
2 Exponential Families and Information Inequality

• Exponential families form a basis for many statistical methodology such as generalized linear
models (GLMs), undirected graphical models, etc.

• They define a broad class of distributions covering distributions such as Gaussian, Bernouilli,
beta, Poisson etc.

• They also arise as the solutions of interesting optimization problems.

Definition 6. Exponential families are defined as a collection of densities with respect to a base

measure ⌫ (either counting or Lebesgue)

P = {p✓(x) : ✓ 2 ⇥} where p✓(x) = exp{h✓,�(x)i �  (✓)}p0(x).

Above,

• ✓ 2 ⇥ ⇢ Rd
: Natural parameter

• � : X ! Rd
: Su�cient statistics

•  : R ! R: log-partition function, cumulant generating function (CGF)

• p0(x): carrying density w.r.t. carrying measure ⌫(dx) on X . We will ignore this part mostly

as it can be combined with the carrying measure ⌫.

The natural parameter ✓ lives in a parametric space where the CGF is finite: ⇥ = {✓ :  (✓) <
1}. Since p✓ is a density, we have

1 =

Z
p✓(x) d⌫(x) and  (✓) = log

(Z
exp{h✓,�(x)i}p0(x) d⌫(x)

)
.

Note that in this class we only consider the measure d⌫(x) either as the Lebesgue measure when
the random variable is continuous or as the counting measure when it is discrete.

Example. Let X be a Bernoulli random variable with mean µ, i.e., P(X = 1) = µ and
P(X = 0) = 1 � µ. We can write the probability mass function as p✓(x) = µx(1 � µ)1�x =
exp{x log µ + (1 � x) log(1 � µ)} where x 2 {0, 1}. One way to write the Bernoulli distribution as
an exponential family is through the following natural parameter and su�cient statistic

✓ =


log µ

log(1 � µ)

�
, �(x) =


x

1 � x

�

We say that an exponential family is minimal if there is no linear relations/constraints between
the entries of the su�cient statistic and the natural parameter vectors. Notice that the above
formulation is not minimal. Re-write the PMF, natural parameter, and CGF:

p(x) = exp
�
x log

µ

1 � µ
+ log(1 � µ)

 
with

✓ = log
µ

1 � µ
,  (✓) = log(1 + e✓), µ =

e✓

1 + e✓
.

Proposition 7. ⇥ is a convex set, and  (✓) is a convex function.
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Proof. ⇥ is a convex set if for ✓1, ✓2 2 ⇥, ✓� = �✓1 + (1 � �)✓2 2 ⇥, 8� 2 [0, 1].

 (✓) < 1 , e (✓) < 1 ,
Z

exp{h✓,�(x)i}d⌫(x) < 1

exp
�
 (✓�)

�
=

Z
exp{h✓�,�(x)i}d⌫(x) =

Z ⇣
eh✓1,�(x)i

⌘�⇣
eh✓2,�(x)i

⌘1��
d⌫(x)


 

exp
�
 (✓1))

Z
p✓1(x)d⌫(x)

!� 
exp

�
 (✓2))

Z
p✓2(x)d⌫(x)

!1��

= exp
�
 (✓1)

��
exp

�
 (✓2)

�1��
< 1.

Where the inequality is justified above from Hölder’s inequality for integrals:
R

|fg|du  (
R

|f |p)1/p(
R

|g|q)1/q,
p�1 + q�1 = 1. This completes the proof of first part. The second part follows applying logs to
both sides,

 (✓�)  � (✓1) + (1 � �) (✓2).

2.1 Moments of exponential families

It can be shown that the moments of the su�cient statistic associated with an exponential family
can be linked to the corresponding orders of di↵erentiation of that family’s CGF.

• Mean: We can write

1 =

Z
p✓(x) d⌫(x) =

Z
eh✓,�(x)i� (✓) d⌫(x) di↵erentiating both sides w.r.t ✓

0 =

Z
eh✓,�(x)i� (✓)

⇣
�(x) � r (✓)

⌘
d⌫(x)

0 = E[�(x)] � r (✓)

Z
eh✓,�(x)i� (✓)d⌫(x)

| {z }
1

, E[�(x)] = r (✓) := µ

• Variance: Taking one more derivative yields that Cov(�(x)) = r2 (✓).
• Higher-order moments: Similarly, by taking more derivatives of the above equation, we

can obtain higher-order moments.

Proposition 8 (Invertibility). If  is strictly convex, then r : ⇥ ! M is invertible for M =
{µ : µ = r (✓) for ✓ 2 ⇥}.

Proof. We need to show that for ✓1, ✓2 2 ⇥,

✓1 = ✓2 , r (✓1) = r (✓2).

One side is trivial. For the other side, we write

r (✓2) = r (✓1) +

Z 1

0
r2 (✓1 + ⌧(✓2 � ✓1))(✓2 � ✓1)d⌧.
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Suppose it was the case that 9✓1, ✓2, ✓1 6= ✓2 such that r (✓1) = r (✓2), then it would be that
0 =

R 1
0 r2 (✓1 + ⌧(✓2 + ✓1))(✓2 � ✓1)d⌧ . However, because  is strictly convex, r2 > 0, so the

previous integral must be greater than zero and therefore r (✓1) 6= r (✓2).

Since the mapping r : ⇥ ! M is invertible, we can write

1. (r )�1(µ) = ✓

2. ⌃ = r2
✓ (✓) = r✓r✓ (✓) = r✓µ or equivalently, ⌃ = dµ

d✓ where ⌃ is the covariance matrix

of �(X). Intuitively (from Leibniz notation), we have d✓
dµ = ⌃�1. This can be shown using

chain rule.

µ = r⌘ (⌘) =) dµ

dµ
=

d⌘

dµ
r2
⌘ (⌘) =) d⌘

dµ
= ⌃�1.

2.2 MLE, Score, Information

In this section, we consider the basic MLE setup where we assume x = [x1, . . . , xn] where xi
iid⇠ p✓(x).

Using the iid assumption, we can write the joint density as

p✓(x) =
nY

i=1

p✓(xi) = exp

(*
✓,

nX

i=1

�(xi)

+
� n (✓)

)
nY

i=1

p0(xi)

= exp
�
n[h✓, �̄i �  (✓)]

 
p0(x), where �̄ =

1

n

nX

i=1

�(xi).

The corresponding log-likelihood, and score with respect to ✓ and µ are therefore:

• Log-likelihood: `✓(x) = n[h✓, �̄i �  (✓)] + const

• Score w.r.t. ✓: r✓`✓(x) = n[�̄� r (✓)]

• Score w.r.t. µ: rµ`✓(x) = ⌃�1n[�̄� r (✓)]

• Information w.r.t. ✓: I✓ = E[r`✓r`T✓ ] = �E[r2`✓] = n⌃.

• Information w.r.t. µ: Iµ = n⌃�1.

Remark. Information matrix quantifies how much information the observable statistic �(x)
contains about the parameter of interest.

We compute the MLE of natural parameter ✓ by solving the following equation for ✓.

r`✓(x) = 0 , �̄ = r (✓̂MLE) ,
✓̂MLE = (r )�1(�̄) by the invertibility of r .

Similarly, we can also find the MLE for the mean µ by di↵erentiating the log-likelihood w.r.t.
µ and setting it to 0. Since we focus on strictly convex CGFs (which imply ⌃ � 0), the MLE can
be computed to be µ̂MLE = �̄. Therefore, we notice that the mapping r also maps the MLEs.
Remark. As a side note, we can see that the score function has 0 expectation:

E[r`✓(x)] = E[�̄] � r (✓) = µ � µ = 0.
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Asymptotics of MLE: We can leverage the sample average structure of �̄ and obtain its
asymptotic distribution using Central Limit Theorem (CLT). That is, with a slight abuse of notation

µ̂MLE = �̄ =
1

n

nX

i=1

�(xi) ⇡⇠ N (µ, ⌃/n).

Here, it is worth noting that the distribution N is approximate, but the mean and the variance
are exact. The correct way to state this result is

p
n(µ̂MLE � µ)

d! N (0, ⌃). (2.1)

The asymptotic distribution of ✓̂MLE requires an extra derivation. Notice that there is a non-
linearity (r )�1 applied to the sample average form �̄. We know, by CLT, that �̄ will be Gaussian,
but we need a way of dealing with the non-linear function applied to it.

Proposition 9 (Delta Method). Assume that a random variable is asymptotically normal, i.e.,
p

n(µ̂ � µ)
d! N (0, ⌃). Then, for a di↵erentiable function f , we have

p
n(f(µ̂) � f(µ))

d! N (0, rf(µ)>⌃rf(µ)).

Using the Delta method on the asymptotic result obtained for µ̂MLE in (2.1), and also recalling
that ✓̂MLE = r �1(µ̂MLE), we can write

p
n(✓̂MLE � ✓)

d! N (0, rµ(r )�1(µ)>⌃rµ(r )�1(µ)). (2.2)

We can compute the quantity rµ(r )�1(µ) using the chain rule (left as exercise), but below we
just use the Leibniz notation.

rµ(r )�1(µ) =
d✓

dµ
=


dµ

d✓

�
�1

= ⌃�1.

Therefore, the variance term in (2.2) becomes

rµ(r )�1(µ)>⌃rµ(r )�1(µ) = ⌃�1.

Thus,

✓̂MLE ⇡⇠ N (✓, ⌃�1/n) (2.3)

or equivalently
p

n(✓̂MLE � ✓)
d! N (0, ⌃�1). In (2.3), distribution N , as well as the mean and the

variance are approximate.
Remark. Proof for the delta method was hinted using the Taylor Series expansion of the function
under consideration. This is a very handy theorem.
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2.3 Information inequality

In this section, we will derive a lower bound on the variance of a generic estimator which we call
as the information inequality. Later, we will use our main result here to derive the celebrated
Cramer-Rao lower bound. Information inequality is very much related to the Fisher information
which is where it get its name from. It is a classical concept and defines the notion of e�ciency

for estimators.
As in the previous section, suppose that we have data from an exponential family and we have

a statistic of the form T : Rd ! Rp with

E✓[T (�̄)] = ⇠(✓)

for some di↵erentiable function ⇠.
Remark. If we have two matrices A and B, we write A ⌫ B if A � B ⌫ 0, i.e., A � B is positive
semi-definite. This is equivalent to saying 8u, hu, (A � B)ui � 0.

Theorem 10 (Information Inequality). Variance of any estimator of the above form can be lower

bounded as

Var(T (�̄)) ⌫ 1

n
r⇠(✓)>⌃�1r⇠(✓).

Proof. In the first step of the proof, we compute a useful expression for the r⇠. We write

r⇠(✓) =

Z
rp✓(x1, .., xn)T (�̄)> d⌫

=

Z
n[�̄� r (✓)]T (�̄)>p✓(x1, .., xn) d⌫

=nE✓
h
(�̄� r (✓))T (�̄)>

i

=nE✓
h
(�̄� r (✓))(T (�̄) � ⇠(✓))>

i

The first term inside the expectation is in Rd and the second term belongs to Rp. Therefore, the
above expectation is a d ⇥ p matrix.

Next, choose any vector u 2 Rp and compute the quantity,

1

n
hr⇠(✓)u, ⌃�1r⇠(✓)ui = u>E✓

h
(T (�̄) � ⇠(✓))(�̄� r (✓))>

i
⌃�1r⇠(✓)u

= E✓
⇥
hT (�̄) � ⇠(✓), uih�̄� r (✓), ⌃�1r⇠(✓)ui

⇤

(by Cauchy-Schwartz)  E✓
h
hT (�̄) � ⇠(✓), ui2

i1/2
E✓
h
h�̄� r (✓), ⌃�1r⇠(✓)ui2

i1/2

 hu, Var(T (�̄))ui1/2
⇥
h⌃�1r⇠(✓)u, Var(�̄)⌃�1r⇠(✓)ui

⇤1/2

= hu, Var(T (�̄))ui1/2


1

n
hr⇠(✓)u, ⌃�1r⇠(✓)ui

�1/2

where in the last step we used the fact that Var(�̄) = 1
n . We notice that the second term on the

last line is the square root of the left hand side. Canceling these and squaring both sides concludes
the proof.

An immediate corollary of this result is the celebrated Cramer-Rao lower bound.
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Corollary 11 (Cramer-Rao Lower Bound). If T (�̄) is an unbiased estimator for ✓, i.e., E✓[T (�̄)] =
✓, then

Var(T (�̄)) ⌫ 1

n
⌃�1.

The lower bound in the above corollary is the inverse Fisher information with respect to the
parameter being estimated. That is, the bound reads Var(T (�̄)) ⌫ I�1

✓ .
If we were to estimate another parameter such as µ, we can derive a similar bound using the

information inequality. In this case, our unbiased estimator T (�̄) (for µ) has an expectation

E✓[T (�̄)] = ⇠(✓) = µ.

Notice that in this case ⇠ = r and consequently r⇠ = r2 = ⌃. Plugging this into the
information inequality yields a lower bound on the variance of the estimator as

Var(T (�̄)) ⌫ 1

n
⌃⌃�1⌃ =

1

n
⌃ = I�1

µ .

Remarkably in this case, information inequality yields a lower bound which is again the inverse
Fisher information with respect to the parameter being estimated.
Remark. Estimators that achieve Cramer-Rao lower bound are called e�cient. For example,
MLE for µ, �̄, has the variance 1

n⌃ which is the Cramer-Rao lower bound! So MLE already
achieves this bound in this case. Although it is worth noting that MLE in general may not be
e�cient, yet it is asymptotically e�cient.
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