


































































10 Linearization

a.k.a Neural tangent Kernel

Last lecture we computed riskcurves associated with overparametrized

linear models under implicit bias e.g min norm solution

Gradient Flows on Rd
We want to train themodel using a gradient based algorithm

Gradient flows are easier to analyze but not practical

Gradient descent is practical

angmine to via Of FRG GD

step size

rearrange TRIG

fig ét IRA GF

GD is the Euler discretization of GF For small7
GD behaves like GF

c

Proposition If At pedt then At eptDo

Prof eMᵗΔt µeMᵗDt eat At
pentAt peentaz by c

Integrating bothSides yields the result





































































Assumption Polyak Lojasewtez PL Inequality For MSO
HO RIO RCA HIRCO112

Proposition PL C for At R Ot RCO

proof ROH ROH IROH

Trial TRIA

ITR A 112

MESH
by PL

Assumption StrongConvexity Sc At Ox R is SC

NO 0 TRO f 110011

Proposition SC C for Dt lot 017

proof 7,1112
A 07

Ot Ox TRIA

n III
by SC

Td

Rework In fact SC PL so it is a stronger condition

In both cases GF converges exponentially fast





































































Linearization

Recall We want to train a function s.t

Y f rio
output inputJarome

e9 f is NN

Data Yi di for i l n let rifled and DEIRP

Yn tirn fulo earn

fluid

Empirical risk RIO In114 1101112
Minimise R O with GF

Of 4 fatal Yn facet
FFTacobient of fn RP IR

J6H18 argues that in highly overperametrined regime changes

only slightly w.it initialization do

Therefore we compare It with its linearization at Q

f f l
which minimizes 40 in Y fallo IfnOo 0004

Why expect generalization

If Ifn do is full rank 0 8 0 is on affinesubspa

of dimpy





































































To arging 1100011 If 100510 00 y f 10

ee minimum

as
But how realistic is this approximation

1 Q OI t 2 f lot fiat

This regime
is called the linear regnie

Is generalizes Of It t

GF trained MN generalines

Theorem Let Tmaxm.ni tmaxym.nl fn10o Assume Ifn is L Lipschitz and

114 faloo a tenfold
1 Then the empirical risk decreases exponentially fast to 0 i e

for µ T.in 2n Rla 10 e dot

2 Parameters stayclose to initialization

119 0011 f 114 4100711
Remarks

1 Theorem is about the original GF No linearization yet

2 Initialize close to the global mon

converge to it exponentially fast local convergence






















































proof 1 Let ft f Q so ROt Illft Yall

on
done

f kt f Yn Ko NeuralTangentKernel

Also 12101 111ft Yn1P 4ft Yn ft
ft Yn ktHtYn

Let If out inf t 118 0011 r

Below calculations are for t t

1 Fact Weyl's inequality EigenSingular values are 1 Lipshutz

t t Tum Ifnlot Tin Ifndo IfnOt IfndoHop

µÉ
L114 0011 TMI

Amin Kt 5mm Ifn A for t t

needs ft 1h11 ft Yn ktHtYn

Ill ft Yuk
Ef C is satisfied

Iff



2
11011 411Ifn Ot 1ft Yn I
11ft all t

III Htflat ft in ll
Thus I 11ft yall Is 1140011

i
an

11ftYall II 110111 0 14

119 0011 110th by a

11ftYall by 16

Integrating 1140011 E.nl o Ynl1

d Finally if 7 20 110 0011 fmlfo Ynll

In III
ÉÉ

v contradict is

So far we analyzed the actual GF How about the linearization

Need Of If so that weget generalisation via implicit bias



Theorem Original and linearized flows closely track eachother

Hot Fell T Ynfnloolllffmllt f.co l tmax

Remark Implicit bias

Sharper analysis is possible seeBMR21

proof Let f f do Ifn do of 00 As before we get

It Ko Ft Yn NeuralTangentkernel

This is now constant due to linearization

Applying for kt replaced with Ko we get

11ft Yall eMt117 Yall
fo since 00 0

11ft fill 11ft Yall 11ftYall

2 eMtMfoYall

Recall Of A Yn ft

Ifn YnFt
Thus

110 0711 Hot Fell
411TfnOt IfnOo f Ilynfell 114001111ftfill

fifty EH I Etienne an



2eMᵗ1Yn foll n.fmlYnfoll The

Integrating this we get note 00 8

Hot Fell 114m foll n.fmYnfoll 5m

Two layer Neural Networks

Consider fluid ago Lwj x 0 win swm

p ndwifth shep the
For simplicity choose halfof Aj's 1 and other half 1

Initialise Do Win Unf Stl
Train via GF
We can compute If a o

gr Indj
t wjini Nik

itin Iii taffly
Lemma BMR21 Under certain conditions whip

1 114m frillo l IM 3 Tax Tn A

2 5min I 4 L Fm Atr

Corollary If msn and don

118 0711 once

Remarks 1 Since is the min norm solution implicitbias
generalization

2 This result can be sharpened See BMR21



proof

By the theorem weget
Hot Fell Emlyn fall Em 4facollemax

usingtheestimates In ELAN In in it
in theLenna

IT E D


