8 - Kernel Methods: Properties and Applications Feature mop ϕ

Recall: 1-Reproduciy Property: $f \in f, x \in \mathcal{X} \quad f(x)=\langle k(x), f$,$\rangle .$

2 - Moore - Aronszojn
$f, g t \mathcal{F}$ RKHS
Kernel k($(,$.
$f(x)=\sum_{j} x_{i} k\left(x, z_{i}\right) \quad g(x)=\sum_{j} \beta_{i} k\left(x, x_{i}\right)$
$\omega /$ inner prod $\langle f, g\rangle=\sum_{i j} x_{i} \beta_{j} k\left(x_{i}, x_{j}\right)$

- Basic properties and examples

Ex (linear kernel): $k\left(x, x^{\prime}\right)=\left\langle x, x^{\prime}\right\rangle$ where $x, x^{\prime} \in \mathbb{R}^{d}=X$.
RWHS for $k: \mathcal{F}=\left\{f(x)=\sum_{i=c}^{n} x_{i} k\left(x, x_{i}\right): \forall n \in \mathbb{N}, \forall x_{i} \in \mathbb{R}^{d}, \forall \forall_{i} \in \mathbb{R}\right\}$

$$
=\left\{f(x)=\sum_{i=r}^{n} x_{i}\left\langle x_{1}, x_{i}\right\rangle: \forall n \in \mathbb{N}, \forall x_{i} \in \mathbb{R}^{d}, \forall x_{i} \in \mathbb{R}\right\}
$$

nest
lecture!

$$
\begin{aligned}
& =\left\{f(x)=\left\langle x_{1} \sum_{\left.\sum_{t=1}^{n} x_{i} x_{i}\right\rangle}^{\mathbb{R}^{d}}: \forall n \in \mathbb{N}, \forall x_{i} \in \mathbb{R}^{d}, \forall x_{i} \in \mathbb{R}^{\prime}\right\} .\right. \\
& =\left\{f(x)=\{x, \theta\rangle: \theta \in \mathbb{R}^{d}\right\} .
\end{aligned}
$$

Inner prod. for. \mathcal{F} : $f(x)=\left\langle x, \theta_{1}\right\rangle . g(x)=\left\langle x, \theta_{2}\right\rangle$

$$
\begin{aligned}
& =1 \cdot k\left(x, 0_{1}\right) \quad=\beta_{1} k\left(x, 0_{2}\right) \\
& =x_{1} k\left(x, x_{1}\right) .
\end{aligned}
$$

$$
\langle f, g\rangle=\left\langle\theta_{1}, \theta_{2}\right\rangle .
$$

Ex (Comer kernels):

1. Identity kernel: $\dot{k}\left(x, x_{i}\right)=i$. Kernel since $K_{i j}=i$ is PSD.

Polyiound kernel: $k\left(x, x^{\prime}\right)=\left(1+\left\langle x, x^{\prime}\right\rangle\right)^{m}$ is kernel.
Gaussian kernel : $k(x, x!)=\exp \left\{-\frac{1}{2 \sigma^{2}}\left\|x-x^{\prime}\right\|^{2}\right\}$

- Properties

1. Inner prod.: A fac of the form $k\left(x, x^{\prime}\right)=\langle\phi(x), \phi(y)\rangle$ is a kernel (see prov. lecture)
2. Summation: for k_{1} and k_{2} kernels, $k=k_{1}+k_{2}$ is a kernel.

$$
k_{1} \geqslant 0, k_{2} \geqslant 0 \Rightarrow k=k_{1}+k_{2} \text { is PSD. }
$$

3. Hadouard product: For k_{1} and k_{2} kernels, $k=k_{1} \cdot k_{2}$ is a kernel.

$$
\begin{aligned}
& k_{1} \geqslant 0, \quad k_{2} \geqslant 0 . \quad k_{1}=\sum_{k} d_{k} u_{k} u_{\varepsilon}^{\top} \quad k_{2}=\sum_{k} b_{k} v_{k} v_{k}^{\top} \\
& \left(K=K_{1} \circ K_{2}\right)_{i j}=\left(K_{1}\right)_{i j}\left(K_{2}\right)_{i j}=\left(\sum_{k} d_{r} u_{k i} u_{k j}\right)\left(\sum_{k} b_{k} \dot{v}_{k i} v_{t j}\right) \\
& =\sum_{k l} d_{l} b_{l}\left(u_{k i} v_{l i}\right) \cdot\left(u_{l j} v_{l j}\right) \\
& \Rightarrow K=\sum_{k l} \underbrace{d_{l} \cdot b_{l}}_{\geqslant 0}\left(u_{l} \circ v_{l}\right)\left(u_{l} \circ v_{l}\right)^{\top} \geqslant 0
\end{aligned}
$$

-Gaussian kernel: $k\left(x, x^{\prime}\right)=\exp \left\{-\frac{1}{2 \sigma^{2}}\left\|x-x^{\prime}\right\|^{2}\right\}$

$$
k\left(x, x^{\prime}\right)=\underbrace{\exp \left\{-\frac{\|\left. x\right|^{2}}{2 \sigma^{2}}\right\} \exp \left\{-\frac{\|x\|^{2}}{2 \sigma^{2}}\right\}}_{k_{i}} \underbrace{\exp \cdot\left\{\frac{\left\langle x_{1}, x^{\prime}\right\rangle}{\sigma^{2}}\right\}}_{k_{2}}
$$

k_{1} is a kesual. since it is an. inner prod.
k_{2} is a kernel,

$$
\begin{aligned}
& k_{2}\left(x, x^{\prime}\right)=\exp \left\{\frac{\left\langle x_{1} x^{\prime}\right\rangle}{\sigma^{2}}\right\}=\underbrace{\sum_{i=0}^{\infty} \frac{1}{i!}\left(\frac{\left\langle x_{1}^{\prime} x^{\prime}\right\rangle}{\sigma^{2}}\right)^{i}}_{\text {siunnetian of poly tionnels }} . \\
& . k_{2} \text { is a kernel. }
\end{aligned}
$$

$\Rightarrow k_{1} \cdot k_{2}$ is a kernel.

- Learning w/ kernels
* Observe a dataset $D=\left\{\left(x_{i}, y_{i}\right): i=1 \ldots n\right\}$.
* We have an RKHS \mathcal{F}
* Consider $\quad \hat{f}=\underset{f \in \mathcal{F}}{\operatorname{arguin}} \frac{1}{n} \sum_{i=1}^{n} l\left(y_{i}, f\left(z_{i}\right)\right)+\frac{\lambda}{2}\|f\|_{\mathcal{F}}^{2}$

Theareu (Representer thu): For a dataset $D=\left\{\left(r_{i} y_{i}\right)::=1 . . n\right\}$. and a kernel $k(, \cdot)$, let. $V_{0}=\left\{f(x)=\sum_{i=1}^{n} x_{i} k\left(x_{i} x_{i}\right): x_{i} \in \mathbb{R}\right\}$.

Then, $\hat{f} \in V_{D}$.
Rework: Algorithmic consequence: Minimising over $\mathcal{F}=$ Minimizing over v_{D}
Proof: - V_{D} is a subspace of \mathscr{F}.

- Define orthogonal coupleuert of V_{0}

$$
v_{\Delta}^{\perp}=\left\{f^{\prime} \in \mathcal{F}:\left\langle f_{1} f^{\prime}\right\rangle=0 . \quad \forall f \in v_{s}\right\} .
$$

(A vector space is the sum of a subspace and its arthogeral couplers)

$$
\begin{aligned}
& f(x)= f^{\prime \prime}(x)+f^{\perp}(x) \text { where } \\
& f^{\prime \prime} \in v_{\Delta} \text { and } f^{\perp} \in v_{\Delta}^{\perp} \\
& \epsilon \mathcal{F}^{\perp}
\end{aligned}
$$

- Note that $\left(x_{i}, y_{i}\right) \in D$, by the reproducing property of \mathcal{F}

$$
\begin{aligned}
& f^{\perp}\left(x_{i}\right)=\left\langle f_{\in v_{D}^{\prime}}^{\perp}, k\left(x_{i}, \cdot\right)\right\rangle=0 \\
\Rightarrow & f \in v_{D} \\
\Rightarrow & \left.l\left(y_{i}, f\left(x_{i}\right)\right)=l\left(x_{i}\right)=f^{\prime \prime}\left(x_{i}\right)+f^{\perp}\left(x_{i}\right)=f^{\prime \prime}\left(x_{i}\right)\right) .
\end{aligned}
$$

- For the regulerizer: $\|f\|_{f}^{2}=\left\|f^{\prime \prime}+f^{\perp}\right\|_{f}^{2}=\left\|f^{\|}\right\|_{f}^{2}+\left\|f_{f}^{\perp}\right\|_{f}^{2}$.
-Thus, $\quad \dot{f}=\underset{f \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} l\left(y_{i}, f\left(z_{i}\right)\right)+\frac{\lambda}{2}\|f\|_{\mathcal{F}}^{2}$.
- might as well. close $f^{\perp}=0$.

$$
\Rightarrow \hat{f} \in V_{D}
$$

Ex (Squoved error loss): For $l\left(y_{i}, f\left(x_{i}\right)\right)=\frac{1}{2}\left(y_{i}-f\left(x_{i}\right)\right)^{2}$

$$
\hat{f}=\arg \min _{f} \frac{1}{2 n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\frac{\lambda}{2}\|f\|_{f}^{2}
$$

By. the representer. the oren., $\hat{f}(x)=\sum_{i=1}^{n} x_{i} k\left(x, z_{1}\right)$ for some $x_{i} \in \mathbb{R}$:
Finding \hat{f} is equal to finding toss.

$$
\hat{x}={\underset{x i f}{\operatorname{argiin}} \underbrace{}_{i j} \frac{1}{2 n} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{n} x_{j} k\left(x_{i}, x_{j}\right)\right)^{2}}^{n}+\underbrace{\frac{\lambda}{2}\|f\|_{\mathcal{J}}^{2}}_{i}
$$

i) $\|f .\|_{f}^{2}=\langle f, f\rangle=\sum_{i} x_{i} k\left(x_{i}, x_{j}\right) x_{j}=x^{\top} K>$
ii) $\frac{1}{2 n} \sum_{i=1}^{n}\left(y_{i}-\left\langle k_{i},>\right\rangle\right)^{2}=\frac{1}{2 n}\left\|y-K_{\infty}\right\|_{2}^{2}$
$\Rightarrow \hat{x}=\operatorname{ong}_{x \in \mathbb{R}^{n}} \frac{1}{2 n}\left\|y-k_{x}\right\|_{2}^{2}+\frac{\lambda}{2} \cdot x^{\top} k_{\infty}$

$$
\begin{aligned}
k_{i j} & =k\left(x_{i}, x_{j}\right) \\
k_{i} & =\left[\begin{array}{c}
k\left(x_{i}, x_{1}\right) \\
\vdots \\
k\left(x_{i}, x_{n}\right)
\end{array}\right]
\end{aligned}
$$

$\Rightarrow \quad \hat{\jmath}=\left(\frac{1}{n} K+\lambda I\right)^{-1} \frac{1}{n} Y$.
(Wore on this next lecture)

- Maximum Mean Discrepancy (MMD)

Goal: Measure distance between prob. distributing given samples:
Def. $f, f^{\prime}: X \rightarrow \mathbb{R}, \quad\|f\|_{\infty}=\sup _{x \in \mathcal{X}}|f(x)|$ and

$$
\left\|f-f^{\prime}\right\|_{\infty}=\sup _{x \in x}\left|f(x)-f^{\prime}(x)\right|
$$

The folloniy is a way to measure distance between two distributions

Def $(M M D)$: Let p, q. be prob. distributions on X. For. sole $\mathcal{F}=\{f: X \rightarrow \mathbb{R}\}$, define

$$
d \mathcal{F}(p, q)=\sup _{f \in \mathcal{F}}\left|\mathbb{X}_{p}[f(x)]-\mathbb{E}_{q}[f(x)]\right| .
$$

- How to choose F? (Wont Af. $(p, q)=0 \Leftrightarrow p=q$)
- How to compute dy?

Rework: If \mathcal{F} is $1-L_{i p s h i t z} f_{n c}, d f$ is L_{1}-Wasserstein metric.

The oren (Dudley's MMD thun): For $\mathcal{F}=C_{0}$ bod ants fris, then $\quad d_{C_{0}}(p, q)=0 \Leftrightarrow p=q$.
$-L_{1}$ and C_{0} ave too complex and not practical.

Def (Universal kernel): A kernel k is universal if its RKHs \mathcal{F}. is dense in Co.

- \mathcal{F} is dense in C_{0} if for $f \in C_{0}, \forall \in>0, \exists f^{\prime} \in \dot{\mathcal{F}}$ s.t.

$$
\left\|f-f^{\prime}\right\|_{\infty} \leqslant \epsilon
$$

- \exists is "representative il of C_{0}.

Theoren (Stemnert's thu): For unit ball $\mathcal{G}=\left\{f \in \mathcal{F}:\|f\|_{\mathcal{F}} \leq 1\right\}$. where \mathcal{F} is the RKHS of a universal kernel, we have

$$
d_{g}(p, q)=0 \Leftrightarrow p=q .
$$

Proof: F is obvious.. For the other side, let $d_{g}(p, q)=0$. for save $p \neq q$

- $p \neq q \Rightarrow d_{C_{0}}(p, q)=\epsilon>0$ by Dudley's MuD the.

$$
\Rightarrow \exists h \in C_{0} \text { st. }\left|\mathbb{E}_{p}[h(x)]-\mathbb{E}_{q}[h(x)]\right|=\epsilon \text {. }
$$

If $f \notin g$, rescale h, f, ε so $f \in G$.

- \mathcal{F} is dense in Co $\Rightarrow \exists f \in \mathcal{F}$ sit $\|f-u\|_{\infty} \leq \frac{\epsilon}{4}$

$$
\begin{aligned}
& \Rightarrow\left|\mathbb{I}_{p}[f(x)]-\mathbb{E}_{p}[h(x)]\right| \leqslant \frac{\epsilon}{4} \text { and }\left|\mathbb{E}_{q}\{f(x)]-\mathbb{E}_{* *}\{h(x)]\right| \leqslant \frac{\epsilon}{4} \\
& -t=\left|\mathbb{E}_{p} h(x)-\mathbb{E}_{q} h(x)\right|=\left|\mathbb{E}_{p} h(x) \pm \mathbb{F}_{p} f(x) \pm \mathbb{E}_{q} f(x)-\mathbb{E}_{q} h(x)\right| \\
& \text { (by triangle ines.) } \leq\left|\mathbb{E}_{p} h(x)-\mathbb{E}_{p} f(x)\right|+\left|\mathbb{E}_{p} f(x)-\mathbb{E}_{q} f(x)\right|+\left|\mathbb{E}_{q} f(z)-\mathbb{E}_{q} h(x)\right| \\
& * \leq t / 4 \quad \leq d_{g}(p, q)=0 \quad * * \leq \epsilon / 4
\end{aligned}
$$

$\leq \epsilon / 2$ contradiction.

- We shoued thet the unit ball in RKHS is good enoygh.
- But kow to ompute expectatiens?
* By reprotucriy property

$$
\mathbb{E}_{p} f(x)=\mathbb{E}_{\substack{\text { fived }}}^{\mathbb{E}_{c}, \underbrace{f(x,:)}_{\text {rendom }}\rangle}=\left\langle f, \mathbb{E}_{p} k(x, \cdot)\right\rangle=\left\langle f, \mu_{p}^{\mu}\right\rangle
$$

where. μ_{P} is the RKHS eubeddry of P.

* MMD becones :

$$
x_{1}, x^{\prime} \sim p \text { indep. }
$$

2. $\left\|\mu_{q}\right\|^{2} f=\mathbb{E}_{q 9}\left[k\left(y, y^{\prime}\right)\right]$. $y, y^{\prime}: \sim q$ indep.
3. $\left\{\mu_{p}, \mu_{q}\right\rangle=\left\{\mathbb{E}_{p} k(x, \cdot), \mathbb{E}_{q} k(y, \cdot)\right\rangle=\mathbb{E}_{p q}[k(x, y)]$ $x \sim p, y \sim q$ indep.

$$
\begin{aligned}
& d_{g}(p, q)=\sup _{f \in g}\left|\mathbb{E}_{p} f(x)-\mathbb{E q}_{q} f(x)\right| \\
& G=\left\{f:\|f\|_{f} \leq 1\right\}^{\hat{1}} \\
& =\sup _{f \in g}\left|\left\langle f, \mu_{p}-\mu_{q}\right\rangle\right| \\
& =\left\|\mu_{P}-\mu_{q}\right\|_{\mathcal{F}} . \quad \text { (big. smplificetuin) } \\
& * d_{g}(p, q)^{2}=\left\|\mu_{p}-\mu_{q}\right\|_{f}^{2}=\| \underset{p}{\mu_{p} \|_{f}^{2}}+\underset{2}{\left\|\mu_{q}\right\|_{f}^{2}}-2\left\langle\mu_{p}, \mu_{q}\right\rangle \\
& \text { 1. }\left\|\mu_{p}\right\|_{f}^{2}=\left\langle\mu_{p}, \mu_{p}\right\rangle=\left\langle\mathbb{E}_{p} k\left(x_{p}\right), \mathbb{E}_{p} \cdot k\left(x_{r}:\right)\right\rangle \\
& =\mathbb{E}_{p, p}\left[\left\{k\left(x_{1} \cdot\right), k\left(x_{1}, \cdot\right)\right\rangle J\right. \\
& =\mathbb{E}_{P P}\left[\hbar\left(x, x^{\prime}\right)\right] \text {. }
\end{aligned}
$$

Plug back in:

$$
d_{g}(p, q)^{2}=\mathbb{E}_{p p} k\left(x, x^{\prime}\right)+\mathbb{E}_{q q} k\left(y, y^{\prime}\right)-2 \mathbb{E}_{p q} k(x, y)
$$

$x, x^{\prime} \sim p \quad y, y^{\prime} \sim q \quad$ indep.

- Now assume $x_{1} \ldots x_{n} \sim p, y_{1} \ldots y_{n} \sim q$ indef

Def (u-statistic):

$$
u_{n} \triangleq \frac{1}{\binom{n}{2}} \sum_{i<j} k\left(x_{i}, y_{j}\right)+k\left(y_{i}, y_{j}\right)-k\left(x_{i}, y_{j}\right)-k\left(x_{j}, r_{i}\right)
$$

Revert: - Un is en unbiased estimator of $d_{y}(p, q)^{2}$.

- It is also consistent

$$
u_{n} \xrightarrow{p} d_{g}(p, q)^{2}
$$

- You can use U_{n} to meesive distorice between p and q^{\prime}. (benealizatien: next lecture!)

