
3 Asymptotic Statistics

In this section, we discuss the asymptotic properties of the parametric models. We will start with
describing the supervised learning setup which will be the focus of next few lectures.

3.1 Supervised learning setting

We assume that we observed n pairs of feature/response pairs (xi, yi) ⇠ p(x, y) for i = 1, 2, ..., n
where x 2 X ⇢ Rd and y 2 Y ⇢ R (which could be a real number or discrete class label). Data
pairs are i.i.d. and underlying joint distribution ⇠ p(x, y) is unknown to us. Our goal is to learn
some function f̂ : X ! Y using the observed data that will help us predict yi given features xi,
i.e., yi ⇡ f̂(xi).

We will need to define a measure to evaluate the quality of learned function f̂ .

• Loss: For this, we choose a loss function `(y, f(x)) : Y ⇥Y ! R+. For example, a commonly
used loss function is the squared error loss function `(y, f(x)) = (y � f(x))2, or another one
is the absolute value of the error `(y, f(x)) = |y � f(x)|. Loss function evaluates the error on
only one sample.

• Risk: However, we would like to measure the error on average which is why we define the
risk R : F ! R+ of this function to be R(f) = E[`(y, f(x))]. Hereby, the expectation will be
implicitly over all random variables inside brackets, and F denotes the set of functions. The
risk is a function of f and it also depends on the joint density p(x, y), and loss `.

• Goal (revised): Find f 2 F such that R(f) is small (to be revised again).

Example. [Bias-Variance Decomposition (first step)] We choose the loss as the squared error loss,
`(y, f(x)) = (y � f(x))2 and write the risk as

R(f) = E[(y � f(x))2]

= E[E[(y � f(x))2|x]] (Law of iterated expectations)

= E
h
E[(y � E[y|x] + E[y|x] � f(x))2|x]

i

= E
h
E[(y � E[y|x])2|x] + E[(f(x) � E[y|x])2|x] + 2E[(y � E[y|x])(E[y|x] � f(x))|x]| {z }

=0

i

= E[Var(y|x)]| {z }
Irreducible error

+E[(f(x) � E(y|x))2] =Irreducible error + Variance + Bias2

Since the irreducible error is not a function of f , the lower bound on the risk of f is obtained when
f⇤(x) = E[y|x]. This is attainable if f⇤ 2 F . That is,

inf
f2F

R(f) = E[Var(y|x)] + inf
f2F

E[(f(x) � E(y|x))2].

We will return to bias-variance decomposition later.

3.1.1 Parametric Models

When we are searching for a function f satisfying yi ⇡ f(xi) for i = 1, ..., n, we need to restrict
ourselves to a specific set of functions F to avoid overfitting. Otherwise, we can simply choose any
function satisfying yi = f(xi) for 8i.
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In this subsection, we focus our attention on a parametric function class F = {f✓ : ✓ 2 ⇥}
where f✓ is a function (or hypothesis) and ⇥ is the parameter space.
Example. Consider the set of linear functions that have weights constrained in a ball of radius �,

F = {f✓(x) = hx, ✓i : k✓k2  �}

Notice that the parameter space is given by ⇥ = {✓ : k✓k2  �}.

In the case of parametric models, it is generally redundant to write the function f✓, instead we
will simply use the parameter ✓ to describe it. For example,

`(y, f✓(x)) , `((y, x), ✓) and R(f✓) , R(✓),

is more compact and conveys the same information for parametric function classes.
We would like to minimize the population risk R(✓), that is, we want

✓⇤ 2 arg min
✓2⇥

R(✓) = E[`((x, y), ✓)]

for (x, y) ⇠ p. But we don’t have access to the joint density p, therefore we cannot minimize this
objective. Instead, what we can estimate the population risk with the empirical risk using our n
training samples. The empirical risk is just a sample mean estimator for the population risk and
given as

✓̂ 2 arg min
✓

R̂(✓) :=
1

n

nX

i=1

`((xi, yi), ✓).

Notice the hat in R̂ and ✓̂ which indicates that these are estimators that depend on data. These
quantities are random variables (or vectors) whereas R(✓) and ✓⇤ are deterministic values (R(✓̂) is
also random).

• The quantity R̂(✓̂) is the training error.
• The quantity R(✓̂) is simply test error. It is worth noting that in machine learning courses,

we define test error as an estimator to this quantity.

Notice that when n is large, we expect to have R(✓) ⇡ R̂(✓); thus, it would makes sense to have
the minimizers of these functions close together ✓̂ ⇡ ✓⇤.

The following quantity will be used repeatedly as a notion of generalization error.

Definition 12 (Excess risk). We define the excess risk of an estimator ✓̂ as the distance between

the test error and the minimum achievable error

Excess risk = R(✓̂) � R(✓⇤).

3.2 MLE Framework

In the MLE framework, we assume that data pairs are sampled in the following hierarchical way

yi|xi ⇠p✓⇤(y|x)

xi ⇠p(x)
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where ✓⇤ is the true but unknown parameter. However, we make the very strong assumption that
the parametric form p✓(x) is known. This is like assuming that we know a random variable z is
Gaussian z ⇠ N (✓⇤, 1) but we don’t know the value of ✓⇤.

The MLE is motivated as a finding “the most likely” parameter. If we translate this to our
framework, we simply choose a loss function that is the negative of the log-likelihood, i.e.

`((y, x), ✓) = � log p✓(y|x).

We give two examples below.
Example. Parametric distribution is normal with mean hx, ✓i and some variance �2 (which doesn’t
matter). That is

y|x ⇠ N (hx, ✓i, �2)

p✓(y|x) =
1p

2⇡�2
exp

(
� (y � hx, ✓i)2

2�2

)

`((x, y), ✓) = � log p✓(y|x) = (y � hx, ✓i)2 + const.

which is the squared error loss yielding linear regression.

Example. Parametric distribution is Bernoulli with mean �(hx, ✓i) where �, in this case, is the
sigmoid function. That is

y|x ⇠ Ber(�(hx, ✓i))
p✓(y|x) = �(hx, ✓i)y(1 � �(hx, ✓i))1�y

`((x, y), ✓) = � log p✓(y|x) = �y log(�(hx, ✓i)) � (1 � y) log(1 � �(hx, ✓i))

which is the cross-entropy loss yielding logistic regression. Both of above settings belong to large

class of regression models called generalized linear models (GLMs). They are obtained by modeling
the natural parameter in exponential families with a linear function of feature vector. As seen
above, Gaussian leads to linear regression whereas Bernoulli leads to logistic regression.

MLE problem: We observe n data point: (yi, xi) ⇠ p✓⇤(y|x)p(x), i = 1, . . . , n. Our goal here
is to estimate the true parameter ✓⇤, by minimizing the empirical risk:

✓̂ = arg min
✓

R̂(✓) =
1

n

nX

i=1

`((xi, yi), ✓) = � 1

n

nX

i=1

log p✓(yi|xi).

Let’s see how this is related to population risk minimizer. We start investigating by writing out
the gradient and the Hessian of R(✓).

• rR(✓⇤) = E[�r log p✓⇤(y|x)] = 0. Therefore, the true parameter is a critical point of the
population risk.

• r2R(✓⇤) = E[�r2 log p✓⇤(y|x)] = E[r log p✓⇤(y|x)r log p✓⇤(y|x)T ] = I✓⇤ ⌫ 0. This still
doesn’t prove that ✓⇤ is a local minimum. Note that the Hessian of the risk must be positive
semi-definite (PSD) since zzT is PSD as uT zzTu = (uT z)2.

In what follows, for simplicity we assume that I✓⇤ � 0 which clearly implies that true parameter
✓⇤ is a local minimum. Actually, if we assume identifiability of our parametric family, that is
✓ 6= ✓0 =) p✓ 6= p✓0 , then ✓⇤ can be shown to be a unique global minimum.
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3.3 Asymptotics of MLE

First, we need a few definitions.

Definition 13 (Convergence of random variables).

(a) Convergence in probability: We write ✓̂n
p! ✓⇤, if for every ✏ > 0 we have

P(|✓̂n � ✓⇤| > ✏) �! 0 as n ! 1.

(b) Convergence in distribution: We write ✓̂n
d! ✓⇤, if Xn and X have CDFs Fn(x) and

F (x), respectively and for every continuity point of F (x), we have limn!1 Fn(x) = F (x).
This is also called weak convergence as it is a very weak notion of convergence. The letter

d in the symbol
d! is to specify that the convergence is in distribution, and it should not be

confused be the dimension d.

(c) Consistency: We say ✓̂n is a consistent estimator for ✓⇤ if ✓̂n
p! ✓⇤.

In our asymptotic setting, we fix the dimension d and let number of samples n ! 1. We drop
the subscript n to ease the notation.

3.3.1 Asymptotic normality

The following theorem is charactering the asymptotics of the MLE.

Theorem 14 (Asymptotics of MLE). Assume that ✓̂ is consistent for ✓⇤, and the Fisher informa-

tion satisfies I✓⇤ � 0, and that sup✓ kr3 log p✓kop < B. Then,

1.
p

n(✓̂ � ✓⇤)
d! N (0, I�1

✓⇤
).

2. n(R(✓̂) � R(✓⇤))
d! 1

2�
2
d.

Remark. We make two important remarks about the above theorem.

1. The first result is giving us the asymptotic distribution of the MLE. We observe that the
variance of this distribution is the inverse Fisher information which validates its name: larger
the Fisher information is, lower the variance of this distributions. Therefore, the estimator
gives more information about the true parameter.

It is worth noting that these types of distributional results are useful in constructing confidence
intervals; hence quantifying uncertainty in models.

2. The second item above is the asymptotic distribution of the excess risk. Since �2
d is a random

variable with mean d and variance 2d, the right hand side is roughly of order d/n. That is,

R(✓̂) � R(✓⇤) ⇡ O
✓

d

n

◆
.

The excess risk gets worse with increased dimension buy gets better with increased number
of samples. We should emphasize that this is an asymptotic rate and it is quite fast compared
to the non-asymptotic rates that we will obtain in the future lectures. It is also worth noting
that this is an equality rather than a upper bound.
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Proof sketch.

We start by proving the first item, the normality of the MLE. The distribution of excess risk
will follow. Our proof outline is 1- we apply Taylor’s theorem, 2- identify a term that is an iid sum
which converges to a Gaussian random variable by central limit theorem (CLT), 3- show that the
other quantities converge in probability to deterministic quantities. We finally apply the Slutsky’s
theorem to conclude the proof.

Lemma 15 (Slutsky’s Theorem). For a sequence of random variables {xn, yn, zn}n2N satisfying

xn
d! x, yn

p! a and zn
p! b where a, b are constants, then we have xnyn + zn

d! ax + b.

We omit the proof as it is a simple application of the continuous mapping theorem.
We notice that rR(✓⇤) = rR̂(✓̂) = 0. We expand the latter using the Taylor’s theorem around

the true parameter ✓⇤.

rR̂(✓̂) = rR̂(✓⇤) + r2R̂(✓⇤)(✓̂ � ✓⇤) +
1

2
r3R̂(✓̄)[✓̂ � ✓⇤, ✓̂ � ✓⇤].

Above, the last term is a tensor in r3R̂(✓̄) 2 Rd⇥d⇥d, when multiplied by a vector (e.g. ✓̂ � ✓⇤) it
reduces to a d ⇥ d matrix. Also, ✓̄ is chosen somewhere on the line of and between ✓̂ and ✓⇤ (it is
worth noting that mean value theorem doesn’t hold for vector valued functions which can be easily
fixed by using the integral form Taylor’s theorem).

We notice that the left hand side is zero. Rearranging terms, we get

�rR̂(✓⇤) = [r2R̂(✓⇤) +
1

2
r3R̂(✓̄)(✓̂ � ✓⇤)](✓̂ � ✓⇤) (3.1)

Multiplying both sides with
p

n, we obtain

�
p

nrR̂(✓⇤)| {z }
iid sum/

p
n

= [r2R̂(✓⇤)| {z }
iid sum/n

+
1

2
r3R̂(✓̄)(✓̂ � ✓⇤)

| {z }
p
!0

]
p

n(✓̂ � ✓⇤)| {z }
of interest

We observe that the left hand side of (3.1) is a iid sum divided by
p

n. By the CLT, we obtain

�
p

nrR̂(✓⇤) =
1p
n

nX

i=1

r log p✓⇤(yi|xi)
d! N (0, Cov(r log p✓⇤(yi|xi))).

Here, the expected value is 0 since E[r log p✓⇤(yi|xi)] = 0, and Cov(r log p✓⇤(yi|xi)) = I✓⇤ .
For the first term on the right hand side of (3.1), we have another iid sum but this time divided

by n. We use law of large numbers (LLN) to obtain

r2R̂(✓⇤) =
1

n

nX

i=1

r2 log p✓⇤(yi|xi)
p! r2R(✓⇤) = I✓⇤ .

The second term on the right hand side of (3.1) converges to 0 in probability by the consistency
assumption. Therefore, multiplying both sides with I�1

✓⇤
, we obtain that

p
n(✓̂ � ✓⇤)

d! I�1
✓⇤

N (0, I✓⇤). (3.2)

We proceed by using a very useful property of Gaussian random vectors.
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Lemma 16. Let z ⇠ N (µ, ⌃) be a d-dimensional Gaussian random vector. Then for a matrix

A 2 Rl⇥d
we have Az ⇠ N (Aµ, A⌃A>).

Using the above lemma together with (3.2) and obtain

p
n(✓̂ � ✓⇤)

d! N (0, I�1
✓⇤

). (3.3)

This concludes the proof of the first part. For the proof of second part, we again use Taylor’s
theorem and write

R(✓̂) � R(✓⇤) =
D
rR(✓⇤), ✓̂ � ✓⇤

E
+

1

2

D
r2R(✓⇤)(✓̂ � ✓⇤), ✓̂ � ✓⇤

E
+

1

6
r3R̂(✓̄)[✓̂ � ✓⇤, ✓̂ � ✓⇤, ✓̂ � ✓⇤],

where again the first term on the right hand side disappears, and ✓̄ is in between ✓⇤ and ✓̂ (this
time without any issue since R is real-valued). Multiplying both sides with n and rearranging, we
obtain

n{R(✓̂) � R(✓⇤)} =
1

2

⌧p
n(✓̂ � ✓⇤), {r2R(✓⇤) +

1

3
r3R(✓̄)[✓̂ � ✓⇤]}

p
n(✓̂ � ✓⇤)

�
.

Using the previous result (3.3), we know that
p

n(✓̂ � ✓⇤)
d! z where z ⇠ N (0, I�1

✓⇤
), and the term

multiplying r3R vanishes due to consistency. Therefore, as n ! 1, the right hand side converges
in distribution to

n{R(✓̂) � R(✓⇤)}
d! 1

2
hz, I✓⇤zi.

We use Lemma 16 to deduce that

1

2
hz, I✓⇤zi =

1

2
hI1/2

✓⇤
z, I1/2

✓⇤
zi =

1

2
kz̃k2 ⇠ 1

2
�2
d

where z̃ ⇠ N (0, I) with I denoting the identity matrix. This concludes the proof of the second
statement.

It is important to identify the contribution of each assumption. It is obvious that the CLT
follows from the iid average structure of the MLE problem (also there for many learning tasks).
The bounded third derivative is needed to control higher-order terms. Lastly, consistency is needed
to kill the third-order term which reduces everything to a quadratic problem in the asymptotic
limit.

3.3.2 Consistency

It turns out that the consistency assumption is actually true for the MLE, under certain assumptions
(Note that the below assumptions are stronger than what is in fact needed).

Theorem 17 (MLE is consistent). Assume that the following assumptions are satisfied.

(a) Uniform convergence: The empirical process satisfies sup
✓2⇥

|R̂(✓) � R(✓)| p! 0.

(b) Identifiability: For every ✏ > 0, inf
✓:k✓�✓⇤k�✏

R(✓) > R(✓⇤).
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(c) Compactness: ⇥ is non-empty and compact.

Then, ✓̂ = argmin
✓2⇥

R̂(✓) is consistent.

Remark. The first assumption above is a very strong notion of convergence and it will be quite
handy when we talk about generalization. The second assumption simple means that we can identify
the function has a unique minimizer ✓⇤ and around that point, R grows. The last assumption is
only needed to ensure that ✓⇤ and ✓̂ belong to the set ⇥.

Proof. By the compactness assumption, we have ✓̂, ✓⇤ 2 ⇥. Next, notice that since ✓̂ minimizes
R̂ in ⇥, we have R̂(✓̂)  R̂(✓⇤). We can write

R̂(✓̂) R̂(✓⇤)

=R̂(✓⇤) � R(✓⇤) + R(✓⇤)

 sup
✓2⇥

���R̂(✓) � R(✓)
���+ R(✓⇤)

p! R(✓⇤) by assump (a). (3.4)

Also, since ✓⇤ minimizes R, we write

0  R(✓̂) � R(✓⇤) R(✓̂) � R̂(✓̂) as n ! 1 by (3.4),

 sup
✓2⇥

���R̂(✓) � R(✓)
��� p! 0, by assump (a). (3.5)

Notice that we squeezed the excess risk between zeros. So for every ✏ > 0, the following holds for
the events �

k ✓̂ � ✓⇤ k� ✏
 

✓
by assumption (b)

�
R(✓̂) � R(✓⇤) > �✏

 

Probability of the right hand side above goes to 0 as we let n ! 1 due to (3.5).
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