5 - Combinatorial Measures of Complexity
Recap: - Radenacher complexity based generalization bound w.p. at least $1-\delta$,

$$
R(\hat{f})-R\left(f_{*}\right) \leq 4 R(g)+B \sqrt{\frac{2 \log ^{2} / q}{n}}
$$

- If we bound $R C$. $f . g=\{z \rightarrow l(z, f)$ f $\in \mathcal{F}\}$ we get a generalizotice bound.
Eg: Massart's Finite Lama (MFL): If $\sup _{\mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} f\left(i_{0}\right)^{2} \leq k^{2}$ then, $\hat{R}(f) \leqslant k \sqrt{\frac{2 \log |f|}{n}} \longrightarrow|f|<\infty$.

$$
-\hat{R}(y) \leq B \sqrt{\frac{2 \log |g|}{n}} \leq B \sqrt{\frac{2 \log |\mathcal{F}|}{n}}
$$

since $|g| \leqslant|\mathcal{F}|$.
\Rightarrow Gerereliastion:

$$
R C+M F L \text { : excess rit } \leq 4 B \sqrt{\frac{2 \operatorname{lgg}|\nmid q|}{n}}+B \sqrt{\frac{2 l g^{2} / f}{n}}
$$

- Shattering Coefficient

When converting $\sup _{\substack{ \\j}}^{\longrightarrow} \sum_{f}$ (lost lecture)

$$
\mathbb{E} \sup _{\mathcal{F}} \exp \left\{t \cdot \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} f\left(z_{i}\right)\right\} \leq\left.\mathbb{E} \sum_{\mathcal{F}} \exp \left\{t \frac{1}{n} \sum_{i=i}^{n} \sigma_{i} f\left(z_{i}\right)\right\} \quad\right|_{z_{i=n}}
$$

- f enters this bound only through $\left[f\left(x_{1}\right) \cdots f\left(t_{n}\right)\right]$.
- I con be infinitely large, but $\left\{\left[f\left(z_{1}\right) \cdots f\left(z_{n}\right)\right]\right\}$ can be still small.

Ex: Data $z: \in \mathbb{Z}$ and $\mathcal{F}=\{z \rightarrow \sin (z \cdot \pi r): k \in \mathbb{N}\}$

$$
\begin{aligned}
& \Rightarrow|\mathcal{F}|=\infty, \quad f\left(z_{i}\right)=0 \\
& \Rightarrow \quad\left[f\left(z_{1}\right) \cdots f\left(z_{n}\right)\right]=[0 \ldots 0] \quad \forall f \in \mathcal{F}, \forall z_{i} \in \mathbb{Z}
\end{aligned}
$$

$E_{x: ~}^{0-1}$ loss: $G=\{g: z \rightarrow \ell(z, f): f \in \mathcal{F}\}$

$$
\begin{aligned}
& g\left(z_{i}\right) \in\{0,1\} \\
& \left|\left\{\left[g\left(x_{1}\right) \ldots g\left(f_{n}\right)\right]: g \in \mathcal{G}\right\}\right| \leq 2^{n} \\
& \left.\begin{array}{lllll}
0 & 0 & \ldots & 0 &] \\
0 & 1 & 0 & \ldots & 1
\end{array}\right] .
\end{aligned}
$$

(we focus on 0-1 less).
Continue from the step !

$$
\begin{aligned}
& =\mathbb{E}\left[\sup \exp \left\{t \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} f_{i}\right\} i z_{(: n}\right] \\
& {\left[f_{1} \ldots f_{n}\right] \in F=\left\{\left[f\left(z_{1}\right) \cdots f\left(z_{n}\right)\right]: f \in \mathcal{F}\right\}} \\
& \text {-ais ore fixed } \\
& \text { - we vary } f \in \mathcal{F} \text {. } \\
& \leq \mathbb{E}\left[\left.\sum_{\left[f_{1} \ldots f_{n}\right] \in F} \exp \left\{t \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} f_{i}\right\} \right\rvert\, z_{\text {lin }}\right]
\end{aligned}
$$

con take it out

$$
\begin{aligned}
& \leq \sum_{F} \underbrace{\mathbb{E}\left[\exp \left\{t \frac{1}{n} \sum_{i=i}^{n} \sigma_{i} f_{i}\right\}\right]}_{\leq \exp \left\{\frac{t^{2} \nu^{2}}{2 n}\right\}} \text {. } \mid z_{\text {Inn }} \\
& \left.\leq|F| \cdot \exp \left\{\frac{t^{2} x^{2}}{2 n}\right\} \quad \right\rvert\, z_{1: n}
\end{aligned}
$$

- We care about $R(f)$, not $\widehat{R}(f)$. F depends on $\left\{z_{1} \ldots z_{n}\right\}$, so need to moke the bound hold for all data.
\Rightarrow take max over data: $|F| \leq \max \left|\left\{\left[f\left(z_{1}\right) \cdots f\left(z_{n}\right)\right]: f \in \mathcal{T}\right\}\right|$

$$
\begin{aligned}
& \left\{z, \ldots z_{n}\right\} \subseteq Z \\
& \triangleq s(\mathcal{F}, n)
\end{aligned}
$$

Def (Shattering Coefficient): Let $\mathcal{F}=\{f: z \rightarrow\{0,1\}\}$
$\Rightarrow \ln M F L, \quad|f|$ is replaced by $s(f, n)$.
Massort's Infinite" Lemmas: If $\sup _{f} \frac{1}{n} \sum_{i=1}^{n} f\left(z_{i}\right)^{2} \leq k^{2}$, then

$$
\hat{R}(f) \leqslant k \sqrt{\frac{2 \log s(f, n)}{n}}
$$

Def: \mathcal{F} is a closs of boolean functrins on \mathcal{F}. We say that \mathcal{F} shatters a subset $D \subseteq \mathcal{Z}$ if any fro $g: D \rightarrow\{0,1\}$ can be obtained by restricting some $f \in \mathcal{f}$ to D.

Ex: $D=\left\{z_{1} \ldots z_{n}\right\}$, for $f \in \mathcal{F}$ look of the vectors

$$
\left[f\left(z_{1}\right) \cdots f\left(z_{n}\right)\right]
$$

If. we con get eng 2^{n} combinations, f shatters D.

- Far boolean fris, if. $s(f, n)=2^{n}$,

$$
\begin{aligned}
& \Leftrightarrow \exists D=\left\{z_{1} \ldots z_{n}\right\} \subseteq Z \text { st. f slotter } D . \\
& \Leftrightarrow \exists D=\left\{z_{1} \ldots z_{n}\right\} \subseteq Z \text { st. }\left|\left\{\left[f\left(t_{1}\right) \cdots f\left(z_{n}\right)\right]: f \in \neq f\right\}\right|=2^{n}
\end{aligned}
$$

- When this happens: $R C \leq k \sqrt{\frac{2 \log _{s}\left(\mathcal{F}_{n}\right)}{n}}=0$ (1)
\Rightarrow no ferenalization!
\Rightarrow For ganenolizative, need $s\left(\not F_{i n}\right)$ to be subexp in n.
* First step: $\mathcal{G} \longrightarrow \mathcal{F}$ for $0-1$ lars $. f: x \rightarrow\{-1,1$, $y=\{-1$,

$$
\begin{aligned}
& \ell((y, x), f)=1\{y \neq f(x)\}=-\frac{1}{2}(-1+y f(x)) \\
& -\mathcal{F}=\{f: x \rightarrow\{ \pm 1\}\} \text { and } g=\left\{z=(y, x) \rightarrow 1_{\{y \neq f(x):\}}: f \in f\right\}
\end{aligned}
$$

Fix data:

$$
\begin{gathered}
f=\left[\begin{array}{ccc}
f\left(x_{1}\right) & \left.f\left(x_{n}\right)\right] \\
y_{1} & \cdots & y_{n} \\
y_{1} & \\
-\frac{1}{2}\left(x_{1}\right) & y_{n} & \left.f\left(x_{n}\right)\right]
\end{array}\right)=\left[l\left(\left(y_{1}, x_{1}\right), f\right) \ldots l\left(\left(y_{n}, x_{n}\right), f\right)\right]=\dot{g}
\end{gathered}
$$

\Rightarrow bijectriu. f and g

$$
\begin{aligned}
& \Rightarrow \frac{s(f, n)}{2}=s(g, n) \\
& \text { we focus on this. }
\end{aligned}
$$

Ex: $\mathcal{F}=\{z \rightarrow 1\{z \neq t\}: t \in \mathbb{R}\} \quad|\exists|=\infty$.

$\Rightarrow \mathcal{F}$ cannot slotter $\left\{z_{1}-z_{n}\right\}$ for $n>1$.

- VC Dimension (Vapnik - Chervonenkis)

Def $(V C$-dim): $V C(\mathcal{F})$ is the largest cardinality of a subset $D \subseteq \mathcal{Z}$ that can be shattered by \mathcal{F}.
\Rightarrow Since $\mathcal{F}=\{f \in \mathcal{F} \rightarrow\{0,1\}\}$

$$
V C(F)=\sup \left\{n: s(f, n)=2^{n}\right\}
$$

Ex (above example): $s(\nexists i n)=n+1=2^{n} \quad \Rightarrow \quad V C(F)=1$.

Remark: If $V \subset(F)=d$,
i- $J D \subseteq Z$ sit. \mathcal{F} shatters D and $|D|=d$.
ii- No subset $D \subseteq Z$ of size $d+1$ can be shattered by F.
$E_{x}($ Indicators of closed intervals $): \mathcal{F}=\left\{z \rightarrow 1_{\{z \in[a, b]\}}: a, b \in R\right\}$

$$
\begin{aligned}
& -n=1 \\
& {\left[\begin{array}{ll}
1 & 1 \\
z_{1}
\end{array}\right] \text {. }} \\
& f\left(z_{1}\right) \\
& -n=2 \quad[] \frac{1}{z_{1}} \cdot \\
& {\left[f\left(z_{1}\right) f\left(z_{2}\right)\right] \quad[00] \quad[10]} \\
& \begin{array}{c}
Z_{2,1}[a \cdot b \\
0
\end{array} \\
& \text { ? } \\
& \Rightarrow S(7,1)=2 \\
& \begin{array}{l}
1[1] \\
z_{1}\left[\begin{array}{l}
z_{2}
\end{array}\right]
\end{array} \\
& {\left[\begin{array}{cc}
1 & \\
z_{1} & z_{2}
\end{array}\right]} \\
& {\left[\begin{array}{ll}
1 & 1
\end{array}\right]} \\
& \Rightarrow s(7,2)=2^{2}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[f\left(z_{1}\right) f\left(z_{2}\right) f\left(z_{3}\right)\right] \cdot\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
0 & 1 & 1
\end{array}\right] .} \\
& \Rightarrow s(7,3)=7 \\
& \Rightarrow \quad V \subset(f)=2 \text {. }
\end{aligned}
$$

Lemma (Saver - Shaleh): If. $V \subset(F)=d$, then

$$
s(7, n) \leq\left\{\begin{array}{ll}
2^{n} & \text { if. } n \leq d \\
\left(\frac{e n}{d}\right)^{d} & \text { if. } n \geq d
\end{array}\right\}
$$

Reworks: - For $n \leq d, R(f) \leq \sqrt{\frac{n \log 2}{n}}=O(1)$

- For $n>d, s(f, n) \leq$ poly $(n) \Rightarrow R(f)<\sqrt{\frac{\lg _{n}}{n}}$.

In fact, $R(f) \leq \sqrt{\frac{2 \log s\left(F_{i n}\right)}{n}} \leq \sqrt{\frac{2 d \log \frac{e n}{d}}{n}}$

$$
\leq \sqrt{\frac{2 d(1+\log n-\log d)}{n}} \leq \sqrt{\frac{3 V C(7) \cdot \log n}{n}} .
$$

- For 0-1 loss and binary classifier, when $n \geqslant V C(\mathcal{F})$,

$$
\begin{aligned}
& R(y) \leq R(\mathcal{F}) \leq \sqrt{\frac{3 v c(7) \log n}{n}} \\
\Rightarrow & R(\hat{f})-R\left(f_{*}\right) \leq 4 \cdot \sqrt{\frac{3 v c(7) \log n}{n}}+\sqrt{\frac{2 \log 2 / 8}{n}}
\end{aligned}
$$

Proof: i) $n \leq d$ is trivial:
ii) $n>d$:

- Let $z_{!}^{*}, \ldots z_{n}^{*}$ be set. $\delta(\exists, n)=\left|\left\{\left[f\left(z_{1}^{*}\right) \ldots f\left(z_{n}^{*}\right)\right]: f \in \mathcal{F}\right\}\right|$
- Define. $Z^{*}=\left\{z_{1}^{*}, \ldots z_{n}^{*}\right\}$. and restrict \mathcal{F} onto Z^{*} end. refer to it as \mathcal{F}^{*}.
$-f^{*}$ is finite and $\left|f^{*}\right|=s \cdot(\mathcal{F}, n)$..
Pajor's lemma: I^{*} is a clears of fauces. on a finite domain Z^{*}. Than, $\left|\mathcal{F}^{*}\right| \leq \mid\left\{\Lambda \subseteq Z^{*}: \Lambda\right.$ is shattered by $\left.\mathcal{F}^{*}\right\} \mid$ - proved in HW3-

$$
\begin{equation*}
- \text { By Pojor's lemma, } s(\exists, n)=\left|\exists^{*}\right| \leq \sum_{i=0}^{d^{*}}\binom{n}{i} \tag{*}
\end{equation*}
$$ where $d^{*}=V C\left(f^{*}\right)$ (if $\left.d^{*} \leqslant n\right)$.

- But if $\Lambda \subseteq Z^{*} \subseteq Z$, and Z^{*} is shattered by \mathcal{F}^{*}, it. is el so shattered by. F.

$$
\Rightarrow V \cdot C\left(f^{*}\right)=d^{*} \leqslant V C(F)=d<n
$$

(*) $s(f, n) \leqslant \sum_{i=0}^{d}\binom{n}{i}$
$\leq\left(\frac{e n}{d}\right)^{d}$. by the below lemma.

Lemma $\sum_{i=0}^{d}\binom{n}{i} \leqslant\left(\frac{e_{n}}{d}\right)^{d}$ for $n \geqslant d$.
Proof: $\sum_{i=0}^{d}\binom{n}{i}=\sum_{i=0}^{d}\binom{n}{i}\left(\frac{n}{d}\right)^{i}\left(\frac{d}{n}\right)^{i}$

$$
\begin{aligned}
& \leq\left(\frac{n}{d}\right)^{d} \sum_{i=0}^{n}\left(\frac{n}{i}\right)\left(\frac{d}{n}\right)^{i} \\
& =\left(\frac{n}{d}\right)^{d}\left(i+\frac{d}{n}\right)^{n} \\
& \leq\left(\frac{n}{d}\right)^{d} e^{d}
\end{aligned}
$$

