PRACTICE EXAM

CSC2532 WINTER 2024

University of Toronto

Name:

Student #:

Exam duration: 110 minutes

Please check that your exam has 5 pages, including this one. The total possible number of
points is 100.

Read the following instructions carefully:

1. Exam is closed book and internet. You can use an optional A4 aid sheet - double-sided.
2. You must show your work to receive full credit.

3. The following is standard across all questions: We have a dataset of n samples (x;,y;) ~
p(z,y) for i =1,2,...,n, and

A~

f = argmin R(f) = = 3" 6((yi,21), f) and f. = argmin R(f) = E[¢((y, ), f),
fer n-= fer

where £ is a loss function.
4. Enjoy the problems!!!



1. Warm-up: Rademacher Complexity and VC Dimension - 25pts.

1.1. Convez-hull - 5pts. Let F = {f1, fo,

.ory Jm} be a finite set of functions. X-hull of F is
defined as

(1.1) X-hull(F) = { Zaifi : where o; > 0 and Zozi = 4}.

Show that R, (X-hull(F)) = 4R,,(F).
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1.2. VC-dimension - 5pts. Let F be the class of indicators of sets of the form [a, b] U [c, d] in
R. Find the VC dimension of F.
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1.3. Kernels - 5pts. For an interval, x = [a, b], define its length as len(z) = b — a. Show that

the following is a kernel k(z,z’) = len(z N 2’) + len(z)len(2’) Here, intersection of intervals is an
interval or the empty set (which has length 0).
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1.4. Representer- 10pts. Let F be an RKHS and k be the associated kernel. For x1, x2,

iid from a distribution p, let f = LS k() and f* = E[k(-,21)], and D = If = 7|l Let f’
and D’ be defined similarly over &, zo, ..., z,, (only x; is different).

1- Prove that D — D' < 2sup, \/k(x,z)/n. 2- Show E[D] < sup, \/k(z,z)/n.
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2. Expected Excess Risk - 25pts. In class, we mostly focused on giving generalization
guarantees in high probability. For example, we showed that, with probability at least 1 — §,

excess risk satisfies .
(2.1) R(f) = R(f.) < 4%,(G) + 1/ 252,

n
where G = {(y,z) = {((y,x), ) : VfeF}
In this question, we will prove a generalization bound in expectation. Steps are essentially the
same, though proof is simplified.

1. [10pts] Show that expected excess risk can be upper bounded by the supremum of the
empirical process. E.g., show

sup R(f) — R(f)

ferF

sup R(f) — R(f)| +E

fer

(22)  E[R()-R(f)| <E
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2. [10pts] Show that the right hand side of the above inequality can be upper bounded with
Rademacher complexity of G.
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3. [5pts] Finally, conclude that the expected excess risk can be upper bounded by the Rademacher
complexity of G times a constant which you should compute explicitly. Which crucial as-
sumption on loss is missing, and why?
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3. KL and Identifiability - 25 pts. Given two probability distributions p(z) and ¢(z) fully
supported on R? (p(x) > 0 and ¢(z) > 0 for all z € R?), KL divergence is defined as

= [e 2] [ g2
= 1gq<m>] [ parion iy

KL divergence is not a metric since it doesn’t satisfy triangle inequality. However, it has nice
properties, and it provides a distance measure between two distributions. One property is the
following:

(3.1) KL(pllq)

3.1. KL property - 10pts. Show that KL(p||¢) = 0 if and only if p = ¢. Hint: Jensen’s inequality
says if ¢ is convex, then E[¢(x)] > ¢(E[z]) with equality if and only if = is constant or ¢ is linear.
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3.2. Identifiability in parametric families - 15pts. Consider the parameteric family where

ylz ~ po, (ylzr) and x ~ p(x),

with 6, € R™ is the true parameter. Under the identifiability assumption that 6 # 6" implies
Py # pgr, show that the true parameter is the unique global minimizer of the population risk in
the MLE setup where the loss is 4(6, (y,x)) = —log pg(y|z), i.e. prove

(3.2) 0. = argmin R(0) := E[— log pp(y|z)]
OcR™

where expectation is over the true distribution (x,y) ~ pg, (y|z)p(x). Hint: Consider the quantity
R(8) — R(4,.) for 0 # 6,
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4. Countable Function Class - 25 pts. Let F = {fi, f2, ...} be a countable set of functions
with infinite size |F| = oo, and loss evaluated for each function satisfies

for some 8 > 0, a bound decaying with function’s index.
For what values of 5 does this class achieve generalization? In your bounds, you should compute
all constants explicitly.
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