
PRACTICE EXAM

CSC2532 Winter 2024

University of Toronto

Name:

Student #:

Exam duration: 110 minutes

Please check that your exam has 5 pages, including this one. The total possible number of
points is 100.

Read the following instructions carefully:

1. Exam is closed book and internet. You can use an optional A4 aid sheet - double-sided.
2. You must show your work to receive full credit.
3. The following is standard across all questions: We have a dataset of n samples (xi, yi) ⇠

p(x, y) for i = 1, 2, ..., n, and

f̂ = argmin
f2F

R̂(f) :=
1

n

nX

i=1

`((yi, xi), f) and f⇤ := argmin
f2F

R(f) = E[`((y, x), f)],

where ` is a loss function.
4. Enjoy the problems!!!
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1. Warm-up: Rademacher Complexity and VC Dimension - 25pts.

1.1. Convex-hull - 5pts. Let F = {f1, f2, ..., fm} be a finite set of functions. X-hull of F is
defined as

X-hull(F) =

(
mX

i=1

↵ifi : where ↵i � 0 and
mX

i=1

↵i = 4

)
.(1.1)

Show that Rn(X-hull(F)) = 4Rn(F).

1.2. VC-dimension - 5pts. Let F be the class of indicators of sets of the form [a, b] [ [c, d] in
R. Find the VC dimension of F .

1.3. Kernels - 5pts. For an interval, x = [a, b], define its length as len(x) = b � a. Show that
the following is a kernel k(x, x0) = len(x \ x0) + len(x)len(x0) Here, intersection of intervals is an
interval or the empty set (which has length 0).

1.4. Representer- 10pts. Let F be an RKHS and k be the associated kernel. For x1, x2, ..., xn
iid from a distribution p, let f̂ = 1

n

Pn
i=1 k(·, xi) and f⇤ = E[k(·, x1)], and D := kf̂ � f⇤kF . Let f̂ 0

and D0 be defined similarly over x01, x2, ..., xn (only x1 is di↵erent).
1- Prove that D �D0  2 supx

p
k(x, x)/n. 2- Show E[D]  supx

p
k(x, x)/n.
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2. Expected Excess Risk - 25pts. In class, we mostly focused on giving generalization
guarantees in high probability. For example, we showed that, with probability at least 1 � �,
excess risk satisfies

R(f̂)�R(f⇤)  4Rn(G) +
q

2 log(1/�)
n ,(2.1)

where G = {(y, x) ! `((y, x), f) : 8f 2 F}.
In this question, we will prove a generalization bound in expectation. Steps are essentially the

same, though proof is simplified.

1. [10pts] Show that expected excess risk can be upper bounded by the supremum of the
empirical process. E.g., show

E
h
R(f̂)�R(f⇤)

i
 E

"
sup
f2F

R̂(f)�R(f)

#
+ E

"
sup
f2F

R(f)� R̂(f)

#
.(2.2)

2. [10pts] Show that the right hand side of the above inequality can be upper bounded with
Rademacher complexity of G.

3. [5pts] Finally, conclude that the expected excess risk can be upper bounded by the Rademacher
complexity of G times a constant which you should compute explicitly. Which crucial as-
sumption on loss is missing, and why?
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3. KL and Identifiability - 25 pts. Given two probability distributions p(x) and q(x) fully
supported on Rd (p(x) > 0 and q(x) > 0 for all x 2 Rd), KL divergence is defined as

KL(p||q) = Ep

"
log

p(x)

q(x)

#
=

Z
p(x) log

p(x)

q(x)
dx.(3.1)

KL divergence is not a metric since it doesn’t satisfy triangle inequality. However, it has nice
properties, and it provides a distance measure between two distributions. One property is the
following:

3.1. KL property - 10pts. Show that KL(p||q) = 0 if and only if p = q. Hint: Jensen’s inequality
says if � is convex, then E[�(x)] � �(E[x]) with equality if and only if x is constant or � is linear.

3.2. Identifiability in parametric families - 15pts. Consider the parameteric family where

y|x ⇠ p✓⇤(y|x) and x ⇠ p(x),

with ✓⇤ 2 Rm is the true parameter. Under the identifiability assumption that ✓ 6= ✓0 implies
p✓ 6= p✓0 , show that the true parameter is the unique global minimizer of the population risk in
the MLE setup where the loss is `(✓, (y, x)) = � log p✓(y|x), i.e. prove

✓⇤ = argmin
✓2Rm

R(✓) := E[� log p✓(y|x)](3.2)

where expectation is over the true distribution (x, y) ⇠ p✓⇤(y|x)p(x). Hint: Consider the quantity
R(✓)�R(✓⇤) for ✓ 6= ✓⇤.
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4. Countable Function Class - 25 pts. Let F = {f1, f2, ...} be a countable set of functions
with infinite size |F| = 1, and loss evaluated for each function satisfies

0  `((x, y), fi) 
B

i�
,

for some � > 0, a bound decaying with function’s index.
For what values of � does this class achieve generalization? In your bounds, you should compute

all constants explicitly.
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