2

2n

1

n

n∑
i=1

f(zi)
2

︸ ︷︷ ︸
≤κ2

}

≤ |F| exp

{
t2

2n
κ2

}
.

The final bound we obtained can be written as

exp
{
t · R̂n(F)} ≤ |F| exp

{
t2κ2

2n

}

=⇒ R̂n(F) ≤ log |F|
t

+
tκ2

2n

which holds for all t ≥ 0. By optimizing over t, we will obtain the final result. That is, differenti-
ating the RHS above with respect to t and solving for the optimal value gives 2κ

√
log |F|/2n.

41

8 Combinatorial Measures of Complexity

By a careful inspection of the Massart’s Finite Lemma and its proof, we notice that the functions
that belong to our function class F enter the bounds only through their evaluation at the data
points. That is, if the functions have bounded second moment under the empirical distribution over
the data set, then Rademacher complexity decays with n. We will make use of this observation
throughout this section.

8.1 Shattering Coefficient

Above, in our proof of Massart’s Lemma, we flagged the inequality in (7.2), the step (∗) as the
point at which we appealed to |F| <∞ to convert supf∈F to a summation

∑
f∈F .

E

[
sup
f∈F

exp
{
t
1

n

n∑
i=1

σif(zi)
}∣∣z1:n

]
≤ E

[∑
f∈F

exp
{
t
1

n

n∑
i=1

σif(zi)
}∣∣z1:n

]
. (8.1)

We notice that f ∈ F enters this bound only through f(z) for z ∈ Z. As in our next example, F
can be infinitely large as long as it has finite behavior over Z.
Example. Let’s assume that we have integer data points, z ∈ Z ⊂ Z, and the function class is
given as F = {z → sin(zπk), k ∈ N}. We notice that even though |F| = ∞, clearly f(z) = 0 for
∀f ∈ F and z ∈ Z.

This behavior is not at all uncommon. Especially when we are working with loss functions with
finite range, we always have finitely many function behavior over data. An example to this case is
the 0-1 loss.
Example. Let’s assume we are working with 0-1 loss function, and the loss class that enter
the Rademacher complexity-based generalization bound is given as G = {z → `(z, f), f ∈ F}.
Then over data z1, . . . , zn we can have at most |G| = 2n different assignments for the vectors
[f(z1), ..., f(zn)].

The above argument is not enough. Assume that we can replace |F| in the Massart’s Finite
Lemma, with the above exponential number 2n. The bound on Rademacher complexity becomes
O(1), which doesn’t yield generalization. Of course, we would require sub-exponential behaviour
over the data to have a useful bound which in turn yields generalization.

Let’s modify the inequality (8.1) a little bit. We write

E

[
sup
f∈F

exp
{
t
1

n

n∑
i=1

σif(zi)
}∣∣z1:n

]
=E

[
sup

[f1...fn]∈{[f(z1)...f(zn)]:f∈F}
exp

{
t
1

n

n∑
i=1

σifi

}∣∣z1:n

]
. (8.2)

We define the shattering coefficient as follows.

Definition 31 (Shattering Coefficient). For F = {f : Z → Y}, define

s(F , n) = max
z1,...,zn∈Z

∣∣∣{[f(z1) · · · f(zn)
]

: f ∈ F
}∣∣∣.

The term inside our set {·} is counting how many different configurations of the vector [f(z1) . . . f(zn)]
are possible.

42

We pick up from the inequality (8.2) and write

E

[
sup
f∈F

exp
{
t
1

n

n∑
i=1

σif(zi)
}∣∣z1:n

]
=E

[
sup

[f1...fn]∈{[f(z1)...f(zn)]:f∈F}
exp

{
t
1

n

n∑
i=1

σifi

}∣∣z1:n

]

≤
∑

[f1...fn]∈{[f(z1)...f(zn)]:f∈F}

E

[
exp

{
t · 1

n

n∑
i=1

σifi

}]

=
∑

[f1...fn]∈{[f(z1)...f(zn)]:f∈F}

n∏
i=1

Mσ

(
tfi
n

)
︸ ︷︷ ︸

≤exp(t2f2
i /(2n

2))

≤ |{[f(z1) . . . f(zn)] : f ∈ F}| exp

{
t2κ2

2n

}

≤ max
z1,...,zn

|{[f(z1) . . . f(zn)] : f ∈ F}| exp

{
t2κ2

2n

}

= s(F , n) exp

{
t2κ2

2n

}
.

These steps are exactly the same as before. The only difference is that instead of summing
over the entire F , this time we sum over different function evaluations. The max argument was
applied over the data points to remove their dependence so we take an expectation on the empirical
Rademacher complexity which would give us (population) Rademacher complexity.

We can write the following upgraded version of Massart’s Finite Lemma.

Lemma 32 (Modified Massart’s Lemma). If supf∈F
1
n

∑n
i=1 f(zi)

2 ≤ κ2, then

R̂n(F) ≤ κ
√

2 log s(F , n)

n
.

Remark. Compared to Massart’s Finite Lemma, |F| is replaced by s(F , n).

For the 0-1 loss, we obtained a bound on shattering coefficient that grows exponentially in n, i.e.
s(F , n) = 2n. Notice that exponentially growing shattering coefficient doesn’t yield generalization
based on the above theorem. We need at most sub-exponential growth to achieve generalization.
To make this more concrete, we define the notion of a “shattered” set next.

In the sequel, we only consider Boolean functions, f : Z → {0, 1}.
Definition 33. Let F be a class of Boolean functions on a domain Z. We say that F shatters a
subset D⊂Z if any function g :D → {0, 1} can be obtained by restricting some function f ∈F to D.

Example. For the data D = {z1, ..., zn}, and f ∈ F , consider the n-dimensional vectors
[f(z1), ..., f(zn)]. These are Boolean vectors, and if we can get every possible 2n Boolean vec-
tors by varying f ∈ F , then F shatters D. Notice that, here D is fixed and the Boolean vectors
are changing since we change f .

For Boolean functions, if the shattering coefficient satisfies s(F , n) = 2n, this ultimately means
that ∃D ⊂ Z such that F shatters D. It is worth restating that whenever this happens, Massart’s
Lemma doesn’t yield generalization.

Similar to the previous section, we first justify the move from the Rademacher complexity of the
loss class Rn(G) to that of hypothesis class Rn(F). Our next example serves as a demonstration
for this.

43

Example. Assume that we use 0-1 loss `((y, x), f) = 1{y 6=f(x)} ∈ {0, 1} and let y ∈ {±1} and
f : X → {±1}. This is not Boolean, but mapping to that case is trivial. The loss class in this
case is given as G = {(y, x) → 1{y 6=f(x)}}. Let (yi, xi) for i = 1, 2, ..., n denote the samples in the
data. Then notice that there is a bijection from the set of vectors {[f(x1), ..., f(xn)] : f ∈ F}
to {[`((y1, x1), f), ..., `((yn, xn), f)], f ∈ F}. This can be seen by considering the mapping from
f(xi)→ (1− yif(xi))/2 = `((yi, xi), f).

Next example is a demonstration to how we calculate shattering coefficient for simple function
classes.
Example. [Indicators of rays] Let’s consider the function class F = {z → 1{z≥t} t ∈ R}. Clearly,
this function class has |F | = |R|. But we can easily verify that s(F , n) = n + 1. This shattering
coefficient is sub-exponential and thus, the Massart’s lemma will provide us with generalization. It
is also worth noting that s(F , n) = 2n only if 2n = n+ 1; therefore, for n > 1 F cannot shatter any
subset of size n.

8.2 Vapnik-Chervonenkis Dimension

Definition 34 (VC-dimension of a boolean F). VC dimension of F , denoted by VC(F), is
the largest cardinality of a subset D ⊂ Z that can be shattered by F .

Remark. Notice that since we are concerned only with Boolean function classes, we can equiva-
lently write VC(F) as

VC(F) = sup{n : s(F , n) = 2n}.

If the VC dimension of a function class F is d, i.e. VC(F) = d, this means that there exists
D ⊂ Z with |D| = d such that F shatters D, i.e. s(F , d) = 2d, and no subset D ⊂ Z of size |D| > d
can be shattered by F , i.e. s(F , d+ 1) < 2d+1.
Example. If we revisit the example for the indicators of rays, we found that s(F , n) = n+ 1 for
every n. Therefore, in order to get s(F , n) = 2n, we need n = 1. Also, for any n > 1, we have
s(F , n) < 2n which proves that VC(F) = 1.

Example. [Indicators of closed intervals] Consider the following boolean function class

F = {z → 1{z∈[a,b]}, a < b, a, b ∈ R}.

We can show that for n = 1, 2, we have s(F , n) = 2n. This can be done by considering every
possible 2n cases. However for n = 3, for z1, z2, z3, we cannot obtain [f(z1), f(z2), f(z3)] = [1, 0, 1]
using the above function class. In fact, any other configuration is achievable which makes the
shattering coefficient s(F , 3) = 7. Therefore we conclude that VC(F) = 2.

So far we consider simple function classes where it is simple to reason about their shattering
coefficient. The following lemma however, can be used together with Massart’s lemma and yield a
generalization bound directly related to the VC-dimension of the function class F .

Lemma 35 (Sauer-Shelah’s Lemma). If VC(F) = d, then

s(F , n) ≤
{

2n if n ≤ d,(
en
d

)d
if n > d.

44

Remark. VC(F) is the n at which the shattering coefficient stops being exponential and starts be-
coming polynomial (and useful for generalization). In fact, whenever n > VC(F), by the Massart’s
and Sauer-Shelah’s lemmas, we can write

Rn(F) ≤
√

2 log s(F , n)

n
≤
√

2VC(F) log(en/VC(F))

n

≤
√

3VC(F) log(n)

n
.

We have also seen examples that the Rademacher complexity of loss class G, can be upper bounded
by that of function class F . Plugging this into the generalization bound obtained through Rademacher
complexity (7.1), we get with probability at least 1− δ

R(f̂)−R(f∗) ≤ 4

√
3VC(F) log(n)

n
+

√
2 log(2/δ)

n
.

Note that VC(G) in the bound can be replaced with VC(F) for binary classification problems (See
the previous example).

Proof. Let Z∗ = {z∗1 , z∗2 , ..., z∗n} be such that s(F , n) = |{[f(z∗1), ..., f(z∗n)] : f ∈ F}|, restrict F
onto Z∗ and call it F∗. We notice that F∗ is finite and its size is equal to s(F , n) by construction,
i.e. |F∗| = s(F , n). We state the following lemma due to Pajor.

Lemma 36 (Pajor’s lemma). If F∗ is a class of Boolean functions on a finite domain Z∗, then

|F∗| ≤ |{Λ ⊂ Z∗ : Λ is shattered by F∗}|.

We prove the above lemma in the homework. Now, let d∗ = VC(F∗), and by Pajor’s lemma,
we obtain

s(F , n) ≤
d∗∑
i=0

(
n

i

)
(8.3)

where there right hand side above is the number of subsets of Z∗ of size at most d∗.
But if Λ ⊂ Z∗ ⊂ Z is shattered by F∗, it is also shattered by F since former is a restriction of

the latter. Therefore, VC(F∗) ≤ VC(F).
Now, if d ≥ n, the right hand side of (8.3) is easily bounded by 2n since F∗ is class from domain

of size n and it can shatter at most a set of size n. If d < n, then we get

s(F , n) ≤
d∑
i=0

(
n

i

)
,

=
d∑
i=0

(
n

i

)(
n

d

)i(d
n

)i
,

≤
(
n

d

)d d∑
i=0

(
n

i

)(
d

n

)i
,

≤
(
n

d

)d(
1 +

d

n

)n
,

≤
(
en

d

)d
,

45

which concludes the proof.

46

9 Chaining and Dudley’s Theorem

In this lecture, we revisit some of the techniques we covered in Section 5, but there is one key
difference. Before, we used the ε-nets to discretize the uncountable function class to be able to
apply union bound and obtain a generalization bound. In this section, we will use this technique
to bound the Rademacher complexity of the function class which in turn will imply generalization.

9.1 ε-Nets revisited

Previously in Section 5, we covered the parameter space Θ of a parametric family F = {fθ : θ ∈ Θ}.
In this section, we cover the function class F directly without parametrizing it. For this, though we
need to measure the difference between two different functions f and g. However, in the previous
section, we also noticed that in terms of generalization we only care about the function behavior
on data. Therefore, if two functions behave the same over data and differently on other points, we
treat these two functions as the same. The following difference metric makes this idea concrete.

Definition 37 (Difference metric). Given a dataset {z1, ..., zn}, we use the following to measure
the difference between two functions.

d(f, g) =

(
1

n

n∑
i=1

(f(zi)− g(zi))
2

)1/2

New notation: The following notation will simplify the statements and will be used throughout
this section. Since we only care about function behavior on data, we can encode a function f ∈ F
as a n-dimensional vector, i.e.,

f = 1√
n

[f(z1), f(z2), ..., f(zn)]> ∈ Rn.

Using this new notation, we can simplify the following quantities as

‖f‖2 =
1

n

n∑
i=1

f(zi)
2 and d(f, g) =

√√√√ 1

n

n∑
i=1

[f(zi)− g(zi)]2 = ‖f − g‖,

where the norms are understood to be Euclidean. We can also restate the Massart’s Finite Lemma
in this notation in a very compact form

R̂n(F) ≤ (sup
f∈F
‖f‖)

√
2 log(|F|)

n
.

Reader should convince themselves that the above inequality is equivalent to the statement in
Massart’s Finite Lemma. We recall some of the key definitions of Section 5.

Definition 38. We recall the following notions related to covering.

• ε-cover of F with respect to distance metric d is a set Nε = {g1, g2, ...} satisfying ∀f ∈ F ,
∃g ∈ Nε such that d(f, g) ≤ ε.

• Covering number of F is given by N(ε,F , d) = min{|Nε| : Nε is a ε-cover of F}.

• Metric entropy of F is given by logN(ε,F , d).

47

In general, one only needs an upper bound on the covering number. Therefore, our strategy
will be to first construct a reasonable ε-cover of F , then find an upper bound on its size which in
turn upper bounds the covering number of F . The following two examples demonstrate how to do
this.
Example. [All functions R→ [0, 1]] Consider the function class F = {f : R→ [0, 1]}. In order to
cover this function class, we consider the 2d-grid defined by the points on the x-axis z(1), z(2), ..., z(n),
the ordered data points, and the points on the y-axis {0, 2ε, 4ε, ...}. For each function f ∈ F and for
each data point z(i) on the x-axis, we find the closest point on the grid and define a function g that
passes on these points. It is easy to show that d(f, g) ≤ ε. Therefore if we include such functions
g that pass on the points on this grid, we can obtain an ε-cover of F . This suggests that we only
need at most as many points as the number of points on this grid which can be upper bounded by

N(ε,F , d) ≤ |Nε| ≤ (1 + 1/(2ε))n ≤ (1/ε)n

for small ε. Notice that this number is exponential in n.

Example. [Non-decreasing function R → [0, 1]] This time, consider the function class F = {f :
R → [0, 1], and f non-decreasing}. Using the same grid as before, we only need to count the
number of non-decreasing functions that can be defined on this grid. This number can be upper
bounded with n1/ε which in turn implies

N(ε,F , d) ≤ n1/ε.

We note that this bound is polynomial in n.

9.2 Simple discretization

In this section, we use an argument similar to Section 5 to obtain an upper bound on Rademacher
complexity.

Theorem 39 (Discretization). For a function class F ⊂ {f : Z → R}, let κ = supf∈F ‖f‖. Then,

∀ε > 0, R̂n(F) ≤ κ
√

2 logN(ε,F , d)

n
+ ε.

Remark. Before moving to proof, we make the following remarks.

1. Notice that with increasing ε, the first term in the right hand side of above bound decreases
whereas the second term increases. This shows that there is a trade-off involving the param-
eter ε, the bound can be optimized over this parameter.

2. The above bound looks quite familiar. The first term above simply follows from the Massart’s
Finite Lemma whereas the second term is the discretization error.

Proof. Let σ = 1√
n

[σ1, ..., σn]> be the vector of Rademacher random variables. We have ‖σ‖ = 1,

and also the empirical Rademacher complexity can be written as

R̂n(F) = E

[
sup
f∈F
〈σ, f〉

∣∣z1:n

]
.

48

Let Nε be an ε-net over F . Then ∀f ∈ F , ∃g ∈ Nε such that ‖f − g‖ ≤ ε. Hence, we can write for
any f ∈ F

〈σ, f〉 =〈σ,g〉+ 〈σ, f − g〉
≤〈σ,g〉+ ‖σ‖‖f − g‖ by Cauchy-Schwartz

≤max
g∈Nε

〈σ,g〉+ ε.

Now that the right hand side above doesn’t depend on the choice of f , we can take supremum on
the left hand side and obtain

sup
f∈F
〈σ, f〉 ≤max

g∈Nε
〈σ,g〉+ ε.

Hence, we can write

R̂n(F) ≤E
[
max
g∈Nε

〈σ,g〉
]

+ ε,

=Rn(Nε) + ε,

≤(sup
g∈Nε

‖g‖)
√

2 log |Nε|
n

+ ε,

which holds for all ε-covers of F . Hence we can use the best cover and conclude the proof.

Using this theorem on the previous examples that we calculated an upper bound on the covering
number, we can obtain an explicit rate.
Example.

1. All functions R → [0, 1]: We had the bound N(ε,F , d) ≤ (1/ε)n. By the above theorem, we
obtain

R̂n(F) ≤
√
n log(1/ε)

n
+ ε = O(1).

We don’t get generalization in this case.

2. Non-decreasing functions R → [0, 1]: We had the bound N(ε,F , d) ≤ n1/ε). By the above
theorem, we obtain

R̂n(F) ≤
√

log(n)

εn
+ ε.

Optimizing over ε yields the rate O
(
(log(n)/n)1/3

)
. We do get generalization in this case,

but this rate is slow, and interestingly it is just an artifact of the proof technique and can be
improved.

49

9.3 Chaining

Next, we will see a more powerful technique called “chaining” which will improve the above rate
significantly. We first state the main result of this section.

Theorem 40 (Dudley’s Theorem). Let F be a set of functions f : Z → R. Then,

R̂n(F) ≤ 12

∫ ∞
0

√
logN(ε,F , d)

n
dε.

Remark. Before proving this theorem, we make a few remarks.

1. When the function class is composed of functions with finite norm, i.e. supf∈F ‖f‖ = κ <∞,
then the upper boundary of the above integral is κ since beyond that point covering number
N(ε,F , d) = 1.

2. We notice that the discretization error in the result of Theorem 39 is gone!

3. For the above example on non-decreasing functions, since supf∈F ‖f‖ = 1, using the Dudley’s
theorem, we obtain

R̂n(F) ≤ 12

∫ 1

0

√
log(n)

εn
dε = O

(√
log(n)

n

)
.

This improves the previous rate of O
(
(log(n)/n)1/3

)
significantly.

Proof. [by chaining]

Figure 3: Chaining idea (to be added)

Let’s start by the most crude ε-cover for our function class, i.e. set ε0 = supf∈F ‖f‖ and note
that we can set Nε0 = {g0} for g0 = 0 which implies N(ε0,F , d) = 1. Next, define the sequence of
epsilon covers Nεj by setting εj = 2−jε0. By definition, ∀f ∈ F we can find gj ∈ Nεj that depends
on the choice of f such that ‖f − gj‖ ≤ ε.

For any m ∈ N, we can write the telescopic sum

f = f − gm +

m∑
j=1

gj − gj−1 (9.1)

since we have g0 = 0. By construction, the difference sequence gj − gj−1 forms a chain that gets
smaller with j (since they also get closer to f). That is, by triangle inequality, we have

‖gj − gj−1‖ ≤ ‖gj − f‖+ ‖f − gj−1‖ ≤ εj + εj−1 = 3εj .

50

We have

R̂n(F) =E
[

sup
f∈F
〈σ, f〉

∣∣z1:n

]
= E

[
sup
f∈F

{
〈σ, f − gm〉︸ ︷︷ ︸

≤‖σ‖‖f−gm‖ by CS

+〈σ,
m∑
j=1

gj − gj−1〉
}∣∣z1:n

]
by (9.1)

≤εm + E
[

sup
f∈F
〈σ,

m∑
j=1

gj − gj−1〉
∣∣z1:n

]
by CS and Nεm ’s net property

≤εm +

m∑
j=1

E
[

sup
f∈F
〈σ,gj − gj−1〉

∣∣z1:n

]
by sup Σ ≤ Σ sup

≤εm +
m∑
j=1

E
[

sup
h∈Hj

〈σ,h〉
∣∣z1:n

]
where Hj ={gj − gj−1 : gj ∈ Nεj , gj−1 ∈ Nεj−1 , ‖gj − gj−1‖ ≤ 3εj}

≤εm +

m∑
j=1

(
sup
h∈Hj

‖h‖
)√2 log

(
|Nεj |2

)
n

by Massart’s lemma and |Hj | ≤ |Nεj ||Nεj−1 | ≤ |Nεj |2

≤εm + 12
m∑
j=1

(εj − εj+1)

√
log |Nεj |

n
since

(
sup
h∈Hj

‖h‖
)
≤ 3εj ≤ 6(εj − εj+1)

=εm + 12
m∑
j=1

∫ εj

εj+1

√
log |Nεj |

n
dt

≤εm + 12
m∑
j=1

∫ εj

εj+1

√
log |Nt|
n

dt since t ∈ [εj+1, εj]

≤εm + 12

∫ ε0

εm

√
log |Nt|
n

dt.

The result follows by letting m→∞ and noticing that the above bound holds for every εj-cover.

51

10 Stability and PAC-Bayes Bounds

In this lecture, we will cover two different types for generalization bounds. The first one is based
on uniform stability which is based on a small modification of the proof we did for Rademacher
complexity.

10.1 Stability based generalization bounds

We define the algorithmic stability as follows.

Definition 41 (Uniform stability). We say that an empirical risk minimization algorithm given as

f̂D = argmin
f∈F

R̂(f ;D) :=
1

n

n∑
i=1

`(zi, f) for D = {z1, z2, ..., zn} ∈ Zn,

is uniformly β-stable if for all training sets D ∈ Zn, and their j-th sample perturbations denoted
by Dj = {z1, .., z

′
j , .., zn}, we have

sup
z∈Z

∣∣∣`(z, f̂D)− `(z, f̂Dj)
∣∣∣ ≤ β. (10.1)

Remark. It should be understood that smaller β corresponds to a more stable algorithm.

• We emphasize that the above notion is not for a specific empirical risk minimizer, rather
for the minimization algorithm which is why we refer to it as algorithmic stability. The
difference is that f̂ is data specific whereas an algorithm outputs different minimizers for
different data inputs. We make this dependence explicit by using the same notation f̂D.

• Moreover, the above condition (10.1) is uniform over data z ∈ Z, and all possible datasets D
and their perturbations D′j , for all j. Needless to say, it is a very strong assumption, but can
be easily verified for several algorithms of interest.

Example. [Revisiting Gaussian mean estimation]

• Consider the Gaussian mean estimation problem where we observe n data points D =
{z1, z2, ..., zn}. Standard assumption in this problem is zi ∼ N (µ, σ2I), when coupled with
an `2-regularization, the MLE yields the following algorithm

µ̂D = argmin
µ∈Rd

1

n

n∑
i=1

‖zi − µ‖2 =
1

n

n∑
i=1

zi , z̄,

where we denote the sample mean estimator with z̄.

• In this problem, we notice that the loss function is given as `(z, µ) = ‖z−µ‖2. For simplicity,
lets assume that data points are uniformly bounded, i.e.

‖zi‖ ≤ κ almost surely.

52

This assumptions is clearly violated for Gaussian data; however, similar bounds can be ob-
tained under high probability. Denoting the sample mean estimator over the perturbed data
D′j with z̄′j , we verify the uniform stability condition as follows. For z ∈ Z, we write∣∣`(z, µ̂D)− `(z, µ̂Dj)

∣∣ =|‖z − µ̂D‖2 − ‖z − µ̂Dj‖2|,
=|‖z − z̄‖2 − ‖z − z̄′j‖2|,
=|〈2z − z̄ − z̄′j , z̄ − z̄′j︸ ︷︷ ︸

=(zj−z′j)/n

〉|, by Cauchy-Schwartz ↓

≤ 1
n ‖2z − z̄ − z̄′j‖︸ ︷︷ ︸

≤4κ

‖zj − z′j‖︸ ︷︷ ︸
≤2κ

≤ 8κ2

n
:= β.

• We observe that larger the sample size n, smaller the parameter β; thus, more stable the
algorithm. Another observation we can make is that the radius of the support κ has a
negative effect on the stability of an algorithm.

Example. [Stability of Lipschitz loss & linear functions]

• We assume that the loss is Lipschitz in its second argument, i.e.∣∣`(z, f)− `(z, f ′)
∣∣ ≤ L‖f − f ′‖∞ , L sup

x∈Rd

∣∣f(x)− f ′(x)
∣∣.

If we consider an SVM classifier where y ∈ {±1} and the loss is Hinge loss `(z = (y, x), f) =
max{0, 1− yf(x)}, we have∣∣`(z, f)− `(z, f ′)

∣∣ =
∣∣max{0, 1− yf(x)} −max{0, 1− yf ′(x)}

∣∣
≤
∣∣yf(x)− yf ′(x)

∣∣ ≤ sup
x∈Rd

∣∣f(x)− f ′(x)
∣∣.

• Now let’s focus our attention to the class of linear functions F = {x→ 〈x, θ〉 : θ ∈ Rd}. Any
function f ∈ F can be characterized by the parameter θ; so let’s switch notation f → θ.

• SVMs are generally coupled with `2-regularization; thus the resulting empirical risk mini-
mization algorithm reduces to

θ̂D = argmin
θ∈Rd

1

n

n∑
i=1

max{0, 1− yi〈θ, xi〉}+
λ

2
‖θ‖2

• Therefore the resulting loss function becomes

`(z︸︷︷︸
=(y,x)

, f) = max{0, 1− y 〈θ, x〉︸ ︷︷ ︸
=f(x)

}+
λ

2n
‖θ‖2.

• If we assume ‖xi‖ ≤ κ, Bousquet and Elisseeff showed that this algorithm has uniform stability
with parameter

β =
κ2

λn
.

This is nontrivial, and skipped in class. Similar to the Gaussian mean estimation example,
stability gets better with the number of samples. But another important observation we can
make is that stability gets better with more regularization.

53

The following result provides a generalization bound based on uniform β-stability.

Theorem 42 (Generalization based on Uniform Stability). Assume that an empirical risk mini-
mization algorithm is uniformly β-stable, and the loss is bounded, i.e., 0 ≤ `(z, f) ≤ B. Then with
probability at least 1− δ, we have

R(f̂)−R(f∗) ≤ β + (βn+ 3B)

√
2 log(1/δ)

n
.

Remark. We make the following remarks.

• Notice that for above bound to be useful, one needs β = o(1/
√
n). This is because of the

term β
√
n in the coefficient of the second term on the right hand side.

• In general, we have β = O(1/n) which gives the familiar rate of generalization error, O(1/
√
n).

• In the case of linear SVMs (previous example), we have β = κ2

λn . This yields a bound of order

O
(
κ2

λn
+ (κ2 +B)

√
2 log(1/δ)

n

)
= O

(
(κ2 +B)

√
log(1/δ)

λ
√
n

)
.

This bound is the same order as previous generalization bounds we obtained, but it is worse
in terms of dependence on κ.

Proof. The proof of this theorem is very similar to that of Theorem 23, the generalization results
based on Rademacher complexity. Recall the notation R̂(f ;D) which means the empirical risk
of f over the dataset D. For example, R̂(f̂D;Dj) is the empirical risk of f̂D over the single-data
perturbed dataset Dj .

The main observation is again to write the following decomposition of the excess risk

R(f̂D)−R(f∗) = [R(f̂D)− R̂(f̂D;D)]︸ ︷︷ ︸
not iid sum

+ [R̂(f̂D;D)− R̂(f∗;D)]︸ ︷︷ ︸
≤0

+ [R̂(f∗;D)−R(f∗)]︸ ︷︷ ︸
iid sum/n

, (10.2)

≤ 2 sup
f∈F
|R̂(f ;D)−R(f)| which is what we did previously.

Before, we proceeded by bounding both of the above nontrivial terms with the supremum of the
empirical process, supf∈F |R̂(f ;D) − R(f)|. This time though, we will handle them separately.
Bounding the second term above is quite easy since f∗ is deterministic, and therefore it becomes
an iid average, i.e.,

R̂(f∗;D)−R(f∗) =
1

n

n∑
i=1

`(zi, f∗)− E[`(zi, f∗)],

which we know how to deal with.
For the first term R(f̂D)− R̂(f̂D;D), we will invoke the uniform stability together with McDi-

armid’s inequality.
The proof relies on three key steps as before: 1-Concentration, 2-Control over expectation, and

3- Uniform conv. (10.2) =⇒ generalization.

1. Concentration: Let’s recall the main concentration tool that we will relied on in our efforts
to derive a generalization bound based on Rademacher complexity.

54

Lemma 43 (Recall: McDiarmid’s inequality (Lemma 24)). Let g : Z × ... × Z → R be a
function satisfying the bounded difference property

|g(z1, . . . , zj , . . . , zn)| − g(z1, . . . , z
′
j , . . . , zn)| ≤ cj

Then for independent random variables z1, z2 . . . , zn, we have

P
(
g(z1, . . . , zn)− E[g(z1, . . . , zn)] ≥ ε

)
≤ exp

{
−2ε2∑n
i=1 c

2
i

}
.

Recall that Hoeffding’s inequality is an application of the above lemma. We can invoke either
and immediately obtain a bound on the second term. Let’s get that out of the way.

Warm-up: Getting the third term in (10.2) out of way. By McDiarmid’s (or by
Hoeffding’s) inequality, we have

P
(
R̂(f∗;D)−R(f∗) ≥

ε

2

)
≤ exp

{
− nε2

2B2

}
,
δ

2
.

This translates to, with probability at least 1− δ/2, we have

R̂(f∗;D)−R(f∗) ≤ B
√

2 log(2/δ)

n
.

Bounding the first term in (10.2). Recall that previously, we needed to bound the
empirical process in (10.2). For this, we’d let the g function from McDiarmid’s inequality be
the function of interest. That is,

Previously: g(z1, . . . , zn) = sup
f∈F

R(f)− R̂(f).

This time though, we are dealing with another function, so we let

This time: g(z1, . . . , zn) = R(f̂D)− R̂(f̂D;D).

Notice that, by the uniform β-stability assumption, we have∣∣∣R̂(f̂D;D)− R̂(f̂Dj ;D)
∣∣∣ ≤ β and

∣∣∣R(f̂D)−R(f̂Dj)
∣∣∣ ≤ β.

Let’s verify the second one as the first one follows from the same argument.∣∣∣R(f̂D)−R(f̂Dj)
∣∣∣ =
∣∣∣E[`(z, f̂D)− `(z, f̂Dj)]

∣∣∣
≤E[|`(z, f̂D)− `(z, f̂Dj)|] by triangle ineq.

≤β by uniform β-stability.

55

We proceed by first verifying the bounded difference property which is needed by McDiarmid’s
inequality.

|g(z1, . . . , zj , . . . , zn)− g(z1, . . . , z
′
j , . . . , zn)|

=
∣∣∣R(f̂D)− R̂(f̂D;D)−

[
R(f̂Dj)− R̂(f̂Dj ;Dj)

]∣∣∣
≤
∣∣∣R(f̂D)−R(f̂Dj)

∣∣∣︸ ︷︷ ︸
≤β by stability

+
∣∣∣R̂(f̂D;D)− R̂(f̂Dj ;Dj)±R̂(f̂Dj ,D)

∣∣∣ by triangle ineq.

≤ β +
∣∣∣R̂(f̂D;D)− R̂(f̂Dj ;D)

∣∣∣︸ ︷︷ ︸
≤β by stability

+
∣∣∣R̂(f̂Dj ;D)− R̂(f̂Dj ;Dj)

∣∣∣︸ ︷︷ ︸
= 1
n
|`(zj ,f̂)−`(z′j ,f̂)|≤ 2B

n

by triangle ineq.

≤ 2β +
2B

n
, cj in McDiarmid’s inequality.

Hence, by the McDiarmid’s inequality, we obtain

P

(
R(f̂D)− R̂(f̂D;D) ≥ ε+

Need to control︷ ︸︸ ︷
E
[
R(f̂D)− R̂(f̂D;D)

])
≤ exp

{
−2ε2

n(2β + 2B/n)2

}
(10.3)

≤ exp

{
−nε2

2(βn+B)2

}
,
δ

2
.

The above bound is obtained under uniform stability; yet, it is not surprising at all given the
McDiarmid’s inequality. We still need to control the additional expectation above. This was
previously done by the symmetrization argument. In the following we use stability property
of the algorithm.

2. Controlling the expectation via stability: We denote our dataset with D = {z1, . . . , zn},
and let D′ = {z′1, . . . , z′n} be the iid copy of the D, and the perturbation is given as Dj =
{z1, .., z

′
j , .., zn}. We have

R̂(f ;D) =
1

n

n∑
i=1

`(zi, f) and R̂(f ;D′j) =
1

n

n∑
i=1

`(z′i, f).

For a fixed f , the population risk will be identical for these datasets,

R(f) = E[`(z, f)] = E[R̂(f,D)] = E[R̂(f,D′j)].

Let’s investigate the quantity we would like to bound.

E
[
R(f̂D)− R̂(f̂D;D)

]
=Eall

[
Ez[`(z, f̂D)]− 1

n

n∑
i=1

`(zi, f̂D)
]

=E
[
Ez′i
[1

n

n∑
i=1

`(z′i, f̂D)
]
− 1

n

n∑
i=1

`(z′i, f̂Di)
]

=E
[
Ez′i
[1

n

n∑
i=1

`(z′i, f̂D)− `(z′i, f̂Di)
]]

≤β by stability.

56

The second inequality is because z′i is independent from D, and D and D′j are exchangable.

Therefore we get, with probability at least 1− δ/2

R(f̂D)− R̂(f̂D) ≤ E
[
R(f̂D)− R̂(f̂D;D)

]
+
ε

2
≤ β + (βn+B)

√
log(2/δ)

2n
.

3. Uniform convergence =⇒ generalization (but almost): Combining this with (10.3), we
write out generalization bound with probability at least 1− δ,

R(f̂D)−R(f∗) ≤ [R(f̂D)− R̂(f̂D;D)] + 0 + [R̂(f∗;D)−R(f∗)]

≤ β + (βn+B)

√
log(2/δ)

2n
+B

√
2 log(2/δ)

n

≤ β + (βn+ 3B)

√
log(2/δ)

2n

which concludes the proof.

10.2 PAC-Bayes bounds

In this section, we scratch the surface of PAC-Bayesian bounds. The PAC-Bayes theory is originally
developed as an attempt to explain Bayesian learning from a learning theory perspective. But these
tools have to be proved very useful in various context. The main idea is to place a prior distribution
π0 over the function class F , which encodes our prior knowledge over the set of hypotheses. After
observing data D, we update our view of the function class, which is referred to as the posterior
distribution πD.

The bounds that rely on the concept “uniform convergence =⇒ generalization” hold for all
functions in the function class. Consider for example a finite function class. By a simple application
of the union bound, we were able to derive a generalization error bound of (ignoring constants)

R(f̂)−R(f∗) <

√
log(|F|) + log(1/δ)

n
,

which we proved as Theorem 18. However, the main building block of this theorem was to show
the uniform convergence, which reads (again ignoring constants), with probability at least 1− δ

∀f ∈ F , : R(f) ≤ R̂(f) +

√
log(|F|) + log(1/δ)

n
. (10.4)

This is equivalent to saying supf∈F R(f) − R̂(f) ≤ the last term above. However, we notice that
the above bound gives a worst case bound, in other words it gives a bound for all functions by
treating them all the same. But we know some are more likely than the others!

If we had a prior distribution π0(f) over the class of functions F that are available to us, we
can incorporate this to our bound. Intuitively, if there is a function f ∈ F that we are certain it is
not going to be returned by our algorithm, it shouldn’t count towards the size of the function class
which appears in the numerator of (10.4).

Let’s start with the simplest of PAC-Bayes style bounds, Occam’s bound.

57

Theorem 44 (Occam’s bound). For a countable function class F , and a bounded loss function
0 ≤ ` ≤ B, if we have the prior distribution π0 over the function class F , then with probability at
least 1− δ, we have

∀f ∈ F : R(f) ≤ R̂(f) +B

√
log(1/π0(f)) + log(1/δ)

2n
. (10.5)

Remark. We make the following immediate remarks.

1. The bound is not for the excess risk. The difference between training and the test error is
small for a function f , if its prior is large.

2. If the prior distribution π0(f) is uniform over F , i.e. each function is equally likely and
π0(f) = P(f = fi) = 1/|F|, the above bound reduces to the bound in (10.4).

3. If the prior distribution is uniform over a subset G of F , bound reduces to

√
log(|G|)+log(1/δ)

2n .
This was exactly our intuition; the functions that are unlikely to come up shouldn’t count
towards the complexity of the function class.

4. If the prior puts all its mass on a single function f0, i.e. π0(f0) = 1, then the bound reduces
to just a concentration result, since we only have a single function that is available to us.

5. This bound allows F to have large size as long as the prior behaves nicely for a specific
function f ∈ F . For that particular function, above result will yield a good bound. However,
if the prior is somewhat close to uniform distribution, then π0(f) ≈ 1/|F| will get worse with
an increase in the size of the function class.

Proof. The main idea in this proof is to simply allocate the confidence parameter δ over different
functions based on their prior.

For a fixed (non-random) function f ∈ F , by the Hoeffding’s inequality, we have

P
(
R(f) ≥ R̂(f) + ε

)
≤ exp

{
− 2nε2

B2

}
:= δf = π0(f)δ.

Notice that
∑

f δf = δ since π0 is a probability distribution. The above bound reads,

P

(
R(f) ≥ R̂(f) +B

√
log(1/π0(f)) + log(1/δf)

2n

)
≤ δf .

Note that the above bound holds for a fixed f . By applying the union bound over f ∈ F , we obtain

P

(
∀f ∈ F : R(f) ≥ R̂(f) +B

√
log(1/π0(f)) + log(1/δf)

2n

)
≤
∑
f∈F

δf = δ,

which completes the proof.

Let’s recall our objective: We want to minimize the population risk (aka test error). The bound
(10.6) upper bounds the quantity we would like to minimize. Therefore, we can minimize this

58

upper bound, and hope that we get close to minimizing itself! That is, the above theorem suggest
to minimize the following objective

R̂(f) +B

√
log(1/π0(f)) + log(1/δ)

2n︸ ︷︷ ︸
regularizer

. (10.6)

The bound B

√
log(1/π0(f))+log(1/δf)

2n will serve as a regularizer by penalizing functions that are
less likely according to the prior π0. We also observe that its impact decreases with increased
sample size n.

There are two shortcomings of the Occam’s bound.

• First, it relies on the union bound which requires the function class F to be countable.

• Second, it only allows an algorithm to return a single function rather than a posterior distri-
bution. These are addressed in the following theorem.

Theorem 45 (McAllester’s PAC-Bayes theorem). For any prior π0 and any posterior πD, and a
bounded loss function 0 ≤ `(z, f) ≤ 1, with probability at least 1− δ, we have

Ef∼πD [R(f)] ≤ Ef∼πD [R̂(f)] +

√
KL(πD||π0) + log(4n/δ)

2n− 1
.

Remark.

• Compared to Occam’s bound, instead of for all f , this one is for expectation under the
posterior.

• If the posterior puts all its mass on one function f0 in F , the above bound recovers Occam’s
bound. Say for example, π0 is uniform over a finite set F . Then,

KL(πD||π0) =
∑
f

log

(
πD(f)

π0(f)

)
πD(f)

= log

(
πD(f0)

π0(f0)

)
πD(f0) = log(|F|).

• Converting the above bound to a (kind of) bound on the excess risk requires characterizing
the expected suboptimality,

Ef∼πD [R(f)]−R(f∗).

• In literature, the expectations are generally denoted with Ef∼π[R(f)] = R(π).

Proof. Skipped in class. To be added.

59

11 Kernel Methods: Basics

Up until now, we have considered the supervised learning framework where we have data points
(y, x) ∈ Y×X and a loss function `((y, x), f). Much of the focus was on generalization properties of
the empirical risk minimizers, and different measures of complexity for the function class at hand.
In the sequel, we focus on kernel methods which have a lot of connections to previous setup, but
we will barely scratch the surface here, so it may seem like quite disconnected at first.

In classical machine learning, it is often the case to consider minimizing some loss function over
a mapped feature space φ : X → Φ, with `((y, φ(x)), f). For example, we have been considering
linear functions as a popular example 〈θ, x〉 where x is the set of features. If we only have a single
feature, instead of fitting a 1-dimensional linear regression, we can use a polynomial transformation
as a feature map, e.g. φ(x) = [1, x, x2], which allows us to fit a degree-3 polynomial by simply using
a linear regression. This can be easily generalized to higher dimensions, and there are several
reasons such as the ability to represent non-linear dependencies in the data.

One concern is that by increasing the dimension, how much additional computation do we need?
Example. Let’s turn to our canonical example, linear regression where we have data points
(y, x) ∈ Y × X and a linear hypothesis class F = {f(·) = 〈·, θ〉, θ ∈ Rd}, with squared loss
`((y, φ(x)), f) = (y − 〈φ(x), θ〉)2. Notice that there is a feature map φ : X → Rd applied to the
features x ∈ X .

Using the easily derived closed form solution for the least squares problem, we write

θ̂ = arg min
θ
R̂(θ) =

1

n

n∑
i=1

(yi − 〈θ, φ(xi)〉)2

= (Φ>Φ)−1Φ>y where Φ =

—φ(x1)>—
...

—φ(xn)>—

.
Here, Φ takes the place of design matrix X. If we take the SVD of Φ = UDV >, we can write
(Φ>Φ)−1 = (V DU>UDV >)−1 = V D−2V > , Q>Q where Q = D−1V >. Therefore,

θ̂ = Q>QΦ>y.

For a new data point x the predicted value from the linear regression model will be

ŷ = 〈φ(x), Q>QΦ>y〉
= 〈Qφ(x)︸ ︷︷ ︸

φ′(x)

, QΦ>y〉 define φ′(x) = Qφ(x),

=

n∑
i=1

〈φ′(x), φ′(xi)〉yi,

which shows that any new predicted value will be a weighted average of the response yi’s with n
inner-product operations. The inner product 〈φ′(x), φ′(xi)〉 should be understood as a similarity
metric, i.e., if x is close to the data point xi, the inner product will be large.

• Even though we possibly increased the dimension of the original features by applying a feature
map, we observe that we only need to be able to efficiently compute the inner products
〈φ′(x), φ′(x′)〉.

60

• We only need to know k(x, x′) = 〈φ′(x), φ′(x′)〉 which is termed as the “kernel” which allows
us to efficiently work with high dimensional features (maps).

• There is no unique way of defining a kernel. For instance, if P is another orthogonal matrix,
one can use ψ′′ = Pφ′ which is also a valid kernel.

11.1 Basics of Hilbert Spaces

We will recall some of the basic definitions in this section.

Definition 46 (Hilbert Space). A Hilbert space H is a real (or complex) inner product space that
is also a complete metric space with respect to the norm induced by its inner product.

We have been using inner products throughout the lecture; thus, it is useful remind ourselves
their formal definition. There are two important characteristics of an Hilbert space, its inner
product and completeness. We will define inner products next, but very briefly, completeness of a
space means if every Cauchy sequence of points in H has a limit that is also in H. We will mostly
focus on the inner product property.

Definition 47 (Inner product). An inner product is a function 〈· , ·〉 : H ×H → R which has the
following three properties.

1. Symmetry: If f, g ∈ H, then 〈f, g〉 = 〈g, f〉.

2. Linearity: If f, g, h ∈ H and a, b ∈ R, then 〈af + bg, h〉 = a〈f, h〉+ b〈g, h〉.

3. Non-negativity:

• For all f ∈ H, we have 〈f, f〉 ≥ 0.

• Further, 〈f, f〉 = 0 if and only if f = 0.

We finally note that the norm defined by this inner product is: ‖f‖H =
√
〈f, f〉.

Example. [Euclidean space] If we have vectors u, v ∈ Rd, the standard inner product is given as

〈u, v〉 =
∑

i uivi which defines the Euclidean norm as ‖u‖ =
√∑

i u
2
i .

Example. [Square integrable functions] Let’s consider the square integrable functions on [0, 1].
That is,

L2([0, 1]) =
{
f : [0, 1]→ R, and

∫ 1

0
f(x)2dx <∞

}
with the inner product 〈f, g〉 =

∫ 1
0 f(x)g(x)dx.

Definition 48 (Dual space). The dual space H∗ of a Hilbert space H is the space of all continuous
linear functions from the space H into R. It carries a norm ‖φ‖∗ = sup‖x‖H=1 |φ(x)|.

This definition will be useful when in the main theorem, but before moving forward, we need
to define what a linear function in this context means.

Definition 49 (Linear function). A function f : X → R is linear if for x, x′ ∈ X and any c ∈ R it
satisfies,

f(x+ y) = f(x) + f(y) and f(cx) = cf(x).

61

It is important to highlight that the linear functions defined as above is different than what we
normally refer to in machine learning. That is, f(x) = ax + b is not linear in X , but f(x) = ax
is linear. This can be easily verified by checking the conditions in the above definition.
Example. [Euclidean space] The dual space of Euclidean space Rd is given as

H∗ = {φ : Rd → R where φ is linear and continuous}.
Intuitively, since φ(x) has to be linear and continuous, a linear function in Rd is given as

φ(x) = 〈u, x〉,
for some u. Are there any other functions in H∗?

The answer to the above questions is given by the Riesz-Fréchet representation theorem, which
is the main building block of what comes next.

Theorem 50 (Riesz-Fréchet representation theorem). For every element f ∈ H, there is a unique
element φf ∈ H∗ defined by φf (g) = 〈f, g〉. Also, for every element φ ∈ H∗, there is a unique
element fφ ∈ H such that φ(g) = 〈fφ, g〉.

Using this theorem, we can answer the question in the previous example. For every element in
the Hilbert space u ∈ Rd, there is a unique function φ ∈ H∗ defined as φ(x) = 〈u, x〉. The converse
is also true. Therefore the dual space is exactly those functions that can be written as φ(x) = 〈x, u〉
where u ∈ Rd.

11.2 Kernels: formal definitions

In this section, we will formally define kernels. Our objective is to complete the triangular relation-
ship between the feature map φ, the kernel k, and the reproducing kernel Hilbert space (RKHS)
to be denoted with F and defined later. We start with the feature map.

Feature map φ

Kernel k(·, ·) RKHS F

Definition 51 (Feature map). A feature map is a function from the input space X to a Hilbert
space H, i.e.,

φ : X → H.
The following notation will be useful. When we define a function f from another function with

two arguments g(x, y), e.g. f(x) = g(x, 3) ∀x, we write this as f(·) = g(·, 3).

Definition 52 (Kernel). A kernel is a function k : X × X → R such that for any n points
x1, ..., xn ∈ X , the matrix defined as Kij = k(xi, xj) is positive semidefinite, i.e. K � 0.

Example. Linear kernel k(x, x′) = 〈x, x′〉 is a kernel since for any x1, ..., xn, the matrix Kij =
k(xi, xj) can be written as K = XX> where X is a matrix with rows x>i . It is positive semidefinite
(psd) since

K is psd if ∀u, 〈u,Ku〉 ≥ 0,

〈u,Ku〉 = 〈u,XXTu〉 = 〈XTu,XTu〉 = ‖XTu‖2 ≥ 0.

We will see more examples of kernels later. The following result connects the feature map to
kernel.

62

Feature map φ(·)

Kernel k(·, ·) RKHS F

Theorem 53 (Feature map defines a kernel [φ(·) → k(·, ·)]). A feature map φ : X → H defines a
kernel k : X × X → R.

Proof. Let k(x, x′) = 〈φ(x), φ(x′)〉, then ∀n ∈ N, x1, . . . , xn ∈ X , the kernel matrix is given as
Kij = k(xi, xj). We show that this matrix is positive semi-definite, ∀u ∈ Rn,

〈u,Ku〉 =
∑
ij

uiujKij

=
∑
ij

uiuj〈φ(xi), φ(xj)〉

=

〈∑
i

uiφ(xi),
∑
j

ujφ(xj)

〉
=

∥∥∥∥∥∑
i

uiφ(xi)

∥∥∥∥∥
2

2

≥ 0.

The following result connects the kernel to the feature map when the input space X is finite.

Feature map φ(·)

Kernel k(·, ·) RKHS F

Theorem 54 (Kernel defines a feature map [k(·, ·) → φ(·)]). For every kernel k : X × X → R,
there exists a Hilbert space H and a feature map φ : X → H such that k(x, x′) = 〈φ(x), φ(x′)〉.

We prove the above theorem after introducing some key concepts. However, it is quite straight-
forward to prove it when the input space X is finite.
Proof. [for finite X] Let X = {x1, . . . , xn}, and define the kernel matrix Kij = k(xi, xj). Since K
is positive semidefinite, its eigen decomposition can be written as K = UDU> , ΦΦ>, therefore
φ(xi)

> = u>i D
1/2 defines a feature map.

Notice that the choice of feature map is not unique. That is, φ′(x) = Qφ(x) also defines a feature
map when Q is an orthogonal matrix.

The next section introduces a key concept.

11.3 Hilbert Space defined by the Reproducing Kernel

For the dataset (yi, xi) for i = 1, ..., n, such that yi ∈ R and the function F consists of functions
that belongs to f ∈ L2([0, 1]), we consider the canonical `2-regularized least squares problem

min
f∈F

1

n

n∑
i=1

(yi − f(xi))
2 +

λ

2
‖f‖2F

63

where F is the set of functions that are in consideration. If we choose F as the entire f ∈ L2([0, 1]),
this is too complex and result in overfitting. In this case, the minimizer of the above problem would
be simply the function f(xi) = yi, and f(x) = 0 otherwise. This function has ‖f‖2F =

∫ 1
0 f(x)2dx =

0 and also 0 training loss. The main problem here is that the space covers indicator functions of
the form f(x) = yi1{x=xi}. Clearly, Hilbert spaces are too complex of a search space, so we need
some sort of restriction on the space we work with.

Definition 55 (Lipschitz functional). For a Hilbert space H, we say L : H → R is a Lipschitz
functional if ∃M <∞,

|L(h)− L(h′)| ≤M‖h− h′‖H for all h, h′ ∈ H.

Example. If the Hilbert space is the Euclidean space Rd with standard inner product, define the
functional L(h) = 〈h, u〉 for some u ∈ Rd. Then

|L(h)− L(h′)| = |〈u, h〉 − 〈u, h′〉| ≤ ‖u‖︸︷︷︸
M

‖h− h′‖H.

Definition 56 (Evaluation functional). For an Hilbert space H consisting of functions h : X →
R, for each x ∈ X , we define the evaluation functional Lx : H → R

Lx(h) = h(x).

A little inspection reveals that evaluation functionals are indeed linear! Notice that for h, h′ ∈ H
and c ∈ R

Lx(h+ h′) =(h+ h′)(x) = h(x) + h′(x) = Lx(h) + Lx(h′),

Lx(ch) =(ch)(x) = ch(x) = cLx(h).

Linearity property will be crucial.
Example. Consider the Euclidean input space X = Rd, and class of linear functionsH = {hθ(x) =
〈x, θ〉, θ ∈ Rd}, then Lx(hθ) = 〈x, θ〉. Linearity can be verified as well.

We are ready to define RKHS.

Definition 57 (Reproducing kernel Hilbert space (RKHS)). An RKHS F is a Hilbert space over
functions f : X → R such that ∀x ∈ X , the evaluation functionals Lx are Lipschitz continuous.

The constraint on the evaluation functional of a Hilbert space also restricts the function class.
Notice that the reason for overfitting in the `2-regularized least squares example was the availability
of indicator functions which allowed for interpolation. These indicators are not Lipschitz. For
example, the problematic indicator function f(x) = 1{x=1} = Lx(f) violates the Lipschitz condition,
hence doesn’t belong to the RKHS.

One key observation was that evaluation functionals Lx are linear. Another one is that they are
also continuous, which together imply that they belong to the dual space F∗ (See Definition 48).
Therefore, we can apply the second statement in the Riesz-Fréchet representation Theorem 50 and
conclude that ∀f ∈ F , ∃Rx ∈ F such that

f(x) = Lx(f) = 〈Rx, f〉.

This tells us that function evaluations can be written as inner products. We continue
completing the triangular relationship between these key concepts. Next two results completes the
following edge in the triangle.

64

Feature map φ(·)

Kernel k(·, ·) RKHS F

Theorem 58 (Every RKHS defines a unique kernel [F → k(·, ·)]).

Proof.

• By the definition of RKHS, evaluation functionals Lx are Lipschitz (continuous) and linear,
so

Lx ∈ F∗.

• By Riesz-Fréchet representation Theorem 50, for Lx, there exists a unique Rx ∈ F such that

∀f ∈ F , Lx(f) = 〈f,Rx〉 = f(x). (11.1)

The last equality is since Lx is an evaluation functional.

• Rx is called the representer and (11.1) is called the reproducing property.

• Since ∀x, the representer belongs to RKHS Rx ∈ F , we can use the reproducing property on
this functional as well. That is, ∀x′ ∈ X , and for the evaluation functional Lx′ ∈ F∗, there
exists Rx′ ∈ F such that

Rx(x′) = Lx′(Rx) = 〈Rx, Rx′〉 , k(x, x′),

where k is the kernel. This can be seen by noticing that the representer defines a feature
map, i.e., Rx = φ(x); thus we can invoke Theorem 53, where we showed feature maps define
a proper kernel function.

Remark. RKHS F defines a unique kernel k(·, ·) which is termed as the reproducing kernel. The
reason for the name is

f(x) = Lx(f) = 〈f,Rx〉 = 〈f, k(x, ·)〉,

which is where RKHSs get their name. The kernel can be transformed into being representer.

Theorem 59 (Moore-Aronszajn: Every kernel corresponds to a unique RKHS [k(·, ·)→ F]). For
every kernel k(·, ·) : X × X → R, there exists a unique RKHS F with the reproducing kernel k.

Proof.

• The basic idea is to use the reproducing kernel k(x, ·) as a basis for the RKHS F .

• Let ∀n ∈ N, ∀x1, · · · , xn ∈ X , ∀α1, · · · , αn ∈ R, ∀θ1, · · · , θn ∈ R,

f(x) =
∑
i

αik(x, xi), and g(x) =
∑
i

θik(x, xi).

65

• Let F be the space composed of functions of the above form. F is vector space, but not
necessarily complete.

• Define the function 〈·, ·〉 : F × F → R as

〈f, g〉 =
∑
ij

αiθjk(xi, xj).

We show it is an inner product. Let f, g, h ∈ F and a ∈ R

– Symmetry: holds.

– Linearity: for 〈af + g, h〉 = a〈f, h〉+ 〈g, h〉.
– Non-negativity: It is easy to show that 〈f, f〉 =

∑
ij αiαjk(xi, xj) = α>Kα ≥ 0 since k

is a kernel. We also need to show 〈f, f〉 = 0 if and only if f = 0. Here, f = 0 translates
to α = 0. It is clear that if f = 0, then 〈f, f〉 = 0. For the other direction, we define
c(x)> = [k(x, x1), · · · , k(x, xn)]>, ∀x ∈ X . The augmented kernel for a point x ∈ X is

K ′ =

[
K c(x)

c(x)> k(x, x)

]
.

We will prove this by contradiction. Assume that 〈f, f〉 = α>Kα = 0 but f 6= 0
(equivalently α 6= 0). For a scalar b ∈ R, let u> = [α, b]>. Then

u>K ′u =α>Kα︸ ︷︷ ︸
=0

+2bα>c(x) + b2k(x, x),

=2bα>c(x) + b2k(x, x) ≥ 0 since K ′ is psd.

But b can be any number, the only way to preserve the inequality for any b is when
α = 0. To see this, we investigate a function of the form g(b) = bξ1 + b2ξ2. We have
g(0) = 0 and g′(0) = ξ1. This means that unless ξ1 = 0, the function g is either strictly
increasing or decreasing at 0. Thus, one of g(0± ε) for a small ε has to be negative.

• We showed that F is a Hilbert space. To show it is an RKHS, we need to prove that all its
evaluation functionals are Lipschitz. We write ∀f ∈ F

f(x) =
∑
i

αik(xi, x) by construction of F

=〈f, k(x, ·)︸ ︷︷ ︸
Rx

〉 =⇒ k(x, ·) is indeed the representer.

This notation may seem confusing at first. Here, we have

k(x, ·) =

n∑
i=1

αik(xi, ·) = 1︸︷︷︸
α1

·k(x︸︷︷︸
x1

, ·), αi = 0, i > 1.

For an evaluation functional Lx, for f, g ∈ F , we have

|Lx(f − g)| = |〈f − g,Rx)〉| =|〈f − g, k(x, ·)〉|
≤‖f − g‖F‖k(x, ·)‖F by Cauchy-Schwartz

=‖f − g‖F
√
k(x, x) since ‖k(x, ·)‖2F = 〈k(x, ·), k(x, ·)〉 = k(x, x).

66

• To complete the proof, one needs to consider the completion of F by including all the limit
points of F . We skip this part.

Perhaps, the most important property we derived so far is that a function f in an RKHS F can
be written as a linear combination of kernel evaluations

f(x) =
∑
i

αik(x, xi) for some xi ∈ X

where k is the unique kernel associated with the RKHS. This will help us reduce complex learning
problems to least squares.

It is important to note that the above theorem also proves that if you have a kernel k(x, x′),
you have a feature map k(x, ·).

67

12 Kernel Methods: Properties & Applications

We have focused on showing that the three key concepts in kernel methods, 1- the feature map
φ, 2- the kernel k, and 3- Reproducing Kernel Hilbert Space (RKHS) commute according to the
following diagram.

Feature map φ(·)

Kernel k(·, ·) RKHS Funique

Along the way, we derived a few key properties associated with the kernel and its RKHS that
will be useful in the sequel. We recall them below.

• Reproducing property: Function evaluations can be written as inner products

f(x) = 〈Rx, f〉 = 〈k(x, ·), f〉, f ∈ F , x ∈ X .

• Moore-Aronszajn theorem: Given a kernel k, its RKHS is set of functions f, g ∈ F given as

f(x) =

n∑
i=1

αik(x, xi) for some αi and g(x) =

n∑
i=1

βik(x, xi) for some βi

Inner product in F : 〈f, g〉 =

〈
n∑
i=1

αik(·, xi),
n∑
i=1

βik(·, xi)
〉

=
∑
ij

αiβj 〈k(·, xi), k(·, xj)〉︸ ︷︷ ︸
=k(xi,xj) by reproducing prop

=
∑
ij

αiβjk(xi, xj).

Perhaps, the above properties of kernels are the most useful ones as far as machine learning is con-
cerned. We first start with a few more basics related to kernels and continue with some applications
in machine learning.

12.1 Basic properties and examples

We first look at a few simple examples of kernels and identify their associated RKHS.
Example. [Linear kernel] Consider the kernel k(x, x′) = 〈x, x′〉 where x, x′ ∈ X = Rd. The RKHS
for this kernel can be written as

RKHS(k) = F =
{
f(x) =

n∑
i=1

αik(x, xi),∀n ∈ N,∀xi ∈ Rd, ∀αi ∈ R
}

=
{
f(x) =

n∑
i=1

αi〈x, xi〉,∀n ∈ N,∀xi ∈ Rd,∀αi ∈ R
}

= {f(x) =
〈
x,

n∑
i=1

αixi

〉
, ∀n ∈ N, ∀xi ∈ Rd,∀αi ∈ R}

= {f(x) = 〈x, β〉, β ∈ Rd} since Rd is a vector space.

68

Accordingly, for f(x) = 〈β, x〉 =
∑n

i=1 αi〈xi, x〉 and f ′(x) = 〈β′, x〉 =
∑n

i=1 α
′
i〈x′i, x〉, the inner

product is given as

〈f, f ′〉 = 〈β, β′〉.
This can be seen by writing

〈f, f ′〉 =
∑
ij

αiα
′
jk(xi, x

′
j)

=
∑
ij

αiα
′
j〈xi, x′j〉

=

〈
n∑
i=1

αixi,

n∑
j=1

α′jx
′
j

〉
= 〈β, β′〉.

Example. [Common kernels]

• Identity kernel is given as k(x, x′) = 1. This is a kernel since for any x1, ..., xn, the kernel
matrix defined as Kij = k(xi, xj) = 1 is a matrix of 1’s, and it is positive semidefinite.

• Indicator function k(x, x′) = 1{‖x−x′‖≤0} is a kernel since the kernel matrix K is an identity
matrix (when xi 6= xj).

• Indicator function k(x, x′) = 1{‖x−x′‖≤ε} for ε > 0 is not a kernel. This can be seen by

choosing x1 = 0, x2 = εe1 and x3 = 2εe1 where e1 = [1, 0, 0, ...]> is the first standard basis

vector in Rd. The kernel matrix K =

1 1 0
1 1 1
0 1 1

 is not positive semi-definite (exercise).

• Polynomial kernel is given as k(x, x′) = (1+ 〈x, x′〉)p for p ∈ N. We will verify that k(x, x′)
is a kernel shortly.

• Gaussian kernel is given as k(x, x′) = exp{− 1
2σ2 ‖x− x′‖2}. Here, σ2 determines the width

of the kernel. Large σ2 corresponds to smoother kernel. We will verify that k(x, x′) is a kernel
shortly. What happens when σ2 ↓ 0?

In the sequel, we discuss some key properties of kernels.

1. Inner product: A function of the form k(x, x′) = 〈φ(x), φ(x′)〉 is a kernel (See Theorem 53).

2. Summation: Summation of two kernels is a kernel k(x, x′) = k1(x, x′) + k2(x, x′). This
can be seen by considering the summation two PSD kernels K1 and K2 associated with the
kernels k1 and k2, respectively, and showing that it is in fact PSD.

∀u ∈ Rd, 〈u,Ku〉 = 〈u, (K1 +K2)u〉 = 〈u,K1u〉+ 〈u,K2u〉 ≥ 0.

3. Elementwise product: (Hadamard) product of two kernels is a kernel k(x, x′) = k1(x, x′) ·
k2(x, x′). Because the kernel matrices K1 and K2 are PSD, and we can write the following
eigenvalue decomposition.

K1 = UDUT =
∑
k

dkuku
T
k and K2 = V BV T =

∑
k

bkvkv
T
k

69

Here, U and V are orthogonal matrices, and D and B are diagonal matrices with nonnegative
entries di, bi ≥ 0. We write

[K1]ij =
∑
k

dkukiukj and [K2]ij =
∑
k

bkvkivkj

[K]ij = [K1]ij [K2]ij =

(∑
k

dkukiukj

)(∑
l

blvlivlj

)
=
∑
kl

dkbl(ukivli)(ukjvlj)

K =
∑
kl

dkbl(uk ◦ vl)(uk ◦ vl)T � 0.

Now, we can go back and verify that polynomial and Gaussian kernels are valid kernels. We
start with the polynomial kernel k(x, x′) = (1 + 〈x, x′〉)p.

1. 〈x, x′〉 is a kernel by the inner product property.

2. 1 is the identity kernel, so 1 + 〈x, x′〉 is kernel by the summation property.

3. Since 1 + 〈x, x′〉 is a kernel, (1 + 〈x, x′〉)p is kernel by the product property.

Using these properties, we can also verify that the Gaussian kernel is a valid kernel. The trick
is to write a Taylor’s series expansion.

k(x, x′) = exp

{
− ‖x− x

′‖2
2σ2

}

= exp

{
− ‖x‖

2

2σ2

}
· exp

{
− ‖x

′‖2
2σ2

}
︸ ︷︷ ︸

k1(x,x′)

· exp

{
〈x, x′〉
σ2

}
︸ ︷︷ ︸

k2(x,x′)

Clearly k1 above is a valid kernel by the inner product property with φ(x) = exp
{
− ‖x‖2

2σ2

}
.

If k2 is a valid kernel, the product property will ensure that Gaussian kernel is a valid kernel. But
we have

k2(x, x′) = exp

{
〈x, x′〉
σ2

}
=

∞∑
i=0

1

i!

(
〈x, x′〉
σ2

)i
by the Taylor series of ex.

Since k2 is a sum of polynomial kernels, it is also a valid kernel.

12.2 Learning with kernels

Let’s turn our attention to applications of kernels in machine learning. Suppose that we collected
a dataset D = {(xi, yi)}ni=1, and we would like to fit a function y ≈ f(x) using the function class F
which is a RKHS. We consider the `2 regularized empirical risk minimization problem,

f̂ = argmin
f∈F

1

n

n∑
i=1

`(yi, f(xi)) +
λ

2
‖f‖2F . (12.1)

70

Theorem 60 (Representer theorem). For the dataset D = {(xi, yi)}ni=1, and a kernel k(x, x′),
we define the set of functions

VD =
{
f(x) =

n∑
i=1

αik(x, xi) : αi ∈ R for i = 1, ..., n
}
.

Then, f̂ in (12.1) belongs to VD, i.e. f̂ ∈ VD ⊂ F .

Remark. Representer theorem has a remarkable algorithmic consequence. It tells us that mini-
mizing over the entire RKHS F is equivalent to minimizing over VD. This will reduce the empirical
risk minimization problem (12.1) to a simple least squares problem over αi’s. We will revisit this
after proving the theorem.

Proof.

• First, we note that in the definition of VD, n is the number of samples and xi’s are input
data, and both are fixed, whereas we recall from Moore-Aronszajn Theorem 59 that,

F =
{
f(x) =

m∑
j=1

α′jk(x, x′j), ∀m ∈ N,∀α′j ∈ R,∀x′j ∈ Rd
}
.

Also, we notice that VD is a subspace in F (exercise).

• We define the orthogonal complements of the subspace VD as

V⊥D = {f ′ ∈ F : 〈f ′, f〉 = 0 ∀f ∈ VD}.

A vector space is the summation of a subspace and its orthogonal complement. This enables
us to write a function in RKHS F as the summation of a parallel and a orthogonal component
(not union!). That is, ∀f ∈ F , we can write

f(x) = f‖(x) + f⊥(x)

where f‖ ∈ VD and f⊥ ∈ V⊥D . In other words, projection of f on VD is f‖, and on V⊥D is f⊥.

fk

<latexit sha1_base64="aadCWD+dm2q5hKUuB0psET4u4Fs=">AAAHr3ic3VVLb9NAEJ62gEt4tcCNi0VUiVOUoFZwQKgQVcAlSgppqiYtrJ1NanX90NpBRBE/gyv8Lv4N347d1m5s4Fxb9s6Ov/nmsbNeJ1JenDSbv1dW127cvGWt367duXvv/oONzYcHcTjTruy7oQr1oSNiqbxA9hMvUfIw0lL4jpID56xtvg++Sh17YfApmUfy2BfTwJt4rkigGk5ORpHQQimpPm/Um40mX/ay0MqEOmVXN9xce0cjGlNILs3IJ0kBJZAVCYpxD6lFTYqgO6YFdBqSx98lfacabGdASSAEtGd4TzEbZtoAc8MZs7ULLwqPhqVNWxlmDHnC2nQ0/u0ctsrHgrlNjHOMTsbpQ5vQKbT/sjtH/q+dySlBhC85Fw9xRqwxWbqFjCYYFeYJ4jfvOZAS0hhWGpILnYI21RgfGmNaV5P5KddZME5CMjHVeJUM94g5BBhixDG6iNzBvaB9RJLGYkNOcTYinHGNJFf5vGKmwnne/Uq+PMrjFZJcE10aw1Euhg8FdLXvo0qeYuaC6xRyZ5VXoFeoQBFfrERc4O5VcuVRAX+fcSTl/js5/50C+m/eO5VMeZTZFT66yey+byUW7ZzvdgG77DvPu1fCtbfkvVuC6maoLfvxdbtNVqjbR969Lu9UdaWD42ub+eWqv+JVVzxLWBLopWl2AqS99uZCY6MyOvtvSuCLXf6auczfbooOSrIdfcmGrsQJ1rp6Xi0LB88bre3GTm+7vvs2O8vW6Qk9pWc4r17QLr1HZ/Z5v/ygn/TLalkD68T6kkJXVzKbR1S4LO8Pb4BWOA==</latexit>

f?

<latexit sha1_base64="P1GbE0qg7izNfXajucmEaeAgzMo=">AAAHq3ic3VVLb9NAEJ62gEt4tcCNi0VUiQtRUhXBAaFCVAGXKGlJU6UpyHY2qdX1Q/YGEUX8CK7wy/g3fDt2W29jA+fasnd2/M03j531urH0U9Vs/l5ZXbtx85a1frt25+69+w82Nh8eptEs8UTfi2SUHLlOKqQfir7ylRRHcSKcwJVi4J619ffBV5GkfhR+UvNYnATONPQnvucoqAaTz6NYJPGXjXqz0eTLXhZauVCn/OpGm2vvaURjisijGQUkKCQFWZJDKe5jalGTYuhOaAFdAsnn74K+Uw22M6AEEA60Z3hPMTvOtSHmmjNlaw9eJJ4EljZt5Zgx5Alrs1H7twvYKh8L5tYxzjG6OWcAraJTaP9ld478Xzudk0KErzgXH3HGrNFZekZGE4wSc4X49XsOpIA0hlUCyYNOQptptI8EY1ZXnfkp19lhnICkY6rxKmnuEXM4YEgRx+gichf3gvYRSRaLDTnD2YhwxjUSXOXziukKF3n3K/mKKJ9XSHBNktIYhoUYPhroat/DSh4zc4frFHFnlVegZ1TAxJuVSA3uXiVXERXy9xlHUu6/U/DfMdB/896pZCqi9K4I0E16930rsWgXfLcN7LLvIu9eCdfekvduCaqbo7bsx9ft1lmhbge8ez3eqfJKB6fXNvPLVX/Nqy55plhy0EvT/ATIeu3thcZGZZL8vymAN7v8DXPpv90UHaTyHX3Jhq7ECda6el4tC4fbjdZO40Vvp777Lj/L1ukJPaVnOK9e0i59QGf2OYof9JN+Wc+tA2tojTLo6kpu84iMyxJ/ADVtVHo=</latexit>

f 2 F

<latexit sha1_base64="JAcvUWDZOUe+l6h8P4xkJuVMW9U=">AAAHt3ic3VXbbtNAEJ22gEu4JcAbLxZRJZ6iBBUBEkKFqFxeorSQtmpTRWtnk1hd28HeAFHUT+EVvom/4ezYbe3GBp5ry97Z8Zkzl531OlPlxbrZ/L2yunbt+g1r/Wbl1u07d+9Va/f34nAWubLnhiqMDhwRS+UFsqc9reTBNJLCd5Tcd07a5vv+VxnFXhh81vOpPPbFOPBGnis0VINqbWT3vcDu+0JPXKEW704H1Xqz0eTLXhZaqVCn9OqGtbX31KchheTSjHySFJCGrEhQjPuIWtSkKXTHtIAuguTxd0mnVIHtDCgJhID2BO8xZkepNsDccMZs7cKLwhPB0qaNFDOEPGJtMhr/dgZb5mPB3CbGOUYn5fSh1TSB9l92Z8j/tTM5aUT4gnPxEOeUNSZLN5fRCKPCXCN+854DKSENYRVBcqFT0CYa4yPCmNTVZD7hOgvGSUgmpgqvkuHuM4cAQ4w4+ueRO7gXtItIklhsyAnORoQzrpHkKp9VzFQ4y7tbypdFebxCkmsSFcZwmInhYw5d7vuwlCefueA6hdxZxRXYyVUgj89XIs5x75RyZVEBf59xJMX+Oxn/nRz6b947pUxZlNkVPrrJ7L7vBRbtjO92DrvsO8u7XcC1veS9W4DqpqgN++FVu01WqNsn3r0u71R1qYPjK5v5xaq/4lVXPNMsCfTSOD0Bkl57c66xUZko/W9K4PNd/pq5zN9ujA7S6Y6+YENX4gRrXT6vloW9p43WZuPZzmZ96216lq3TI3pMT3BePact+oDO7CGKb/SDftIv66U1sEbWJIGurqQ2Dyh3WV/+AE3sWIU=</latexit>

VD

<latexit sha1_base64="/O0CHS/JpbbscOr5BkzD6B5w7xI=">AAAHv3ic3VVLb9NAEJ62gEt4pcAFcbGIKnGKElQEB4RaQgVcoqSQtGpTVbazSayuH7I3iCiK+DVc4ffwb/h27KZ2YwPn2rJ3dvzNN4+d9dqhdGPVaPxeW9+4cfOWsXm7cufuvfsPqlsP+3EwjRzRcwIZREe2FQvp+qKnXCXFURgJy7OlOLTPW/r74VcRxW7gf1GzUJx61th3R65jKajOqk8GnqUmjiXn/cXZfDl5v1icVWuNeoMvc1VopkKN0qsTbG18oAENKSCHpuSRIJ8UZEkWxbhPqEkNCqE7pTl0ESSXvwtaUAW2U6AEEBa053iPMTtJtT7mmjNmawdeJJ4IliZtp5gh5BFrk1H7NzPYMh9z5tYxzjDaKacHraIJtP+yu0D+r53OSSHC15yLizhD1ugsnVxGI4wSc4X49XsGpIA0hFUEyYFOQptotI8IY1JXnfmE62wxTkDSMVV4lTT3gDksMMSIY7CM3MY9pwNEksRiQk5wJiKcco0EV/miYrrCWd6DUr4syuUVElyTqDCG40wMn3Loct/HpTz5zC2uU8CdVVyBbq4CeXy+EnGOu1vKlUX5/H3KkRT7b2f8t3Pov3lvlzJlUXpXeOgmvfu+FVi0Mr5bOeyq7yzvfgHX/or3TgGqk6K2zcfX7dZZoW6fefc6vFPllQ6Or23ml6v+hldd8kyxZKGXxukJkPTa3lJjojJR+t8UwOe7/C1z6b/dGB2k0h19yYauxAnWvHperQr9F/XmTv1ld6e2+y49yzbpKT2j5zivXtEufURn9hDFd/pBP+mXsWeMDd8IE+j6WmrziHKXMfsD9hRc1Q==</latexit>

Figure 4: Decomposing RKHS into two subspaces.

• But notice that for (xi, yi) ∈ D, by the reproducing property, we can write for f ∈ F

f⊥(xi) = 〈 f⊥︸︷︷︸
∈V⊥D

, k(xi, ·)︸ ︷︷ ︸
∈VD

〉 = 0

71

where the last step follows since k(xi, ·) ∈ VD and f⊥ ∈ V⊥D .

Therefore for (xi, yi) ∈ D, we have f(xi) = f‖(xi) + f⊥(xi) = f‖(xi). This implies that the
loss over f only depends on its projection onto VD, i.e.

`(yi, f(xi)) = `(yi, f
‖(xi)).

Consequently, the training error of f only depends on its projection f‖.

• For the regularizer, we have for every f ∈ F
‖f‖2F = ‖f‖‖2F + ‖f⊥‖2F .

• Combining these, we obtain that the minimization problem over f can be written as

f̂ = argmin
f∈F

1

n

n∑
i=1

`(yi, f(xi)) +
λ

2
‖f‖2F ,

= argmin
f=f‖+f⊥:

f‖∈VD, f⊥∈V⊥D

1

n

n∑
i=1

`(yi, f
‖(xi)) +

λ

2
‖f‖‖2F +

λ

2
‖f⊥‖2F .

Since f⊥ doesn’t affect the training error, we might as well choose it to be zero so that the
regularizer becomes smaller. Thus, the minimizer f̂ can be obtained by just minimizing over
f‖ ∈ VD.

Remark. The above proof also holds for any loss function `({x, y, f(x)}), and regularizer r(‖f‖F)
where r is monotone and strictly increasing.

Example. [Squared error loss] We choose `(y, f(x)) = 1
2(y − f(x))2 and the empirical risk mini-

mization in (12.1) reduces to

f̂ = argmin
f∈F

1

2

n∑
i=1

(yi − f(xi))
2 +

λ

2
‖f‖2F .

Here, F is a RKHS. Applying the representer theorem, we obtain that the above minimizer has to
satisfy

f̂(x) =

n∑
j=1

αjk(x, xj),

where αi ∈ R. Note that the only thing that is not known to us is αj ’s, which we will use our data
to learn. Concatenating αj ’s, we define α = [α1, ..., αn]> ∈ Rn, and we can convert the original
problem to a minimization over α.

α̂ = argmin
α∈Rn

1

2

n∑
i=1

(
yi −

n∑
j=1

αjk(xi, xj)
)2

+
λ

2
‖f‖2F

Recall the definition of kernel matrix Kij = k(xi, xj) and notice that

‖f‖2F = 〈f, f〉 =
〈∑

i

αik(·, xi),
∑
j

αjk(·, xj)
〉

=
∑
i

∑
j

αiαj〈k(·, xi), k(·, xj)〉 (by prop of inner prod)

=
∑
ij

αiαjk(xi, xj) = αTKα (by def of inner prod in RKHS)

72

For the training error, we have

1

2

n∑
i=1

(
yi −

n∑
j=1

αjk(xi, xj)
)2

=
1

2

n∑
i=1

(
yi − 〈Ki, α〉

)2
Ki is the i-th row of K

=
1

2
‖y −Kα‖22.

Therefore, the problem reduces to

α̂ = argmin
α∈Rn

1

2
‖y −Kα‖22 +

λ

2
αTKα := R̂(α)

which can be easily solved by taking derivatives and solving for α

∇αR̂(α) = K(y −Kα) + λKα = 0

=⇒ α̂ = (K + λIn)−1y.

Note that the solution is not unique unless K � 0. If α̂ is a solution, so is α̂ + u where u belongs
to the null space of K.

12.3 Maximum mean discrepancy (MMD)

In this section, we discuss another example of kernel methods, that is RKHS embeddings of prob-
ability distributions. We start with a few definitions.

Definition 61 (∞-norm). For a function f : X → R, infinity norm is given as ‖f‖∞ =
supx∈X |f(x)|. This defines the following metric,

‖f − f ′‖∞ = sup
x∈X
|f(x)− f ′(x)|.

The above metric measures the worst case difference between two functions. It is often the case
that we want to measure the difference between two probability distributions. For this, we have
distance measures such as KL-divergence, total variation, Wasserstein distance etc. We should note
that not all of these are proper metrics. The following is another way to measure distance between
two probability distributions.

Definition 62 (Maximum mean discrepancy (MMD)). Let p, q be probability distributions
on X . Define MMD as

dF (p, q) = sup
f∈F

∣∣Ep[f(x)]− Eq[f(x)]
∣∣.

The above definition seems like something that can be useful in practice. But as in any learning
algorithm, we need to choose a reference function class.

• How complex the function class (set of test functions) F should be so that the above metric
is good, i.e., dF (p, q) = 0 if and only if p = q?

At least one side is obvious, if p = q then dF (p, q) = 0. For the other side, as a starter, we have
that if F is a 1-Lipschitz continuous functions on X denoted by L1, Monge-Kantorovich duality
says the above MMD metric reduces to Wasserstein-1 distance. That is,

dL1(p, q) =W1(p, q) , inf
couplings (x,y)
x∼p, y∼q

E[‖x− y‖].

Another function class that proves the above metric useful is the class of bounded continuous
functions on X , which we denote by C0.

73

Theorem 63 (Dudley’s result on MMD). If the function class is the set of all bounded continuous
functions F = C0, then dC0(p, q) = 0 if and only if p = q.

But taking supremum over L1 or C0 may be too much to ask since these function classes are
too complex. If we can find a good representation of, say C0, then we may be able to come up with
something useful.

In lieu of Dudley’s result on MMD, Theorem 63, we will require the RKHS defined by its unique
kernel to be representative of the space of bounded continuous functions.

Definition 64 (Universal Kernel). For the set C0 of all bounded continuous functions f : X → R,
we call a kernel k a universal kernel if its RKHS F is dense in C0.

Note that F is dense in C0 if for every function f ∈ C0, ∀ε > 0, there exists f ′ ∈ F such that

‖f − f ′‖∞ ≤ ε.
The notion of universality is exactly what we need from an RKHS F to be a good representation

of C0. Indeed, this property translates the desired feature of C0 to RKHS.

Theorem 65 (Steinwart’s theorem on unit RKHS ball). Define the unit ball centered at origin

G = {f ∈ F : ‖f‖F ≤ 1}
where F is a RKHS of a universal kernel k, then dG(p, q) = 0⇔ p = q.

Remark.

• The ball doesn’t need to be unit, that is, the radius of the ball can be arbitrary as long as it
is non-zero.

Proof. One side is obvious as before. For the other side, we assume that dG(p, q) = 0 but p 6= q
and hope to achieve contradiction.

• If p 6= q, this implies by Theorem 63, that dC0(p, q) = ε for some ε > 0. Hence, there exists a
function h ∈ C0 such that

|Ep[h(x)]− Eq[h(y)]| = ε,

since C0 is compact. h may not belong to F .

• But since k is a universal kernel, F is dense in C0 which implies that there exists f ∈ F such
that ‖f − h‖∞ ≤ ε/3, which in turn implies that

|Ep[f(x)]− Ep[h(x)]| ≤ ε

3
and |Eq[f(x)]− Eq[h(x)]| ≤ ε

3
. (12.2)

To see this, we can write

|Ep[f(x)]− Ep[h(x)]| =
∣∣∣∣∫ [f(x)− h(x)]dp(x)

∣∣∣∣
≤
∫
|f(x)− h(x)|dp(x)

≤
∫

sup
x∈X
|f(x)− h(x)|dp(x)

=

∫
‖f − h‖∞dp(x) = ‖f − h‖∞ ≤ ε/3.

The other term can be bounded by following the same steps.

74

• We should be careful about that f ∈ F may not belong to G. This is okay since we can
update h→ h/‖f‖F and ε→ ε/‖f‖F so that f → f/‖f‖F ∈ G.

• We proceed with the triangle inequality,

ε =|Ep[h(x)]− Eq[h(y)]|
=|Ep[h(x)]± Ep[f(x)]± Eq[f(x)]− Eq[h(y)]|
≤ |Ep[h(x)]− Ep[f(x)]|︸ ︷︷ ︸

≤ε/3 by (12.2)

+ |Ep[f(x)]− Eq[f(x)]|︸ ︷︷ ︸
dG(p,q)

+ |Eq[f(x)]− Eq[h(y)]|︸ ︷︷ ︸
≤ε/3 by (12.2)

Notice that the first and last terms are smaller than ε/3 and the summation of all three terms
is equal to ε. This implies that the second term dG(p, q) has to be larger than ε/3 which
contradicts with our initial assumption that dG(p, q) = 0.

Seems like the unit ball G is a representative function class to work with. We don’t have access
to the expectations, but we may be able to leverage some data and estimate the MMD metric. But
how can we compute the MMD dG(p, q) between two probability distributions p and q in practice?
The answer is given by the reproducing property of the kernel k associated to its unique RKHS F .

Recall the reproducing property of kernels that says the representer Rx = k(x, ·) satisfies
〈Rx, f〉 = f(x). Thus, for f ∈ F , we can write

Ep[f(x)] = Ep[〈f, k(x, ·)︸ ︷︷ ︸
random

〉F] = 〈f,Ep[k(x, ·)]︸ ︷︷ ︸
,µp

〉F = 〈f, µp〉F

where we defined the RKHS embedding of the probability distribution p as µp = Ep[k(x, ·)]. This
tells us that expectations under the distribution p can be written as inner products. Therefore we
can rewrite the MMD metric in its simple form

dG(p, q) = sup
f∈G
|Ep[f(x)]− Eq[f(y)]|

= sup
f∈G
|〈f, µp − µq〉F |

= ‖µp − µq‖F ,

where the last equality follows from supf :‖f‖G≤1 〈f, µ〉 = ‖µ‖F . It turns out that MMD between p
and q was just the distance between their corresponding RKHS embeddings.

Now that we converted MMD to a simple norm, we can do a lot. We write,

dG(p, q)2 = ‖µp − µq‖2F (12.3)

= ‖µp‖2F + ‖µq‖2F − 〈µp, µq〉F − 〈µq, µp〉F .

Note that

‖µp‖2G = 〈µp, µp〉 = 〈Ep[k(x, ·)],Ep[k(x, ·)]〉F
= Ep[〈k(x, ·), k(x′, ·)〉F] where x, x′ ∼ p are independent.

= Ep,p[k(x, x′)].

75

Similarly, we have

〈µp, µq〉G =〈Ep[k(x, ·)],Eq[k(y, ·)]〉F
=Ep,q[k(x, y)] where x ∼ p, y ∼ q are independent.

Plugging this back in (12.3), we obtain

dG(p, q)2 = Ep,p[k(x, x′)] + Eq,q[k(y, y′)]− Ep,q[k(x, y′)]− Eq,p[k(y, x′)] (12.4)

where x, x′ ∼ p, y, y′ ∼ q and all random variables are mutually independent.
Now assume that we have iid samples from two distributions x1, x2, ..., xn ∼ p and y1, y2, ..., yn ∼

q. We cannot calculate the MMD expression given in (12.4), but we can estimate this using the
sample mean estimator. That is, we can write the following U-statistic.

̂dG(p, q)2 =
1(
n
2

)∑
i<j

k(xi, xj) + k(yi, yj)− k(xi, yj)− k(yi, xj).

This is clearly an unbiased estimator of the squared MMD d2
G . It is also consistent, i.e. it converges

to d2
G in probability,

̂dG(p, q)2 p→ dG(p, q)2.

Looking at this value can give us an idea about how close the distributions p and q are.

76

Acknowledgments

This course is partially designed from several courses at Stanford (Stat306A by Efron, 315A by
Hastie, 300A by Siegmund, 300B by Johnstone, 300C by Candès, CS229T by Liang). Many students
who took this course contributed to these lecture notes.

References

77

	Introduction
	Warm-up: Gaussian Mean Estimation
	SURE: Stein's Unbiased Risk Estimator
	James-Stein Estimator

	Exponential Families and Information Inequality
	Moments of exponential families
	MLE, Score, Information
	Information inequality

	Asymptotic Statistics
	Supervised learning setting
	Parametric Models

	MLE Framework
	Asymptotics of MLE
	Asymptotic normality
	Consistency

	Uniform Convergence -3mu Generalization
	From excess risk to empirical process
	Finite function classes, |F|<

	Covering with -nets
	-covers of sets in Rd
	Generalization for parametrized function classes

	Rademacher Complexity: Definition
	Generalization based on Rademacher complexity
	Symmetrization

	Rademacher Complexity: Properties & Applications
	Properties of Rademacher complexity
	Rademacher complexity of constrained linear models
	Massart's Finite Lemma

	Combinatorial Measures of Complexity
	Shattering Coefficient
	Vapnik-Chervonenkis Dimension

	Chaining and Dudley's Theorem
	-Nets revisited
	Simple discretization
	Chaining

	Stability and PAC-Bayes Bounds
	Stability based generalization bounds
	PAC-Bayes bounds

	Kernel Methods: Basics
	Basics of Hilbert Spaces
	Kernels: formal definitions
	Hilbert Space defined by the Reproducing Kernel

	Kernel Methods: Properties & Applications
	Basic properties and examples
	Learning with kernels
	Maximum mean discrepancy (MMD)

