PRACTICE EXAM

CSC2532 Winter 2024
University of Toronto

Name:

Student \#:

Exam duration: 110 minutes

Please check that your exam has 5 pages, including this one. The total possible number of points is 100 .

Read the following instructions carefully:

1. Exam is closed book and internet. You can use an optional A4 aid sheet - double-sided.
2. You must show your work to receive full credit.
3. The following is standard across all questions: We have a dataset of n samples $\left(x_{i}, y_{i}\right) \sim$ $p(x, y)$ for $i=1,2, \ldots, n$, and

$$
\hat{f}=\underset{f \in \mathcal{F}}{\operatorname{argmin}} \hat{R}(f):=\frac{1}{n} \sum_{i=1}^{n} \ell\left(\left(y_{i}, x_{i}\right), f\right) \quad \text { and } f_{*}:=\underset{f \in \mathcal{F}}{\operatorname{argmin}} R(f)=\mathbb{E}[\ell((y, x), f)],
$$

where ℓ is a loss function.
4. Enjoy the problems!!!

1. Warm-up: Rademacher Complexity and VC Dimension-25pts.
1.1. Convex-hull - 5pts. Let $\mathcal{F}=\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ be a finite set of functions. X-hull of \mathcal{F} is defined as

$$
\begin{equation*}
\operatorname{X}-\operatorname{hull}(\mathcal{F})=\left\{\sum_{i=1}^{m} \alpha_{i} f_{i}: \text { where } \alpha_{i} \geq 0 \text { and } \sum_{i=1}^{m} \alpha_{i}=4\right\} . \tag{1.1}
\end{equation*}
$$

Show that $\Re_{n}(\mathrm{X}-\operatorname{hull}(\mathcal{F}))=4 \Re_{n}(\mathcal{F})$.

$$
\begin{aligned}
& X-\ln h=4 \cdot \text { Convex }-\operatorname{Lull} \\
& R_{n}(x-\operatorname{con}(f))=R_{n}(\cos x \operatorname{col}(f) \times 4 \\
& =R_{n}(f) \times 4
\end{aligned}
$$

1.2. VC-dimension - 5pts. Let \mathcal{F} be the class of indicators of sets of the form $[a, b] \cup[c, d]$ in \mathbb{R}. Find the VC dimension of \mathcal{F}.
$n=4$. . . car be shattered (need to show) $n=5$
a 0 - cannot be slotter.

$$
V C(f)=4
$$

1.3. Kernels - 5pts. For an interval, $x=[a, b]$, define its length as len $(x)=b-a$. Show that the following is a kernel $k\left(x, x^{\prime}\right)=\operatorname{len}\left(x \cap x^{\prime}\right)+\operatorname{len}(x) \operatorname{len}\left(x^{\prime}\right)$ Here, intersection of intervals is an interval or the empty set (which has length 0).

$$
\begin{aligned}
& k_{1}=\operatorname{ler}(x) \operatorname{len}\left(x^{\prime}\right) \text { is a kendall }(x \rightarrow \operatorname{len} x \text { is a feotremp) } \\
& k_{2}=\int \frac{1_{x}^{(u)} \cdot L_{x^{\prime}}^{(u)} d u}{} \Rightarrow \text { inner product. } \Rightarrow \text { kennel } \\
& \Rightarrow \varepsilon_{1}+\varepsilon_{r} \text { is \& trull. }
\end{aligned}
$$

1.4. Representer- 10pts. Let \mathcal{F} be an RKHS and k be the associated kernel. For $x_{1}, x_{2}, \ldots, x_{n}$ ind from a distribution p, let $\hat{f}=\frac{1}{n} \sum_{i=1}^{n} k\left(\cdot, x_{i}\right)$ and $f^{*}=\mathbb{E}\left[k\left(\cdot, x_{1}\right)\right]$, and $D:=\left\|\hat{f}-f^{*}\right\|_{\mathcal{F}}$. Let \hat{f}^{\prime} and D^{\prime} be defined similarly over $x_{1}^{\prime}, x_{2}, \ldots, x_{n}$ (only x_{1} is different).

1- Prove that $D-D^{\prime} \leq 2 \sup _{x} \sqrt{k(x, x)} / n$. 2- Show $\mathbb{E}[D] \leq \sup _{x} \sqrt{k(x, x) / n}$.
$1-D$ is a norm $=) \quad D-D^{\prime} \leq\left\|\frac{1}{n} k\left(\cdot, x_{1}\right)-\frac{1}{n} k\left(\cdot, x_{1}^{\prime}\right)\right\|_{f}=\frac{1}{4}\left\|d\left(\cdot, x_{1}\right)-k\left(\cdot, x_{1}^{\prime}\right)\right\|_{j}$

$$
\begin{aligned}
& =\left(\frac{1}{n^{2}} \sum_{i} \sqrt{E}\left\|k\left(x_{i}, \cdot\right)-f_{x}\right\|_{f}^{\eta}\right)^{1} \eta=\left(\frac{1}{n} \sqrt{4}\left\|\varepsilon\left(x_{1} \cdot\right)-f_{x}\right\|_{7}^{n}\right)^{h} \\
& \left.=\frac{1}{\sqrt{n}} \mathbb{E}\left[\left\|\xi\left(x_{1} \cdot\right)\right\|_{7}^{2}-\left\|f_{\infty}\right\|^{2}\right]^{1 / 2} \leq \frac{1}{\sqrt{n}} \operatorname{mip}_{r} \varepsilon u_{1} x\right)^{1 / 2}
\end{aligned}
$$

2. Expected Excess Risk - 25pts. In class, we mostly focused on giving generalization guarantees in high probability. For example, we showed that, with probability at least $1-\delta$, excess risk satisfies

$$
\begin{equation*}
R(\hat{f})-R\left(f_{*}\right) \leq 4 \Re_{n}(\mathcal{G})+\sqrt{\frac{2 \log (1 / \delta)}{n}} \tag{2.1}
\end{equation*}
$$

where $\mathcal{G}=\{(y, x) \rightarrow \ell((y, x), f): \forall f \in \mathcal{F}\}$.
In this question, we will prove a generalization bound in expectation. Steps are essentially the same, though proof is simplified.

1. [10pts] Show that expected excess risk can be upper bounded by the supremum of the empirical process. E.g., show

$$
\begin{equation*}
\mathbb{E}\left[R(\hat{f})-R\left(f_{*}\right)\right] \leq \mathbb{E}\left[\sup _{f \in \mathcal{F}} \hat{R}(f)-R(f)\right]+\mathbb{E}\left[\sup _{f \in \mathcal{F}} R(f)-\hat{R}(f)\right] \tag{2.2}
\end{equation*}
$$

$$
\begin{aligned}
R(\hat{f})-R\left(t_{*}\right) & =R(\hat{f})-\hat{R}(\hat{f})+\frac{\hat{R}(\hat{f})-\hat{R}\left(f_{*}\right)}{}+\hat{R}\left(f_{*}\right)-R\left(f_{\infty}\right) \\
& \leq \sup \hat{R}(f)-R(f)+\sup R(f)-\hat{R}(f)
\end{aligned}
$$

Th eke expectotinis
2. [10pts] Show that the right hand side of the above inequality can be upper bounded with Rademacher complexity of \mathcal{G}.

In lecture, we proved $\mathbb{E} \sup \hat{R}(f)-R(f) \leq 2 R(q)$

3. [5pts] Finally, conclude that the expected excess risk can be upper bounded by the Rademacher complexity of \mathcal{G} times a constant which you should compute explicitly. Which crucial assumption on loss is missing, and why?

$$
\begin{aligned}
& \Rightarrow \mathbb{E}\left[R(f)-R\left(f_{x}\right)\right] \leq 4 R(g) \\
& \text { We ant weed lass to be od }
\end{aligned}
$$

3. KL and Identifiability - $\mathbf{2 5} \mathbf{~ p t s . ~ G i v e n ~ t w o ~ p r o b a b i l i t y ~ d i s t r i b u t i o n s ~} p(x)$ and $q(x)$ fully supported on $\mathbb{R}^{d}\left(p(x)>0\right.$ and $q(x)>0$ for all $\left.x \in \mathbb{R}^{d}\right)$, KL divergence is defined as

$$
\begin{equation*}
\mathrm{KL}(p \| q)=\mathbb{E}_{p}\left[\log \frac{p(x)}{q(x)}\right]=\int p(x) \log \frac{p(x)}{q(x)} d x \tag{3.1}
\end{equation*}
$$

KL divergence is not a metric since it doesn't satisfy triangle inequality. However, it has nice properties, and it provides a distance measure between two distributions. One property is the following:
3.1. KL property - 10pts. Show that $\operatorname{KL}(p \| q)=0$ if and only if $p=q$. Hint: Jensen's inequality

$$
\begin{aligned}
& \text { says if } \phi \text { is convex, then } \mathbb{E}[\phi(x)] \geq \phi(\mathbb{E}[x]) \text { with equality if and only if } x \text { is constant or } \phi \text { is linear. } \\
& p=q \Rightarrow K L=0 \text { trial } \\
& \mathbb{E}_{p} \log p / q=\mathbb{E}_{p}-\log q / p \\
& \geqslant-\log \mathbb{E}_{1}, q / p=0 \quad(-\log \text { ir } \operatorname{cu} x) \\
& L L=0 \Rightarrow \text { Rquelity holds } \Leftrightarrow \frac{q}{p} \text { is carstent or - log limes. }
\end{aligned}
$$

3.2. Identifiability in parametric families - 15pts. Consider the parametric family where

$$
y \mid x \sim p_{\theta_{*}}(y \mid x) \text { and } x \sim p(x)
$$

with $\theta_{*} \in \mathbb{R}^{m}$ is the true parameter. Under the identifiability assumption that $\theta \neq \theta^{\prime}$ implies $p_{\theta} \neq p_{\theta^{\prime}}$, show that the true parameter is the unique global minimizer of the population risk in the MLE setup where the loss is $\ell(\theta,(y, x))=-\log p_{\theta}(y \mid x)$, i.e. prove

$$
\begin{equation*}
\theta_{*}=\underset{\theta \in \mathbb{R}^{m}}{\operatorname{argmin}} R(\theta):=\mathbb{E}\left[-\log p_{\theta}(y \mid x)\right] \tag{3.2}
\end{equation*}
$$

where expectation is over the true distribution $(x, y) \sim p_{\theta_{*}}(y \mid x) p(x)$. Hint: Consider the quantity $R(\theta)-R\left(\theta_{*}\right)$ for $\theta \neq \theta_{*}$.

$$
\begin{aligned}
\theta \neq \theta^{\prime} \Rightarrow P_{\theta} & \neq P_{\theta^{\prime}} \\
R(\theta)-R\left(\theta_{x}\right) & =\mathbb{E}_{\theta_{*}}-\log P_{\theta}\left(y(x)+\log P_{\theta_{x}}(y \mid x)\right. \\
& =\mathbb{E}_{x} \mathbb{E}_{P_{\theta_{x}}(4 \mid x)}-\log \frac{P_{\theta}(y(x)}{P_{\theta_{*}}(y \mid x)}=\mathbb{E}_{x} K L\left(P_{\theta_{x}}(\cdot \mid x) \| P_{\theta}(\cdot \mid x)\right) \\
& >0 \text { ines } P_{\theta_{*}}=P_{\theta}
\end{aligned}
$$

4. Countable Function Class - 25 pts. Let $\mathcal{F}=\left\{f_{1}, f_{2}, \ldots\right\}$ be a countable set of functions with infinite size $|\mathcal{F}|=\infty$, and loss evaluated for each function satisfies

$$
0 \leq \ell\left((x, y), f_{i}\right) \leq \frac{B}{i^{\beta}}
$$

for some $\beta>0$, a bound decaying with function's index.
For what values of β does this class achieve generalization? In your bounds, you should compute all constants explicitly.

