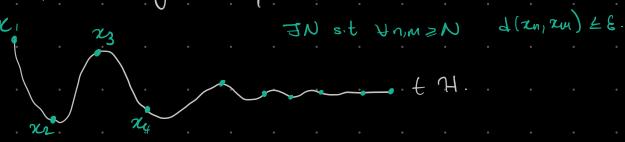
11- Kernel Methods: Basics

- Hilbert Space:

A Hilbert space H is a real (or complex) inner product space that is also a complete metric space with the norm induced by its inner product.

Renark: Two key properties: 1- inner product 2- completeness

- Complete: Every Cauchy sequence in 4 hos a limit in 4.



Def (Inner prod): An inner product is a fac <.,.>: HxH > IR

satisfying for f,g,h & H

1- Symmetry: $\langle f,g \rangle = \langle g,f \rangle$

1 - Linearity: a, b EIR {af+bg, h} = a{f,h}+b-{g,h}

3 - Non-negativity: i) \f,f\>0

 $(f,f) = 0 \iff f = 0.$

Norm induced by the inner product ||f||_{H} = \(\langle f, f \rangle \).

 E_{X} (Euclidean space): $H = IR^{d}$ and standard inner prod $u_{1}v \in IR^{d}$, $\langle u_{1}v \rangle = \sum_{i=1}^{d} u_{i}v_{i}$ which defines a norm $||u||_{2} = \left|\sum_{i=1}^{d} u_{i}^{2}\right|$

Ex (Square integrable fines on [0,1]): $\mathcal{L}^{2}\left(\left[0,1\right]\right) = \left\{f:\left[0,1\right] \rightarrow |R \text{ and } \int f(z)^{2} dz \, dz\right\}.$ with inner prod $\langle f, g \rangle = \int_{0}^{\infty} f(z) g(z) dz$. Def (Dual space): Dual space H* of a Hilbert space H is the space of all costs and linear facs from H to IR. It corries a norm, $F \in \mathcal{H}^*$ $\|F\|_* = \sup_{\|x\|_{\mathcal{H}} = 1} |F(x)|$ Def (Linear fre): A fre f: X -> IR is linear if for x, x' EX and any CEIR, it setisfies f(x+x')=f(x)+f(x').Remark: $f(x) = \alpha x$ is linear, but $f(x) = \alpha x + b$ is not for $b \neq 0$. Ex (Euclidean space): H = IRd, then its deal H^* $H^* = \{ F : IRd \rightarrow IR \text{ where } F \text{ is linear (and ents)} \}.$ First of the form $F(x) = \langle x, u \rangle$ for some utild satisfy the condition in H*. Are there only never — *

Thu (Riesz - Fréchet Representation): For every $f \in H$, $\exists f \in H^*$ unique at $F_f(g) = \langle f, g \rangle$. Also, for every $F \in H^*$ $\exists f \in H$ unique s.t. $F(g) = \langle f, g \rangle$.

Dual norm
$$\|F\|_{X} = \sup_{x \in Y} |\langle u, x \rangle| = \|u\|_{L}$$
.

Dual norm $\|F\|_{X} = \sup_{x \in Y} |\langle u, x \rangle| = \|u\|_{L}$.

Kernels: Formel Definition

Feature map \emptyset .

Result (x,y)

Result (x,y)

Result (x,y)

Result (x,y)

Result (x,y)

Result (x,y)

Def (x,y)

Result (x,y)

Resu

Thus
$$(\phi \rightarrow k)$$
: A feature map $\phi: X \rightarrow H$ defines a kernel proof: $-k(x,y) = \langle \phi(x), \phi(x) \rangle$
 $-For any x_1 \dots x_n$ $k_{ij} = k(x_i,y_j)$ is PSD. Est Thus $(k \rightarrow \phi)$: For every bornel $k: X \times X \rightarrow IR$,

3 H or Hilbert space and a feature map $\phi: X \rightarrow H$ s.t.

 $k(x_1,x_2) = \langle \phi(x_1), \phi(x_2) \rangle$
proof $(far finite X)$: Let $X = \begin{cases} x_1, \dots x_n \end{cases}$ and

 $k_{ij} = k(x_i,x_j) \Rightarrow k$ is PSD $\Rightarrow k = \mu D \mu T = I = T$
 $\phi(x_i) = D^k u_i$ defines a feature map. Est Remark: The choice of ϕ is not unique $\phi'(x_1 = Q\phi(x_1) = x_1 + x_2 + x_3 + x_4 + x_4$

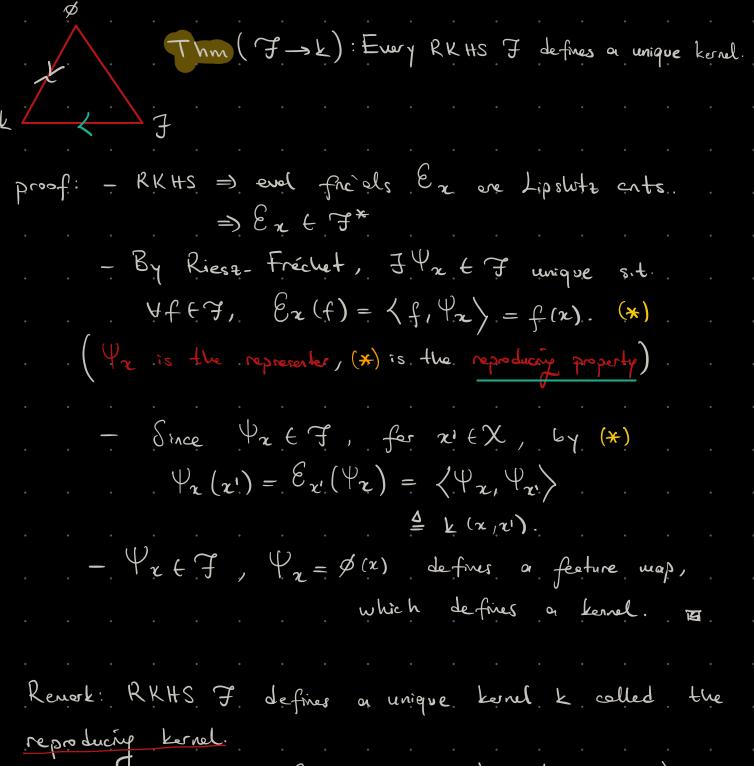
- Clearly, a Hilbert space is too complex (even has indicators). Def (Evaluation functional): For a Hilbert space of facs h: X -> IR, Hx & X, the evaluation functional Ex: H -> IR. is defined as $\mathcal{E}_{\mathbf{x}}(h) = h(\mathbf{x})$. Renark: Evaluation functionals are linear. $c \in \mathbb{R}$ $\mathcal{E}_{x}(ch) = (ch)(x) = ch(x) = c \mathcal{E}_{x}(h)$ $\frac{E_{x}}{E_{x}}$ (Euclidean input space): $\chi = |R^{d}|$ $H = \left\{ h_{o}(x) = \langle 0, x \rangle \right\} \in \mathbb{R}^{d}$ $\mathcal{E}_{z}(h_{o}) = h_{o}(x) = \langle o, x \rangle$. Def (RKHS): An RKHS F is a Hilbert space over facs f: X -> IR s.t. evaluation fraisle are Lipshitz. Remarks: - The constraint on the end fre'als restricts F. For example, indicators no larger belong to F.

Leverks: The constraint on the evel fine als restricts of For example, indicators no larger belong to \mathcal{F} .

- Eval fine els are ents and linear $\Rightarrow \mathcal{E}_z \in \mathcal{F}^x$ - By Riesz-Fréclut, $\exists f_{\mathcal{E}_z} = \mathcal{F}_z \in \mathcal{F}_z$ $\forall q \quad q(x) = \mathcal{E}_z(q) = \langle \mathcal{F}_z, q \rangle$.

I dual

- Fre evaluations can be uniter as inner products.



 $f(n) = \varepsilon_{\chi}(f) = \langle f, \psi_{\chi} \rangle = \langle f, k(\chi, \cdot) \rangle$

le brêsev ki

Thu (k > 7, Moore-Aronszogn):

Every Lernel corresponds to a unique RKHS.

proof: - Basic idea: Use
$$k(x, \cdot)$$
 as basis for RKHS.

- Let $n \in \mathbb{N}$, $x_1 - x_1 \in X$, $x_1, \theta_1 \in \mathbb{R}$.

- Consider $f(x) = \sum_{i=1}^{n} x_i k(x_i x_i)$ and $g(x) = \sum_{i=1}^{n} \theta_i k(x_i x_i)$

- $f = \begin{cases} f(x) = \sum_{i=1}^{n} x_i k(x_i x_i) : n \in \mathbb{N}, x_1 - x_1 \in X, x_i \in \mathbb{R} \end{cases}$

(this is a vector space, but not accessarily complete)

- Define the fac $\langle \cdot, \cdot \rangle$: $f \in \mathcal{F}$ $f \in \mathbb{N}$ as

 $\langle \cdot, \cdot \rangle = \sum_{i=1}^{n} x_i \theta_i k(x_i, x_i)$

This defines an inner product:

1. Symmetry V

2. Linearly V

3. Non-negativity: i) $\langle \cdot, \cdot \rangle = \sum_{i=1}^{n} x_i y_i k(x_i, x_i) = x_i^T k x_i > 0$

ii) $\langle \cdot, \cdot \rangle = 0 \iff f = 0$.

Augmented kernel metrix for
$$\{x_1, x_1, x_2\}$$

$$K' = \begin{bmatrix} K & c(x) \\ c(x)^T & k(x_1x_2) \end{bmatrix} \geqslant 0$$

Assume
$$\langle f, f \rangle = x^T K x = 0$$
 but $f \neq 0$ ($\Rightarrow x \neq 0$)

For any scalar LER, let $u = \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^{n+1}$
 $u^T K^i u = \begin{bmatrix} x \\ 0 \end{bmatrix}^T \begin{bmatrix} K & c(x) \\ c(x)^T & k(x)^T \end{bmatrix} \begin{bmatrix} x \\ 0 \end{bmatrix} = x^T K x + 2b x^T c(x) + b^2 k(x,x)$
 $= 2b x^T c(x) + b^2 k(x,x) \ge 0$

But for any f_i and $f_i \in \mathbb{R}^n$, $f_i \in \mathbb{R}^n$, $f_i \in \mathbb{R}^n$.

 $f_i = x^T k x + 2b x^T c(x) + b^2 k(x,x) \ge 0$

But for any $f_i \in \mathbb{R}^n$ and $f_i \in \mathbb{R}^n$, $f_i \in \mathbb{R}^n$ and $f_i \in \mathbb{R}^n$

- To couplete the proof, one needs to consider the coupletion of F including all laust points. This is skipped.

Revert: The main take among property of RKHS: $f(x) = \sum_{i=1}^{n} b_i k(z_i, x_i) \text{ for some } x_i \in X \text{ and } x_i \in IR.$