PRACTICE EXAM

CSC2532 Winter 2024
University of Toronto

Name:

Student \#:

Exam duration: 110 minutes

Please check that your exam has 5 pages, including this one. The total possible number of points is 100 .

Read the following instructions carefully:

1. Exam is closed book and internet. You can use an optional A4 aid sheet - double-sided.
2. You must show your work to receive full credit.
3. The following is standard across all questions: We have a dataset of n samples $\left(x_{i}, y_{i}\right) \sim$ $p(x, y)$ for $i=1,2, \ldots, n$, and

$$
\hat{f}=\underset{f \in \mathcal{F}}{\operatorname{argmin}} \hat{R}(f):=\frac{1}{n} \sum_{i=1}^{n} \ell\left(\left(y_{i}, x_{i}\right), f\right) \quad \text { and } f_{*}:=\underset{f \in \mathcal{F}}{\operatorname{argmin}} R(f)=\mathbb{E}[\ell((y, x), f)],
$$

where ℓ is a loss function.
4. Enjoy the problems!!!

1. Warm-up: Rademacher Complexity and VC Dimension - 25pts.

1.1. Convex-hull - 5pts. Let $\mathcal{F}=\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ be a finite set of functions. X-hull of \mathcal{F} is defined as

$$
\begin{equation*}
\mathrm{X}-\operatorname{hull}(\mathcal{F})=\left\{\sum_{i=1}^{m} \alpha_{i} f_{i}: \text { where } \alpha_{i} \geq 0 \text { and } \sum_{i=1}^{m} \alpha_{i}=4\right\} . \tag{1.1}
\end{equation*}
$$

Show that $\Re_{n}(\mathrm{X}-\operatorname{hull}(\mathcal{F}))=4 \mathfrak{R}_{n}(\mathcal{F})$.
1.2. VC-dimension - 5pts. Let \mathcal{F} be the class of indicators of sets of the form $[a, b] \cup[c, d]$ in \mathbb{R}. Find the VC dimension of \mathcal{F}.
1.3. Kernels - 5pts. For an interval, $x=[a, b]$, define its length as $\operatorname{len}(x)=b-a$. Show that the following is a kernel $k\left(x, x^{\prime}\right)=\operatorname{len}\left(x \cap x^{\prime}\right)+\operatorname{len}(x) \operatorname{len}\left(x^{\prime}\right)$ Here, intersection of intervals is an interval or the empty set (which has length 0).
1.4. Representer- 10pts. Let \mathcal{F} be an RKHS and k be the associated kernel. For $x_{1}, x_{2}, \ldots, x_{n}$ iid from a distribution p, let $\hat{f}=\frac{1}{n} \sum_{i=1}^{n} k\left(\cdot, x_{i}\right)$ and $f^{*}=\mathbb{E}\left[k\left(\cdot, x_{1}\right)\right]$, and $D:=\left\|\hat{f}-f^{*}\right\|_{\mathcal{F}}$. Let \hat{f}^{\prime} and D^{\prime} be defined similarly over $x_{1}^{\prime}, x_{2}, \ldots, x_{n}$ (only x_{1} is different).

1- Prove that $D-D^{\prime} \leq 2 \sup _{x} \sqrt{k(x, x)} / n$. 2- Show $\mathbb{E}[D] \leq \sup _{x} \sqrt{k(x, x) / n}$.
2. Expected Excess Risk - 25pts. In class, we mostly focused on giving generalization guarantees in high probability. For example, we showed that, with probability at least $1-\delta$, excess risk satisfies

$$
\begin{equation*}
R(\hat{f})-R\left(f_{*}\right) \leq 4 \mathfrak{R}_{n}(\mathcal{G})+\sqrt{\frac{2 \log (1 / \delta)}{n}}, \tag{2.1}
\end{equation*}
$$

where $\mathcal{G}=\{(y, x) \rightarrow \ell((y, x), f): \forall f \in \mathcal{F}\}$.
In this question, we will prove a generalization bound in expectation. Steps are essentially the same, though proof is simplified.

1. [10pts] Show that expected excess risk can be upper bounded by the supremum of the empirical process. E.g., show

$$
\begin{equation*}
\mathbb{E}\left[R(\hat{f})-R\left(f_{*}\right)\right] \leq \mathbb{E}\left[\sup _{f \in \mathcal{F}} \hat{R}(f)-R(f)\right]+\mathbb{E}\left[\sup _{f \in \mathcal{F}} R(f)-\hat{R}(f)\right] . \tag{2.2}
\end{equation*}
$$

2. [10pts] Show that the right hand side of the above inequality can be upper bounded with Rademacher complexity of \mathcal{G}.
3. [5pts] Finally, conclude that the expected excess risk can be upper bounded by the Rademacher complexity of \mathcal{G} times a constant which you should compute explicitly. Which crucial assumption on loss is missing, and why?
4. KL and Identifiability - $\mathbf{2 5}$ pts. Given two probability distributions $p(x)$ and $q(x)$ fully supported on $\mathbb{R}^{d}\left(p(x)>0\right.$ and $q(x)>0$ for all $\left.x \in \mathbb{R}^{d}\right)$, KL divergence is defined as

$$
\begin{equation*}
\mathrm{KL}(p \| q)=\mathbb{E}_{p}\left[\log \frac{p(x)}{q(x)}\right]=\int p(x) \log \frac{p(x)}{q(x)} d x . \tag{3.1}
\end{equation*}
$$

KL divergence is not a metric since it doesn't satisfy triangle inequality. However, it has nice properties, and it provides a distance measure between two distributions. One property is the following:
3.1. $K L$ property $-10 p t s$. Show that $\mathrm{KL}(p \| q)=0$ if and only if $p=q$. Hint: Jensen's inequality says if ϕ is convex, then $\mathbb{E}[\phi(x)] \geq \phi(\mathbb{E}[x])$ with equality if and only if x is constant or ϕ is linear.
3.2. Identifiability in parametric families - 15pts. Consider the parameteric family where

$$
y \mid x \sim p_{\theta_{*}}(y \mid x) \text { and } x \sim p(x),
$$

with $\theta_{*} \in \mathbb{R}^{m}$ is the true parameter. Under the identifiability assumption that $\theta \neq \theta^{\prime}$ implies $p_{\theta} \neq p_{\theta^{\prime}}$, show that the true parameter is the unique global minimizer of the population risk in the MLE setup where the loss is $\ell(\theta,(y, x))=-\log p_{\theta}(y \mid x)$, i.e. prove

$$
\begin{equation*}
\theta_{*}=\underset{\theta \in \mathbb{R}^{m}}{\operatorname{argmin}} R(\theta):=\mathbb{E}\left[-\log p_{\theta}(y \mid x)\right] \tag{3.2}
\end{equation*}
$$

where expectation is over the true distribution $(x, y) \sim p_{\theta_{*}}(y \mid x) p(x)$. Hint: Consider the quantity $R(\theta)-R\left(\theta_{*}\right)$ for $\theta \neq \theta_{*}$.
4. Countable Function Class - 25 pts. Let $\mathcal{F}=\left\{f_{1}, f_{2}, \ldots\right\}$ be a countable set of functions with infinite size $|\mathcal{F}|=\infty$, and loss evaluated for each function satisfies

$$
0 \leq \ell\left((x, y), f_{i}\right) \leq \frac{B}{i^{\beta}}
$$

for some $\beta>0$, a bound decaying with function's index.
For what values of β does this class achieve generalization? In your bounds, you should compute all constants explicitly.

