
PRACTICE EXAM

CSC2532 Winter 2024

University of Toronto

Name:

Student #:

Exam duration: 110 minutes

Please check that your exam has 5 pages, including this one. The total possible number of
points is 100.

Read the following instructions carefully:

1. Exam is closed book and internet. You can use an optional A4 aid sheet - double-sided.
2. You must show your work to receive full credit.
3. The following is standard across all questions: We have a dataset of n samples (xi, yi) ∼
p(x, y) for i = 1, 2, ..., n, and

f̂ = argmin
f∈F

R̂(f) :=
1

n

n∑
i=1

`((yi, xi), f) and f∗ := argmin
f∈F

R(f) = E[`((y, x), f)],

where ` is a loss function.
4. Enjoy the problems!!!
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1. Warm-up: Rademacher Complexity and VC Dimension - 25pts.

1.1. Convex-hull - 5pts. Let F = {f1, f2, ..., fm} be a finite set of functions. X-hull of F is
defined as

X-hull(F) =

{
m∑
i=1

αifi : where αi ≥ 0 and
m∑
i=1

αi = 4

}
.(1.1)

Show that Rn(X-hull(F)) = 4Rn(F).

1.2. VC-dimension - 5pts. Let F be the class of indicators of sets of the form [a, b] ∪ [c, d] in
R. Find the VC dimension of F .

1.3. Kernels - 5pts. For an interval, x = [a, b], define its length as len(x) = b − a. Show that
the following is a kernel k(x, x′) = len(x ∩ x′) + len(x)len(x′) Here, intersection of intervals is an
interval or the empty set (which has length 0).

1.4. Representer- 10pts. Let F be an RKHS and k be the associated kernel. For x1, x2, ..., xn
iid from a distribution p, let f̂ = 1

n

∑n
i=1 k(·, xi) and f∗ = E[k(·, x1)], and D := ‖f̂ − f∗‖F . Let f̂ ′

and D′ be defined similarly over x′1, x2, ..., xn (only x1 is different).
1- Prove that D −D′ ≤ 2 supx

√
k(x, x)/n. 2- Show E[D] ≤ supx

√
k(x, x)/n.
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2. Expected Excess Risk - 25pts. In class, we mostly focused on giving generalization
guarantees in high probability. For example, we showed that, with probability at least 1 − δ,
excess risk satisfies

R(f̂)−R(f∗) ≤ 4Rn(G) +

√
2 log(1/δ)

n ,(2.1)

where G = {(y, x)→ `((y, x), f) : ∀f ∈ F}.
In this question, we will prove a generalization bound in expectation. Steps are essentially the

same, though proof is simplified.

1. [10pts] Show that expected excess risk can be upper bounded by the supremum of the
empirical process. E.g., show

E
[
R(f̂)−R(f∗)

]
≤ E

[
sup
f∈F

R̂(f)−R(f)

]
+ E

[
sup
f∈F

R(f)− R̂(f)

]
.(2.2)

2. [10pts] Show that the right hand side of the above inequality can be upper bounded with
Rademacher complexity of G.

3. [5pts] Finally, conclude that the expected excess risk can be upper bounded by the Rademacher
complexity of G times a constant which you should compute explicitly. Which crucial as-
sumption on loss is missing, and why?
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3. KL and Identifiability - 25 pts. Given two probability distributions p(x) and q(x) fully
supported on Rd (p(x) > 0 and q(x) > 0 for all x ∈ Rd), KL divergence is defined as

KL(p||q) = Ep

[
log

p(x)

q(x)

]
=

∫
p(x) log

p(x)

q(x)
dx.(3.1)

KL divergence is not a metric since it doesn’t satisfy triangle inequality. However, it has nice
properties, and it provides a distance measure between two distributions. One property is the
following:

3.1. KL property - 10pts. Show that KL(p||q) = 0 if and only if p = q. Hint: Jensen’s inequality
says if φ is convex, then E[φ(x)] ≥ φ(E[x]) with equality if and only if x is constant or φ is linear.

3.2. Identifiability in parametric families - 15pts. Consider the parameteric family where

y|x ∼ pθ∗(y|x) and x ∼ p(x),

with θ∗ ∈ Rm is the true parameter. Under the identifiability assumption that θ 6= θ′ implies
pθ 6= pθ′ , show that the true parameter is the unique global minimizer of the population risk in
the MLE setup where the loss is `(θ, (y, x)) = − log pθ(y|x), i.e. prove

θ∗ = argmin
θ∈Rm

R(θ) := E[− log pθ(y|x)](3.2)

where expectation is over the true distribution (x, y) ∼ pθ∗(y|x)p(x). Hint: Consider the quantity
R(θ)−R(θ∗) for θ 6= θ∗.
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4. Countable Function Class - 25 pts. Let F = {f1, f2, ...} be a countable set of functions
with infinite size |F| =∞, and loss evaluated for each function satisfies

0 ≤ `((x, y), fi) ≤
B

iβ
,

for some β > 0, a bound decaying with function’s index.
For what values of β does this class achieve generalization? In your bounds, you should compute

all constants explicitly.
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