8 - Kernel Methods: Properties and Applications
Feature wap
$$\mathcal{J}$$

Recall: 1- Reproducing property:
 $f \in \mathcal{J}$, $x \in \mathcal{X}$, $f(x) = \langle k(x,r), f \rangle$
 $2 - Moore - Aronszajn,$
 $1 - Moore - Aronszajn,$
 $1 - Kernel k(x,r)$
 $g(x) = \sum_{j=1}^{n} \beta_j k(x_j, x_j)$
 $w/$ inner prod $\langle f, J \rangle = \sum_{j=1}^{n} \beta_j k(x_j, x_j)$
 $w/$ inner prod $\langle f, J \rangle = \sum_{j=1}^{n} \beta_j k(x_j, x_j)$
 $\frac{-Basic}{y} properties and examples$
 $Ex (linear kinel): k(x, x) = \langle x, x \rangle$ where $x, x^j \in \mathbb{R}^d$, $\forall x_i \in \mathbb{R}^d$, $\forall x_i \in \mathbb{R}^d$
 $R \in \mathbb{R}^d$, $f(x) = \sum_{i=1}^{n} x_i k(x_i, x_i) : \forall n \in \mathbb{N}, \forall x_i \in \mathbb{R}^d, \forall x_i \in \mathbb{R}^d$
 $R \in \mathbb{R}^d$
 $i = \{f(x) = \langle x_i, \sum_{i=1}^{n} x_i \in \{x_i, x_i\} : \forall n \in \mathbb{N}, \forall x_i \in \mathbb{R}^d, \forall x_i \in \mathbb{R}^d$
 $i = \{f(x) = \langle x_i, \theta_i \rangle : \theta \in \mathbb{R}^d\}$
 $= \{f(x) = \langle x_i, \theta_i \rangle : \theta \in \mathbb{R}^d\}$
 $i = i k(x_i, q_i)$
 $i = k(x_i, x_i) = (i + (x_i, x_i)) = (i + (x_i, x_i))^m$ is kerwel.
 $i = i = k(x_i, x_i)^2$
 $i = k(x_i, x_i) = (i + (x_i, x_i) = (i + (x_i, x_i))^m$ is kerwel.
 $i = Gaussian$ kerwel : $k(x_i, x_i) = (x_i + x_i)^m$ is kerwel.

- Properties
1. Inner prod : A fie of the fame
$$k(2x^{i}) = \langle \phi(2), \phi(2) \rangle$$

is a brack (see prov. lecture)
2. Summation: For k_{1} and k_{2} bracks, $k \in k_{1} \in k_{2}$ is a brack.
 $k_{1} \geq 0$, $k_{2} \geq 0$ \Rightarrow $k = k_{1} + k_{2}$ is PSD
3. Hardowed product: For k_{1} and k_{2} bracks, $k = k_{1} \in k_{3}$ is a brack.
 $k_{1} \geq 0$, $k_{2} \geq 0$ \Rightarrow $k_{1} = \sum_{k} d_{k} u_{k} u_{k}^{T}$, $k_{2} = \sum_{k} b_{k} u_{k} v_{k}^{T}$
 $(k = k_{1} \circ k_{2})_{ij} = (k_{i})_{ij} (k_{2})_{ij} = (\sum_{k} d_{k} u_{ki} u_{ij}) (\sum_{k} b_{k} v_{k}; u_{ij})$
 $= \sum_{k} d_{k} b_{k} (u_{i}, v_{k}) \cdot (u_{ij} \vee k_{ij})$
 \Rightarrow $k = \sum_{k} d_{k} b_{k} (u_{i} \circ v_{k}) (u_{k} \circ u_{k})^{T} \geq 0$
 $- Polynowed (bard): k(u_{i} \circ v_{k}) = (1 + \langle z_{i} \sigma^{2} \rangle)^{\infty} \Rightarrow product rule
interpret
 $v_{k} u_{k} v_{k} = \sum_{k} d_{k} b_{k} (u_{i} \circ v_{k}) (u_{k} \circ u_{k})^{T}$
 $k(x, x^{i}) = exp \left\{ -\frac{har}{2\pi^{3}} \right\} exp \left\{ -\frac{har}{2\pi^{3}} \right\} exp \left\{ \frac{\langle z_{i} z_{i} \rangle}{\sigma^{3}} \right\}^{T}$
 k_{1} is a kanal since it is an inner prod.
 k_{2} is a kanal,
 k_{2} is a kanal.
 \Rightarrow $k_{1} \cdot k_{2}$ is a kanal.$

- Learning uf karnels
* Observe a dataset
$$D = \{(z_i, v_i) : i = 1, \dots, n\}$$
.
* We have an RKHS \mathcal{F}
* Consider $\hat{f} = \underset{i=1}{\operatorname{arguin}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(v_i, f(v_i)) + \frac{1}{2} \|f\|_{\mathcal{F}}^{n}$.
Theorem (Representor thum): For a dataset $D = \{(z_i, v_i), v_i = 1, \dots, n\}$.
and a karnel $k(\cdot, \cdot)$, let $V_{\mathcal{F}} = \{f(x) = \sum_{i=1}^{n} x_i k(v, z_i) \cdot x_i \in R\}$.
Remark: Algorithmic consequence: Minimum our $\mathcal{F} = Minimizing our V_{\mathcal{F}}$.
Remark: Algorithmic consequence of \mathcal{F} .
- Define orthrogenel complement of $V_{\mathcal{D}}$.
(A sector space is the sum of a subspace and its arthrogenel completed)
 $f \in \mathcal{F}$
 $f (x) = f''(x) + f^{-1}(x)$ where
 $f''' \in \mathcal{F}$.
- Mode that $(x_i, v_i) \in D$, by the reproducing property of \mathcal{F}
 $f^+(v_i) = \langle f_{\mathcal{F}}^{+}, k(x_i, \cdot) \rangle = 0$.
 $\in V_{\mathcal{D}}$ is $(v_i, f^{-1}(x)) = f'''(x_i)$.

$$- \operatorname{For} + \operatorname{ke} \operatorname{regularizer} = \| f \|_{\mathcal{F}}^{2} = \| f_{1}^{u} + f^{\perp} \|_{\mathcal{F}}^{2} = \| f^{u} \|_{\mathcal{F}}^{2} + \| f^{\perp} \|_{\mathcal{F}}^{2}$$

$$- \operatorname{Thus}, \quad \widehat{f} = \operatorname{arguma}_{1} \quad \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\gamma_{i}, f^{i}(z_{i})) + \frac{\lambda}{2} \| f^{\perp} \|_{\mathcal{F}}^{2} + \frac{\lambda}{2} \| f^{\perp} \|_{\mathcal{F}}^{2}$$

$$= \operatorname{arguma}_{1} \quad \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\gamma_{i}, f^{i}(z_{i})) + \frac{\lambda}{2} \| f^{\perp} \|_{\mathcal{F}}^{2} + \frac{\lambda}{2} \| f^{\perp} \|_{\mathcal{F}}^{2}$$

$$= \operatorname{arguma}_{1} \quad \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\gamma_{i}, f^{i}(z_{i})) + \frac{\lambda}{2} \| f^{\perp} \|_{\mathcal{F}}^{2} + \frac{\lambda}{2} \| f^{\perp} \|_{\mathcal{F}}^{2}$$

$$= \operatorname{arguma}_{1} \quad \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\gamma_{i}, f^{i}(z_{i})) + \frac{\lambda}{2} \| f^{\perp} \|_{\mathcal{F}}^{2} + \frac{\lambda}{2} \| f^{\perp} \|_{\mathcal{F}}^{2}$$

$$= \operatorname{arguma}_{1} \quad \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\gamma_{i}, f^{i}(z_{i})) + \frac{\lambda}{2} \| f^{\perp} \|_{\mathcal{F}}^{2} + \frac{\lambda}{2} \| f^{\perp} \|_{\mathcal{F}}^{2}$$

$$= \operatorname{arguma}_{1} \quad \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\gamma_{i}, f^{i}(z_{i})) + \frac{\lambda}{2} \| f^{\perp} \|_{\mathcal{F}}^{2}$$

$$= \operatorname{arguma}_{1} \quad \frac{1}{n} \sum_{i=1}^{n} (\gamma_{i}, f^{i}(z_{i})) + \frac{\lambda}{2} \| f^{\perp} \|_{\mathcal{F}}^{2}$$

$$= \operatorname{arguma}_{1} \quad \frac{1}{n} \sum_{i=1}^{n} (\gamma_{i}, f^{i}(z_{i})) + \frac{\lambda}{2} \| f^{\perp} \|_{\mathcal{F}}^{2}$$

$$= \operatorname{arguma}_{1} \quad \frac{1}{n} \sum_{i=1}^{n} (\gamma_{i}, f^{i}(z_{i})) + \frac{\lambda}{2} \| f^{\perp} \|_{\mathcal{F}}^{2}$$

$$= \operatorname{arguma}_{1} \quad \frac{1}{n} \sum_{i=1}^{n} (\gamma_{i}, f^{i}(z_{i})) + \frac{\lambda}{2} \| f^{\perp} \|_{\mathcal{F}}^{2}$$

$$= \operatorname{arguma}_{1} \quad \frac{1}{n} \sum_{i=1}^{n} (\gamma_{i}, f^{i}(z_{i})) + \frac{\lambda}{2} \| f^{\perp} \|_{\mathcal{F}}^{2}$$

$$= \operatorname{arguma}_{1} \quad \frac{1}{n} \sum_{i=1}^{n} (\gamma_{i}, f^{i}(z_{i})) + \frac{\lambda}{2} \| f^{\perp} \|_{\mathcal{F}}^{2}$$

$$= \operatorname{arguma}_{1} \quad \frac{1}{n} \sum_{i=1}^{n} (\gamma_{i}, f^{i}(z_{i})) + \frac{\lambda}{2} \| f^{\perp} \|_{\mathcal{F}}^{2}$$

$$= \operatorname{arguma}_{1} \quad \frac{1}{n} \sum_{i=1}^{n} (\gamma_{i}, f^{i}(z_{i})) + \frac{\lambda}{2} \| f^{\perp} \|_{\mathcal{F}}^{2}$$

$$= \operatorname{arguma}_{1} \quad \frac{1}{n} \sum_{i=1}^{n} (\gamma_{i}, f^{i}(z_{i})) + \frac{\lambda}{2} \| f^{\perp} \|_{\mathcal{F}}^{2}$$

$$= \operatorname{arguma}_{1} \quad \frac{1}{n} \sum_{i=1}^{n} (\gamma_{i}, f^{i}(z_{i})) + \frac{\lambda}{2} \| f^{\perp} \|_{\mathcal{F}}^{2}$$

$$= \operatorname{arguma}_{1} \quad \frac{1}{n} \sum_{i=1}^{n} (\gamma_{i}, f^{i}(z_{i})) + \frac{\lambda}{2} \| f^{\perp} \|_{\mathcal{F}}^{2}$$

$$= \operatorname{arguma}_{1} \quad \frac{1}{n} \sum_{i=1}^{n} (\gamma_{i}, f^{i}(z_{i})) + \frac{\lambda}{2} \| f^{\perp} \|_{\mathcal{F}}^{2} \| f^{\perp} \|_{\mathcal{F}}^{2} + \frac{\lambda}{2} \| f^{\perp} \|_$$

- Maximum Meon Discreponcy (MMD) Goal: Measure dos tonce between prob. dostributions gover somples. Def: $f, f': X \rightarrow \mathbb{R}$, $\|f\|_{\infty} = \sup_{z \in X} |f(z)|$ and $\|f-f'\|_{\infty} = \sup_{x \in X} |f(x)-f'(x)|.$ The following is a way to measure distance between two distributions. Def (MMD); Let p,q be prob. distributions on X. For some $f = \{f : X \rightarrow R\}$, define $d_{\mathcal{F}}(p,q) = \sup \left| \mathbb{H}_{p}[f(z)] - \mathbb{H}_{q}[f(z)] \right|$ - How to choose F_{i}^{2} (Want $d_{f}(p,q) = 0 \iff p=q$) - How to compute d_{f}^{2} Reverk: If I is I-Lipshitz fre, dJ is LI-Wasserstein vetric. d_L (p,q) = W₁ (p,q) ≜ inf ⊞[llz-yllz] By Monge-Kontorovich znp, yng duality. There (Dudley's MMD + h_{M}): For $F = C_0$ bdd ents fres, then $d_{C_0}(p,q) = 0 \iff p = q$. - 1, and G eve too couplex and not proctical.

Def (Universal kernel): A kernel k is universal if its RKHS 7 is dense in Co. - F is dense in Co if for fECo, HE>O, Jf'EF s.t. $\|f-f'\|_{\infty} \leq \epsilon$. I is "representative" of Co. Theorem (Stemmert's thu): For unit ball $G = \{f \in \mathcal{F} : \|f\|_{\mathcal{F}} \leq 1\}$ where F is the RKHS of a universal kernel, we have $d_{\mathcal{G}}(p,q) = 0 \iff p = q.$ Proof: \Leftarrow is obvious. For the other side, let $d_{\mathcal{G}}(p,q) = 0$ for some $p \neq q$. $-p \neq q \Rightarrow d_{C_0}(p,q) = \epsilon > 0$ by Dudley's MMD Hum. $\Rightarrow \exists h \in C_{0} \quad \text{s.t} \quad \left| \mathbb{E}_{p} [h(x)] - \mathbb{E}_{q} [h(x)] \right| = \epsilon.$ $= \int f \notin \mathcal{F}_{q}, \text{ rescale } h, f, \epsilon \text{ so } f \notin q.$ $= \int f \notin \mathcal{F}_{q} \text{ s.t } \|f - h\|_{\infty} \leq \frac{\epsilon}{4}$ $= \sum_{k} \left| \mathbb{E}_{p} \left[f(x) \right] - \mathbb{E}_{p} \left[h(x) \right] \right| \leq \frac{\varepsilon}{4} \text{ and } \left| \mathbb{E}_{q} \left[f(x) \right] - \mathbb{E}_{q} \left[h(x) \right] \right| \leq \frac{\varepsilon}{4}$ $\mathcal{E} = \left| \mathbb{E}_{p} h(z) - \mathbb{E}_{q} h(z) \right| = \left| \mathbb{E}_{p} h(z) \pm \mathbb{E}_{p} f(z) \pm \mathbb{E}_{q} f(z) - \mathbb{E}_{q} h(z) \right|$ $(\text{by triangle ineq.}) \leq | \mathbb{E}_{p} h(x) - \mathbb{E}_{p} f(x) | + | \mathbb{E}_{p} f(x) - \mathbb{E}_{q} f(x) | + | \mathbb{E}_{q} f(x) - \mathbb{E}_{q} h(x) |$ $\times \leq \epsilon/_{4} \qquad \leq d_{q} (p,q) = 0 \qquad \times \times \leq \epsilon/_{4}$ < E/2 contradiction.

- We should that the unit ball in RLHS is good enorth.
- But low to compute expectations?
* By representing property
Ep f(2) = Ep
$$\langle f, k(\alpha, i) \rangle = \langle f, Epk(\alpha, i) \rangle = \langle f, \mu \rangle$$

Here is the RRHS enbedding of P.
* MUD becomes:
dg (p,q) = sup $|Epf(\alpha) - Eqf(\alpha)|$
 $f \in G$
 $f \in G$
 $f \in G$
 $f \in G$
 $f = [f : |ff|_{g \in I}]^{5}$
 $= sup |\langle f, \mu \rangle - \mu_{q} ||_{F}$ (two surplification)
* dg (p,q)^{2} = $||\mu_{p} - \mu_{q} ||_{F}^{2} = ||\mu_{p}||_{H}^{1} + ||\mu_{q}||_{T}^{2} - 2 \langle \mu_{p}, \mu_{q} \rangle$
 $f \in G$
 $f \in G$
 $f = Epp [\langle k(\alpha, i), Eppk(\alpha, i) \rangle$
 $f = Epp [\langle k(\alpha, i), Eqk(\alpha, i) \rangle$
 $f = Epp [k(\alpha, i), Eqk(\alpha, i) \rangle$
 $f = Epp [k(\alpha, i), Eqk(\alpha, i) \rangle$

Plug back in: $d_{g}(p,q)^{2} = \mathbb{E}_{pp} \mathbb{E}(x,x') + \mathbb{E}_{qq} \mathbb{E}(y,y') - 2\mathbb{E}_{pq} \mathbb{E}(x,y)$ $\pi_{j}x^{j} \sim p \quad y,y' \sim q \quad indep.$ - Now assume $x_1 - x_n \sim p$, $y_1 - - y_n \sim q$ indep. Def (U-statistic): $\mathcal{U}_{n} \triangleq \frac{1}{\binom{n}{2}} \sum_{k} k(\mathbf{x}_{i}, \mathbf{y}_{j}) + k(\mathbf{y}_{i}, \mathbf{y}_{j}) - k(\mathbf{x}_{i}, \mathbf{y}_{j}) - k(\mathbf{x}_{j}, \mathbf{y}_{i})$ icj Reverte - Un is on unbiased estimater of $d_{g}(p_{,q})^{2}$. - It is also consistent $U_n \xrightarrow{P} d_g (p,q)^2$ - You can use Un to measure drs tonce between pand q. (Beneralization: next lecture)