
10 Stability and PAC-Bayes Bounds

In this lecture, we will cover two di↵erent types for generalization bounds. The first one is based
on uniform stability which is based on a small modification of the proof we did for Rademacher
complexity.

10.1 Stability based generalization bounds

We define the algorithmic stability as follows.

Definition 41 (Uniform stability). We say that an empirical risk minimization algorithm given as

f̂D = argmin
f2F

R̂(f ; D) :=
1

n

nX

i=1

`(zi, f) for D = {z1, z2, ..., zn} 2 Zn,

is uniformly �-stable if for all training sets D 2 Zn
, and their j-th sample perturbations denoted

by Dj = {z1, .., z0j , .., zn}, we have

sup
z2Z

���`(z, f̂D) � `(z, f̂Dj )
���  �. (10.1)

Remark. It should be understood that smaller � corresponds to a more stable algorithm.

• We emphasize that the above notion is not for a specific empirical risk minimizer, rather
for the minimization algorithm which is why we refer to it as algorithmic stability. The
di↵erence is that f̂ is data specific whereas an algorithm outputs di↵erent minimizers for
di↵erent data inputs. We make this dependence explicit by using the same notation f̂D.

• Moreover, the above condition (10.1) is uniform over data z 2 Z, and all possible datasets D
and their perturbations D0

j , for all j. Needless to say, it is a very strong assumption, but can
be easily verified for several algorithms of interest.

Example. [Revisiting Gaussian mean estimation]

• Consider the Gaussian mean estimation problem where we observe n data points D =
{z1, z2, ..., zn}. Standard assumption in this problem is zi ⇠ N (µ, �2I), when coupled with
an `2-regularization, the MLE yields the following algorithm

µ̂D = argmin
µ2Rd

1

n

nX

i=1

kzi � µk2 =
1

n

nX

i=1

zi , z̄,

where we denote the sample mean estimator with z̄.

• In this problem, we notice that the loss function is given as `(z, µ) = kz �µk2. For simplicity,
lets assume that data points are uniformly bounded, i.e.

kzik   almost surely.
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This assumptions is clearly violated for Gaussian data; however, similar bounds can be ob-
tained under high probability. Denoting the sample mean estimator over the perturbed data
D0

j with z̄0j , we verify the uniform stability condition as follows. For z 2 Z, we write
��`(z, µ̂D) � `(z, µ̂Dj )

�� =|kz � µ̂Dk2 � kz � µ̂Djk2|,
=|kz � z̄k2 � kz � z̄0jk2|,
=|h2z � z̄ � z̄0j , z̄ � z̄0j| {z }

=(zj�z0j)/n

i|, by Cauchy-Schwartz #

 1
n k2z � z̄ � z̄0jk| {z }

4

kzj � z0jk| {z }
2

 82

n
:= �.

• We observe that larger the sample size n, smaller the parameter �; thus, more stable the
algorithm. Another observation we can make is that the radius of the support  has a
negative e↵ect on the stability of an algorithm.

Example. [Stability of Lipschitz loss & linear functions]

• We assume that the loss is Lipschitz in its second argument, i.e.
��`(z, f) � `(z, f 0)

��  Lkf � f 0k1 , L sup
x2Rd

��f(x) � f 0(x)
��.

If we consider an SVM classifier where y 2 {±1} and the loss is Hinge loss `(z = (y, x), f) =
max{0, 1 � yf(x)}, we have

��`(z, f) � `(z, f 0)
�� =
��max{0, 1 � yf(x)} � max{0, 1 � yf 0(x)}

��


��yf(x) � yf 0(x)

��  sup
x2Rd

��f(x) � f 0(x)
��.

• Now let’s focus our attention to the class of linear functions F = {x ! hx, ✓i : ✓ 2 Rd}. Any
function f 2 F can be characterized by the parameter ✓; so let’s switch notation f ! ✓.

• SVMs are generally coupled with `2-regularization; thus the resulting empirical risk mini-
mization algorithm reduces to

✓̂D = argmin
✓2Rd

1

n

nX

i=1

max{0, 1 � yih✓, xii} +
�

2
k✓k2

• Therefore the resulting loss function becomes

`( z|{z}
=(y,x)

, f) = max{0, 1 � y h✓, xi| {z }
=f(x)

} +
�

2n
k✓k2.

• If we assume kxik  , Bousquet and Elissee↵ showed that this algorithm has uniform stability
with parameter

� =
2

�n
.

This is nontrivial, and skipped in class. Similar to the Gaussian mean estimation example,
stability gets better with the number of samples. But another important observation we can
make is that stability gets better with more regularization.
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The following result provides a generalization bound based on uniform �-stability.

Theorem 42 (Generalization based on Uniform Stability). Assume that an empirical risk mini-

mization algorithm is uniformly �-stable, and the loss is bounded, i.e., 0  `(z, f)  B. Then with

probability at least 1 � �, we have

R(f̂) � R(f⇤)  � + (�n + 3B)

r
2 log(1/�)

n
.

Remark. We make the following remarks.

• Notice that for above bound to be useful, one needs � = o(1/
p

n). This is because of the
term �

p
n in the coe�cient of the second term on the right hand side.

• In general, we have � = O(1/n) which gives the familiar rate of generalization error, O(1/
p

n).

• In the case of linear SVMs (previous example), we have � = 2

�n . This yields a bound of order

O
 

2

�n
+ (2 + B)

r
2 log(1/�)

n

!
= O

 
(2 + B)

p
log(1/�)

�
p

n

!
.

This bound is the same order as previous generalization bounds we obtained, but it is worse
in terms of dependence on .

Proof. The proof of this theorem is very similar to that of Theorem 23, the generalization results
based on Rademacher complexity. Recall the notation R̂(f ; D) which means the empirical risk
of f over the dataset D. For example, R̂(f̂D; Dj) is the empirical risk of f̂D over the single-data
perturbed dataset Dj .

The main observation is again to write the following decomposition of the excess risk

R(f̂D) � R(f⇤) = [R(f̂D) � R̂(f̂D; D)]| {z }
not iid sum

+ [R̂(f̂D; D) � R̂(f⇤; D)]| {z }
0

+ [R̂(f⇤; D) � R(f⇤)]| {z }
iid sum/n

, (10.2)

 2 sup
f2F

|R̂(f ; D) � R(f)| which is what we did previously.

Before, we proceeded by bounding both of the above nontrivial terms with the supremum of the
empirical process, supf2F |R̂(f ; D) � R(f)|. This time though, we will handle them separately.
Bounding the second term above is quite easy since f⇤ is deterministic, and therefore it becomes
an iid average, i.e.,

R̂(f⇤; D) � R(f⇤) =
1

n

nX

i=1

`(zi, f⇤) � E[`(zi, f⇤)],

which we know how to deal with.
For the first term R(f̂D) � R̂(f̂D; D), we will invoke the uniform stability together with McDi-

armid’s inequality.
The proof relies on three key steps as before: 1-Concentration, 2-Control over expectation, and

3- Uniform conv. (10.2) =) generalization.

1. Concentration: Let’s recall the main concentration tool that we will relied on in our e↵orts
to derive a generalization bound based on Rademacher complexity.

54



Lemma 43 (Recall: McDiarmid’s inequality (Lemma 24)). Let g : Z ⇥ ... ⇥ Z ! R be a

function satisfying the bounded di↵erence property

|g(z1, . . . , zj , . . . , zn)| � g(z1, . . . , z
0

j , . . . , zn)|  cj

Then for independent random variables z1, z2 . . . , zn, we have

P
⇣
g(z1, . . . , zn) � E[g(z1, . . . , zn)] � ✏

⌘
 exp

(
�2✏2Pn
i=1 c2i

)
.

Recall that Hoe↵ding’s inequality is an application of the above lemma. We can invoke either
and immediately obtain a bound on the second term. Let’s get that out of the way.

Warm-up: Getting the third term in (10.2) out of way. By McDiarmid’s (or by
Hoe↵ding’s) inequality, we have

P
⇣
R̂(f⇤; D) � R(f⇤) � ✏

2

⌘
 exp

n
� n✏2

2B2

o
, �

2
.

This translates to, with probability at least 1 � �/2, we have

R̂(f⇤; D) � R(f⇤)  B

r
2 log(2/�)

n
.

Bounding the first term in (10.2). Recall that previously, we needed to bound the
empirical process in (10.2). For this, we’d let the g function from McDiarmid’s inequality be
the function of interest. That is,

Previously: g(z1, . . . , zn) = sup
f2F

R(f) � R̂(f).

This time though, we are dealing with another function, so we let

This time: g(z1, . . . , zn) = R(f̂D) � R̂(f̂D; D).

Notice that, by the uniform �-stability assumption, we have
���R̂(f̂D; D) � R̂(f̂Dj ; D)

���  � and
���R(f̂D) � R(f̂Dj )

���  �.

Let’s verify the second one as the first one follows from the same argument.
���R(f̂D) � R(f̂Dj )

��� =
���E[`(z, f̂D) � `(z, f̂Dj )]

���

E[|`(z, f̂D) � `(z, f̂Dj )|] by triangle ineq.

� by uniform �-stability.
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We proceed by first verifying the bounded di↵erence property which is needed by McDiarmid’s
inequality.

|g(z1, . . . , zj , . . . , zn) � g(z1, . . . , z
0

j , . . . , zn)|

=
���R(f̂D) � R̂(f̂D; D) �

⇥
R(f̂Dj ) � R̂(f̂Dj ; Dj)

⇤���


���R(f̂D) � R(f̂Dj )

���
| {z }

� by stability

+
���R̂(f̂D; D) � R̂(f̂Dj ; Dj)±R̂(f̂Dj , D)

��� by triangle ineq.

 � +
���R̂(f̂D; D) � R̂(f̂Dj ; D)

���
| {z }

� by stability

+
���R̂(f̂Dj ; D) � R̂(f̂Dj ; Dj)

���
| {z }

= 1
n |`(zj ,f̂)�`(z0j ,f̂)|

2B
n

by triangle ineq.

 2� +
2B

n
, cj in McDiarmid’s inequality.

Hence, by the McDiarmid’s inequality, we obtain

P
 

R(f̂D) � R̂(f̂D; D) � ✏ +

Need to controlz }| {
E
h
R(f̂D) � R̂(f̂D; D)

i!
 exp

(
�2✏2

n(2� + 2B/n)2

)
(10.3)

 exp

(
�n✏2

2(�n + B)2

)
, �

2
.

The above bound is obtained under uniform stability; yet, it is not surprising at all given the
McDiarmid’s inequality. We still need to control the additional expectation above. This was
previously done by the symmetrization argument. In the following we use stability property
of the algorithm.

2. Controlling the expectation via stability: We denote our dataset with D = {z1, . . . , zn},
and let D0 = {z01, . . . , z

0
n} be the iid copy of the D, and the perturbation is given as Dj =

{z1, .., z0j , .., zn}. We have

R̂(f ; D) =
1

n

nX

i=1

`(zi, f) and R̂(f ; D0

j) =
1

n

nX

i=1

`(z0i, f).

For a fixed f , the population risk will be identical for these datasets,

R(f) = E[`(z, f)] = E[R̂(f, D)] = E[R̂(f, D0

j)].

Let’s investigate the quantity we would like to bound.

E
h
R(f̂D) � R̂(f̂D; D)

i
=Eall

h
Ez[`(z, f̂D)] � 1

n

nX

i=1

`(zi, f̂D)
i

=E
h
Ez0i

h 1

n

nX

i=1

`(z0i, f̂D)
i

� 1

n

nX

i=1

`(z0i, f̂Di)
i

=E
h
Ez0i

h 1

n

nX

i=1

`(z0i, f̂D) � `(z0i, f̂Di)
ii

� by stability.
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The second inequality is because z0i is independent from D, and D and D0

j are exchangable.

Therefore we get, with probability at least 1 � �/2

R(f̂D) � R̂(f̂D)  E
h
R(f̂D) � R̂(f̂D; D)

i
+

✏

2
 � + (�n + B)

r
log(2/�)

2n
.

3. Uniform convergence =) generalization (but almost): Combining this with (10.3), we
write out generalization bound with probability at least 1 � �,

R(f̂D) � R(f⇤)  [R(f̂D) � R̂(f̂D; D)] + 0 + [R̂(f⇤; D) � R(f⇤)]

 � + (�n + B)

r
log(2/�)

2n
+ B

r
2 log(2/�)

n

 � + (�n + 3B)

r
log(2/�)

2n

which concludes the proof.

10.2 PAC-Bayes bounds

In this section, we scratch the surface of PAC-Bayesian bounds. The PAC-Bayes theory is originally
developed as an attempt to explain Bayesian learning from a learning theory perspective. But these
tools have to be proved very useful in various context. The main idea is to place a prior distribution
⇡0 over the function class F , which encodes our prior knowledge over the set of hypotheses. After
observing data D, we update our view of the function class, which is referred to as the posterior
distribution ⇡D.

The bounds that rely on the concept “uniform convergence =) generalization” hold for all
functions in the function class. Consider for example a finite function class. By a simple application
of the union bound, we were able to derive a generalization error bound of (ignoring constants)

R(f̂) � R(f⇤) <

r
log(|F|) + log(1/�)

n
,

which we proved as Theorem 18. However, the main building block of this theorem was to show
the uniform convergence, which reads (again ignoring constants), with probability at least 1 � �

8f 2 F , : R(f)  R̂(f) +

r
log(|F|) + log(1/�)

n
. (10.4)

This is equivalent to saying supf2F R(f) � R̂(f)  the last term above. However, we notice that
the above bound gives a worst case bound, in other words it gives a bound for all functions by
treating them all the same. But we know some are more likely than the others!

If we had a prior distribution ⇡0(f) over the class of functions F that are available to us, we
can incorporate this to our bound. Intuitively, if there is a function f 2 F that we are certain it is
not going to be returned by our algorithm, it shouldn’t count towards the size of the function class
which appears in the numerator of (10.4).

Let’s start with the simplest of PAC-Bayes style bounds, Occam’s bound.
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Theorem 44 (Occam’s bound). For a countable function class F , and a bounded loss function

0  `  B, if we have the prior distribution ⇡0 over the function class F , then with probability at

least 1 � �, we have

8f 2 F : R(f)  R̂(f) + B

r
log(1/⇡0(f)) + log(1/�)

2n
. (10.5)

Remark. We make the following immediate remarks.

1. The bound is not for the excess risk. The di↵erence between training and the test error is
small for a function f , if its prior is large.

2. If the prior distribution ⇡0(f) is uniform over F , i.e. each function is equally likely and
⇡0(f) = P(f = fi) = 1/|F|, the above bound reduces to the bound in (10.4).

3. If the prior distribution is uniform over a subset G of F , bound reduces to
q

log(|G|)+log(1/�)
2n .

This was exactly our intuition; the functions that are unlikely to come up shouldn’t count
towards the complexity of the function class.

4. If the prior puts all its mass on a single function f0, i.e. ⇡0(f0) = 1, then the bound reduces
to just a concentration result, since we only have a single function that is available to us.

5. This bound allows F to have large size as long as the prior behaves nicely for a specific
function f 2 F . For that particular function, above result will yield a good bound. However,
if the prior is somewhat close to uniform distribution, then ⇡0(f) ⇡ 1/|F| will get worse with
an increase in the size of the function class.

Proof. The main idea in this proof is to simply allocate the confidence parameter � over di↵erent
functions based on their prior.

For a fixed (non-random) function f 2 F , by the Hoe↵ding’s inequality, we have

P
⇣
R(f) � R̂(f) + ✏

⌘
 exp

n
� 2n✏2

B2

o
:= �f = ⇡0(f)�.

Notice that
P

f �f = � since ⇡0 is a probability distribution. The above bound reads,

P
 

R(f) � R̂(f) + B

r
log(1/⇡0(f)) + log(1/�f )

2n

!
 �f .

Note that the above bound holds for a fixed f . By applying the union bound over f 2 F , we obtain

P
 

8f 2 F : R(f) � R̂(f) + B

r
log(1/⇡0(f)) + log(1/�f )

2n

!

X

f2F

�f = �,

which completes the proof.

Let’s recall our objective: We want to minimize the population risk (aka test error). The bound
(10.6) upper bounds the quantity we would like to minimize. Therefore, we can minimize this
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upper bound, and hope that we get close to minimizing itself! That is, the above theorem suggest
to minimize the following objective

R̂(f) + B

r
log(1/⇡0(f)) + log(1/�)

2n| {z }
regularizer

. (10.6)

The bound B
q

log(1/⇡0(f))+log(1/�f )
2n will serve as a regularizer by penalizing functions that are

less likely according to the prior ⇡0. We also observe that its impact decreases with increased
sample size n.

There are two shortcomings of the Occam’s bound.

• First, it relies on the union bound which requires the function class F to be countable.

• Second, it only allows an algorithm to return a single function rather than a posterior distri-
bution. These are addressed in the following theorem.

Theorem 45 (McAllester’s PAC-Bayes theorem). For any prior ⇡0 and any posterior ⇡D, and a

bounded loss function 0  `(z, f)  1, with probability at least 1 � �, we have

Ef⇠⇡D
[R(f)]  Ef⇠⇡D

[R̂(f)] +

r
KL(⇡D||⇡0) + log(4n/�)

2n � 1
.

Remark.

• Compared to Occam’s bound, instead of for all f , this one is for expectation under the
posterior.

• If the posterior puts all its mass on one function f0 in F , the above bound recovers Occam’s
bound. Say for example, ⇡0 is uniform over a finite set F . Then,

KL(⇡D||⇡0) =
X

f

log

 
⇡D(f)

⇡0(f)

!
⇡D(f)

= log

 
⇡D(f0)

⇡0(f0)

!
⇡D(f0) = log(|F|).

• Converting the above bound to a (kind of) bound on the excess risk requires characterizing
the expected suboptimality,

Ef⇠⇡D
[R(f)] � R(f⇤).

• In literature, the expectations are generally denoted with Ef⇠⇡[R(f)] = R(⇡).

Proof. Skipped in class. To be added.

59


