6 - Chaining
Recap: - Massart's Finite Lemma (MFL)

$$
\sup _{\mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} f\left(z_{i}\right)^{2} \leq k^{2} \Rightarrow \hat{R}(f) \leq k \sqrt{\frac{2 \log |\nmid 1|}{n}}
$$

- Massart's "Infinite Le Lama:

$$
\sup _{\mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} f(z i)^{2} \leq k^{2} \Rightarrow \hat{R}(F) \leq k \sqrt{\frac{2 \log s(F, n)}{n}}
$$

This lecture: 1-Revisit covering (discretization)
2-Want to bound RC instead of excess risk. or eupriaal process.
3-Coverng is over firectly, which requires a distance.
Metric $f, g \in \mathcal{F}, d(f, g)=\left(\frac{1}{n} \sum_{i=1}^{n}\left(f\left(z_{i}\right)-g\left(z_{i}\right)\right)^{2}\right)^{\frac{1}{2}}$. where z_{i} s are data points.

$$
-d(f ; g)=0
$$

- fond g are treated as the some fac, because they behove the sane over do ta.

Notation: Define $f=\frac{1}{\sqrt{n}}\left\{f\left(z_{1}\right) f\left(z_{2}\right) \cdots f\left(z_{n}\right)\right]^{\top} \in \mathbb{R}^{n}$

$$
\Rightarrow\|f\|_{2}^{2}=\frac{1}{n} \sum_{i=1}^{n} f\left(z_{i}\right)^{2}, \quad d(f, g)=\|f-g\| \quad\left(\|\cdot\|_{2}=\|\cdot\|\right)
$$

is vector definition of the fro f.
ferric I Massort 's Finite Lemma: $\hat{R}(\mathcal{f}) \leq \sup _{\mathcal{F}}\|f\| \sqrt{\frac{2 \log |f|}{n}}$
Recall: An ε-comr of \mathcal{F} writ a metric d is a set $\mathcal{N}_{\epsilon}=\left\{g_{1} \ldots . g_{m}\right\}$ s.t. $\quad \forall f \in \mathcal{F}, \exists g \in \mathcal{N}_{\epsilon}$ s.t. $d(f, g) \leq \epsilon$.

Covering number of $\mathcal{F}: N(\epsilon, f, d)=\min \left\{\left|\mathcal{N}_{\epsilon}\right|: \mathcal{N}_{\epsilon}\right.$ is a ε-caus of $\left.\mathcal{F}\right\}$
Metric entropy of $\mathcal{F} \triangleq \log N(\epsilon, \mathcal{F}, d)$

Ex: (all fares) $\quad \mathcal{F}=\{f: Z \rightarrow[0,1]\}$.

- One put at ever vertical line.

$$
\begin{aligned}
&-\left|N_{\epsilon}\right|=\left(1+\frac{1}{2 \epsilon}\right)^{n} . \\
& \Rightarrow\left(\frac{1}{\epsilon}\right)^{n} \\
& \Rightarrow N(t, \mathcal{F}, d) \leq\left(\frac{1}{\epsilon}\right)^{n} . \\
&(\text { exponential in } n) .
\end{aligned}
$$

Ex: (non-decreosing fines): $\mathcal{F}=\{f: Z \rightarrow[0,1]$ non-decosing $\}$.

- Only include $g t i r_{6}$ that are non-decraing
- $\forall g \in \mathcal{N}_{t}$, we need $n-1 \rightarrow$ and m 个
$-k_{i}=\# \uparrow$ at level $z_{(i)}: k_{1}+k_{2}+\ldots+k_{n}=m$.

$$
\begin{aligned}
&-\# \text { non-decresing } g=\left|\left\{\left(k_{1} \ldots k_{n}\right): \sum_{i=1}^{n} k_{i}=m, k_{i} \in \mathbb{N}\right\}\right| \\
&=\sum_{k_{1}+k_{2}-k_{n}=m}\binom{m}{k_{1} k_{2}-k_{n}}=n^{m} \leq n^{1 / \epsilon} \\
& \Rightarrow N(\epsilon, J, d) \leq n^{1 / \epsilon}(\text { poly in } n) .
\end{aligned}
$$

Theorem (Discretisation): Let $\mathcal{F}=\{f\}$ st. $f: Z \rightarrow \mathbb{R}$ Then for $k=\sup \|f\|$, we have

$$
\hat{R}(f) \leqslant \underbrace{\dot{k} \sqrt{\frac{2 \log N\left(t, f_{1} d\right)}{n}}}_{I}+\underbrace{\epsilon}_{I}, \forall \epsilon>0
$$

Remark: I is due to MFL. I $\omega / \in \downarrow$.
II is due to discrefivotiin II $\downarrow \omega / \in \downarrow$
\Rightarrow trade -off \Rightarrow we need optimize over \in.
proof: Let. $f=\frac{1}{\sqrt{n}}\left[f\left(z_{1}\right) \cdots f\left(z_{n}\right)\right]^{\top}$ and $\sigma=\frac{1}{\sqrt{n}}\left[\sigma_{1} \ldots \sigma_{n}\right]^{\top}$.

$$
-\hat{R}(\mathcal{F})=\mathbb{E}\left[\left.\sup _{\mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} f\left(z_{i}\right) \right\rvert\, z_{1: n}\right]=\mathbb{E}\left[\sup _{\mathcal{F}}\left\langle\sigma_{i} f\right\rangle \mid z_{1: n}\right]
$$

- Let N_{ϵ} be an $\epsilon-$ cover of. \mathcal{F}.

$$
\Rightarrow \forall f \in \mathcal{F}, \exists g \in \mathcal{N}_{\epsilon} \text { s.t. }\|f-g\| \leq \epsilon
$$

$$
\begin{aligned}
& -\sup _{f \in \mathcal{f}}\langle\sigma, f\rangle=\langle\sigma, g\rangle+\langle\sigma, f-g\rangle \text {. } \\
& \leqslant \quad\langle\sigma, g\rangle+\underset{=1}{\|\cdot\| \cdot\|f-g\|} \cdot(\text { by } C S) \\
& \leq \max _{g \in \mathcal{N}_{\epsilon}}\langle\sigma, g\rangle+t \\
& \Rightarrow \hat{R}(F) \leqslant \mathbb{E}\left[\max _{g_{t} \mathcal{N}_{\epsilon}^{\prime}}\langle\sigma, g\rangle . \mid z_{1: n}\right]+\epsilon=\hat{R}\left(\mathcal{W}_{\epsilon}\right)+\epsilon \\
& \left(\text { by MF.L) } \leqslant \sup _{W_{\epsilon}}\|g\| \sqrt{\frac{2 \log \left|N_{\epsilon}\right|}{n}}+\epsilon \quad \forall W_{\epsilon}\right. \\
& \left(\text { minimize over } M_{t}\right)=\sup _{\mathcal{f}}\|f\| \sqrt{\frac{2 \log N(t, f, d)}{n}}+\epsilon
\end{aligned}
$$

Ex. (all fnes): $N(t, \mathcal{F}, d) \leq(1 / \epsilon)^{n}$
\Rightarrow by the previous that $\hat{R}(F) \approx \sqrt{\frac{\not D \cdot \log 1 / \epsilon}{\mathscr{R}}}+\epsilon$ (no. generolizativen!.)
Ex (non-decreasing fries): $N(t, \mathcal{F}, d) \leq n^{1 / t}$
\Rightarrow by the previous thin $\hat{R}(\mathcal{F}) \approx \sqrt{\frac{\log n}{\epsilon n}}+\epsilon$
\Rightarrow Optimize over $\epsilon: \quad \epsilon=\sqrt{\frac{\log n}{\epsilon n}} \Rightarrow \quad \epsilon=\left(\frac{\log n}{n}\right)^{\frac{1}{3}}$
\Rightarrow slow rate!
\Rightarrow. genenelizatiic

Theoreu(Dudley's thu): \mathcal{F} is a fomily of fras $f: Z \rightarrow \mathbb{R}$

$$
\hat{R}(f) \leq 12 \cdot \int_{0}^{\infty} \sqrt{\frac{\log N(t, \mathcal{F}, d)}{n}} d \epsilon
$$

Revork s: 1- When ϵ is large, $N(\epsilon, F, d)=1$. Not nolly. integratiy to ∞ for a compect. F.
2. Discretreativen error ϵ is gone!.

3-For the above non-decreasing faes

$$
\begin{aligned}
& \hat{R}(\mathcal{F}) \leq 12 \int_{0}^{1} \sqrt{\frac{\lg n}{\epsilon n}} d t \\
&=24 \sqrt{\frac{\lg n}{n}} \int_{0}^{1} \frac{1}{\sqrt{t}} d t \\
&=24 \sqrt{\frac{\log n}{n}} \Rightarrow \text { faster rate! }
\end{aligned}
$$

prooff. (by chaming):
discrikiastior eivier
Previosly,

Now, chose a chem. of t-Nets : $\quad \epsilon_{j}=2^{-j} \epsilon_{0} \quad \epsilon_{0}=\frac{\sup }{\mathcal{F}}\|f\|$

$$
f_{,} \ni s_{j} \in W_{\epsilon_{j}}
$$

- MFL is applied to $g_{j e n}-g_{j}$
$-\epsilon_{j} \downarrow 0$, so docs $\left\|q_{j+4}-q_{j}\right\|$
- Let $\epsilon_{0}=\sup _{f}\|f\|$ and $\epsilon_{j}=2^{-j} \epsilon_{0}, M_{\epsilon_{j}}$ are ϵ_{j}-covers.
$-\forall f \in \mathcal{F}$, find $g_{j} \in \mathcal{N}_{\epsilon_{j}}$. for $j=1 \ldots$ st. $\left\|f-g_{j}\right\| \leq \epsilon_{j}$. and $g_{0}=0$.
$-f=\underbrace{f-g_{m}}_{\substack{\text { vanisluig } \\ \text { as } \mu \rightarrow x}}+\underbrace{\sum_{j=1}^{m} g_{j}-g_{j-1}}_{\text {farms a chan }}$
(by triangle mequality

$$
\left.\left\|q_{j}-q_{j-1}\right\| \leq \epsilon_{j}+\epsilon_{j-1}=3 \epsilon_{j}\right)
$$

- Recall MFL: $\hat{R}(\underline{g}) \leq \sup _{g}\|g\| \cdot \sqrt{\frac{2 \log |q|}{n}}$

$$
-\hat{R}(\mathcal{F})=\mathbb{E}\left[\sup _{\mathcal{F}}\langle\sigma, f\rangle \mid z_{1: n}\right]
$$

$$
=\mathbb{\mathbb { I }}[\sup _{\mathcal{F}}\{\{\underbrace{\left\{\sigma, f-g_{\mu}\right\rangle}_{\text {by cs }}\rangle+\left\{\sigma,\left\|_{=1}^{m} \sum_{j=1} g_{j}-g_{m}\right\|\right\rangle\} \mid z_{j-1}]
$$

$$
\leqslant \epsilon_{m}+\mathbb{E}\left[\sup _{\mathcal{F}}\left\{\sigma, \sum_{j=1}^{m} g_{j}-g_{j-1}\right\rangle \mid z_{l: n}\right]
$$

$$
\left(\sup \Sigma \leqslant \Sigma_{\text {sup }}\right) \leqslant \epsilon_{m}+\sum_{j=1}^{m} \mathbb{E}\left[\sup _{\mathcal{F}}\left\langle\sigma_{1} g_{j}-g_{j-1}\right\rangle \mid z_{l: n}\right] .
$$

$$
\begin{aligned}
& \leqslant \epsilon_{m}+\sum_{-1}^{m} \mathbb{E}\left[\sup \left\{\sigma, g_{j}-g_{j-1}\right\rangle \mid z_{l: n}\right] \\
& H_{j} \triangleq\left\{\begin{array}{l}
g_{j} \in \omega_{\epsilon j}, g_{j-1} \in \omega_{\epsilon_{j-1}} \\
\left\|g_{j}-g_{j-1}\right\| \leq z \in j
\end{array}\right\} . \\
& \left.H_{j}=\left\{h=g_{j}-g_{j-1}: g_{j} \in \mathcal{E}_{\varepsilon_{j}}, g_{j-1} \in w_{\epsilon_{j-1}},\left\|g_{j-}-g_{j-1}\right\| \leq 3 \in-\right\}\right\} \\
& \leqslant \epsilon_{m}+\sum_{i=1}^{m} \mathbb{E}\left[\sup _{H_{j}}\langle\sigma, h\rangle \mid z_{l: n}\right] \\
& =\widehat{R}\left(H_{j}\right) \leq \sup _{\mathcal{H}_{j}\|h\|} \cdot \sqrt{\frac{2 \log \left|z_{j}\right|}{n}} \\
& \left|\mathcal{H}_{j}\right| \leq\left|\mathcal{N}_{\epsilon_{j}}\right| \because\left|\mathcal{N}_{\epsilon_{j-1}}\right| \\
& \leq\left|N_{\epsilon j}\right|^{2} \\
& (\text { by } M F L) \leq \epsilon_{m}+\sum_{j=1}^{m} \underbrace{\left(\sup _{j}\|h\|\right)}_{\leqslant 3 \epsilon_{j}} \cdot 6\left(\epsilon_{j}-\epsilon_{j+1}\right) . \\
& \leqslant \epsilon_{m}+12 \sum_{j=1}^{m}\left(\cdot \epsilon_{j}-\epsilon_{j+1}\right) \cdot \sqrt{\frac{\log \left|\omega_{\epsilon_{j-1}}\right|}{\epsilon_{j}}} \\
& =t_{m}+12 \sum_{j=1}^{m} \cdot \int_{c_{j+1}}^{\epsilon_{j}} \sqrt{\frac{\log \left|w_{c_{j} j}\right|}{\cdot n}} d t \\
& \leq \epsilon_{m}+12 \cdot \sum_{j=1}^{m} \cdot \int_{c_{j+1}}^{\epsilon_{j}} \sqrt{\frac{\log \left|\omega_{\epsilon}\right|}{n}} d \epsilon \\
& \leqq \quad \epsilon_{m}+12 \int_{\epsilon_{m+1}}^{\epsilon_{0}} \sqrt{\frac{\log \left|/ m_{\epsilon}\right|}{n}} d \epsilon \quad \forall W_{\epsilon} \\
& \left(\begin{array}{c}
\text { optimize } \\
\text { owe } \\
v_{t}
\end{array}\right)=\epsilon_{m}+12 \int_{\epsilon_{m+1}}^{\infty} \sqrt{\frac{\log N(t, 7, d)}{n}} \cdot d t \quad \forall m
\end{aligned}
$$

let $m \rightarrow \infty$.

