PRACTICE EXAM

CSC2532 WINTER 2024

University of Toronto

	Checking	$v_{.j}$	1010100
NT.			
Name:			
1 (dillo)			

Exam duration: 110 minutes

Student #:

Please check that your exam has **5 pages**, including this one. The total possible number of points is 100.

Read the following instructions carefully:

- 1. Exam is closed book and internet. You can use an optional A4 aid sheet double-sided.
- 2. You must show your work to receive full credit.
- 3. The following is standard across all questions: We have a dataset of n samples $(x_i, y_i) \sim p(x, y)$ for i = 1, 2, ..., n, and

$$\hat{f} = \operatorname*{argmin}_{f \in \mathcal{F}} \hat{R}(f) \coloneqq \frac{1}{n} \sum_{i=1}^{n} \ell((y_i, x_i), f) \quad \text{and } f_* \coloneqq \operatorname*{argmin}_{f \in \mathcal{F}} R(f) = \mathbb{E}[\ell((y, x), f)],$$

where ℓ is a loss function.

4. Enjoy the problems!!!

1. Warm-up: Rademacher Complexity and VC Dimension - 25pts.

1.1. Convex-hull - 5pts. Let $\mathcal{F} = \{f_1, f_2, ..., f_m\}$ be a finite set of functions. X-hull of \mathcal{F} is defined as

(1.1)
$$X-\text{hull}(\mathcal{F}) = \left\{ \sum_{i=1}^{m} \alpha_i f_i : \text{ where } \alpha_i \ge 0 \text{ and } \sum_{i=1}^{m} \alpha_i = 4 \right\}.$$

Show that $\mathfrak{R}_n(X\text{-hull}(\mathcal{F})) = 4\mathfrak{R}_n(\mathcal{F}).$

1.2. VC-dimension - 5pts. Let \mathcal{F} be the class of indicators of sets of the form $[a,b] \cup [c,d]$ in \mathbb{R} . Find the VC dimension of \mathcal{F} .

1.3. Kernels - 5pts. For an interval, x = [a, b], define its length as len(x) = b - a. Show that the following is a kernel $k(x, x') = len(x \cap x') + len(x)len(x')$ Here, intersection of intervals is an interval or the empty set (which has length 0).

- 1.4. Representer- 10pts. Let \mathcal{F} be an RKHS and k be the associated kernel. For $x_1, x_2, ..., x_n$ iid from a distribution p, let $\hat{f} = \frac{1}{n} \sum_{i=1}^n k(\cdot, x_i)$ and $f^* = \mathbb{E}[k(\cdot, x_1)]$, and $D := \|\hat{f} f^*\|_{\mathcal{F}}$. Let \hat{f}' and D' be defined similarly over $x'_1, x_2, ..., x_n$ (only x_1 is different).
 - 1- Prove that $D D' \leq 2 \sup_{x} \sqrt{k(x,x)}/n$. 2- Show $\mathbb{E}[D] \leq \sup_{x} \sqrt{k(x,x)/n}$.

2. Expected Excess Risk - 25pts. In class, we mostly focused on giving generalization guarantees in high probability. For example, we showed that, with probability at least $1 - \delta$, excess risk satisfies

(2.1)
$$R(\hat{f}) - R(f_*) \le 4\mathfrak{R}_n(\mathcal{G}) + \sqrt{\frac{2\log(1/\delta)}{n}},$$

where
$$\mathcal{G} = \{(y, x) \to \ell((y, x), f) : \forall f \in \mathcal{F}\}.$$

In this question, we will prove a generalization bound in expectation. Steps are essentially the same, though proof is simplified.

1. [10pts] Show that expected excess risk can be upper bounded by the supremum of the empirical process. E.g., show

(2.2)
$$\mathbb{E}\left[R(\hat{f}) - R(f_*)\right] \leq \mathbb{E}\left[\sup_{f \in \mathcal{F}} \hat{R}(f) - R(f)\right] + \mathbb{E}\left[\sup_{f \in \mathcal{F}} R(f) - \hat{R}(f)\right].$$

2. [10pts] Show that the right hand side of the above inequality can be upper bounded with Rademacher complexity of \mathcal{G} .

3. [5pts] Finally, conclude that the expected excess risk can be upper bounded by the Rademacher complexity of \mathcal{G} times a constant which you should compute explicitly. Which crucial assumption on loss is missing, and why?

3. KL and **Identifiability - 25 pts.** Given two probability distributions p(x) and q(x) fully supported on \mathbb{R}^d (p(x) > 0 and q(x) > 0 for all $x \in \mathbb{R}^d$), KL divergence is defined as

(3.1)
$$\mathrm{KL}(p||q) = \mathbb{E}_p \left[\log \frac{p(x)}{q(x)} \right] = \int p(x) \log \frac{p(x)}{q(x)} dx.$$

KL divergence is not a metric since it doesn't satisfy triangle inequality. However, it has nice properties, and it provides a distance measure between two distributions. One property is the following:

3.1. KL property - 10pts. Show that KL(p||q) = 0 if and only if p = q. Hint: Jensen's inequality says if ϕ is convex, then $\mathbb{E}[\phi(x)] \ge \phi(\mathbb{E}[x])$ with equality if and only if x is constant or ϕ is linear.

3.2. Identifiability in parametric families - 15pts. Consider the parameteric family where

$$y|x \sim p_{\theta_*}(y|x)$$
 and $x \sim p(x)$,

with $\theta_* \in \mathbb{R}^m$ is the true parameter. Under the identifiability assumption that $\theta \neq \theta'$ implies $p_{\theta} \neq p_{\theta'}$, show that the true parameter is the unique global minimizer of the population risk in the MLE setup where the loss is $\ell(\theta, (y, x)) = -\log p_{\theta}(y|x)$, i.e. prove

(3.2)
$$\theta_* = \operatorname*{argmin}_{\theta \in \mathbb{R}^m} R(\theta) := \mathbb{E}[-\log p_{\theta}(y|x)]$$

where expectation is over the true distribution $(x,y) \sim p_{\theta_*}(y|x)p(x)$. Hint: Consider the quantity $R(\theta) - R(\theta_*)$ for $\theta \neq \theta_*$.

4. Countable Function Class - 25 pts. Let $\mathcal{F} = \{f_1, f_2, ...\}$ be a countable set of functions with infinite size $|\mathcal{F}| = \infty$, and loss evaluated for each function satisfies

$$0 \le \ell((x,y), f_i) \le \frac{B}{i^{\beta}},$$

for some $\beta > 0$, a bound decaying with function's index.

For what values of β does this class achieve generalization? In your bounds, you should compute all constants explicitly.