HOMEWORK 1 - V3

CSC2547/STA4273 WINTER 2019

University of Toronto

1. Gaussian mean estimation.

1.1. Optimal shrinkage factor [10pts]. Let $X_1, X_2, ..., X_n \in \mathbb{R}^d$ be i.i.d. multivariate Gaussian random vectors, i.e., $X_i \sim \mathcal{N}(\mu, \sigma^2 I)$. Denoting the sample mean estimator with $\hat{\mu} \triangleq \frac{1}{n} \sum_{i=1}^n X_i$, consider an estimator of the form $\hat{\mu}^s = \left(1 - \frac{\tau}{\|\hat{\mu}\|_2^2}\right)\hat{\mu}$. Find the optimal τ that minimizes the risk $R(\hat{\mu}^s, \mu) = \mathbb{E}[\|\hat{\mu}^s - \mu\|_2^2]$.

1.2. Generalizing Stein's lemma [10pts]. Let $X \sim p_{\eta}(x)$ and $g_{\eta} : \mathbb{R}^d \to \mathbb{R}^d$ where $p_{\eta}(x)$ and $g_{\eta}(x)$ are differentiable w.r.t η and x, and let $\mathbb{E}[g_{\eta}(X)] = \xi(\eta)$ for some function ξ . Show that

(a)
$$\mathbb{E}[\nabla_x \log p_\eta(X)g_\eta(X)^\top] + \mathbb{E}[\nabla_x g_\eta(X)] = 0,$$

(b)
$$\mathbb{E}[\nabla_{\eta} \log p_{\eta}(X)g_{\eta}(X)^{\top}] + \mathbb{E}[\nabla_{\eta}g_{\eta}(X)] = \nabla_{\eta}\xi(\eta).$$

1.3. Generalizing SURE [10pts]. Let $X \sim \mathcal{N}(\mu, \Sigma)$ where $\mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$. If $\hat{\mu}(X) \in \mathbb{R}^d$ is an estimator of the form X + g(X) where $g : \mathbb{R}^d \to \mathbb{R}^d$ is differentiable. Define the functional

$$S(X,\hat{\mu}) = \operatorname{Tr}(\Sigma) + 2\operatorname{Tr}(\Sigma\nabla_x g(X)) + \|g(X)\|_2^2.$$

Then show that $S(X, \hat{\mu})$ is an unbiased estimator of the risk, i.e., $\mathbb{E}[\|\hat{\mu}(x) - \mu\|_2^2] = \mathbb{E}[S(X, \hat{\mu})]$.

2. Exponential families.

2.1. Second moment [10pts]. For a random variable $X \sim p_{\eta}(x) = \exp(\langle \eta, \phi(x) \rangle - \psi(\eta))$, let $\mathbb{E}[\phi(X)] = \mu$. For $\xi \in \mathbb{R}^d$, find $\operatorname{Tr}(\mathbb{E}[(\phi(X) - \xi)(\phi(X) - \xi)^{\top}])$ in terms of ξ and $\nabla^i_{\eta}\psi(\eta)$ for $i \geq 0$.

2.2. Score function [10pts]. Assume that $X \sim p_{\eta}(x)$ where p_{η} is not necessarily in the exponential family form. Denote the log-likelihood by $\ell_{\eta}(x) = \log p_{\eta}(x)$, show that

(a)
$$\mathbb{E}[\nabla_{\eta}\ell_{\eta}(X)] = 0.$$

(b) $\mathbb{E}[\nabla_{\eta}\ell_{\eta}(X)\nabla_{\eta}\ell_{\eta}(X)^{\top}] = -\mathbb{E}[\nabla_{\eta}^{2}\ell_{\eta}(X)]$ (Problem 1.2 may be helpful)

2.3. Maximum entropy principle [Bonus 2pts]. Assume that p(x) is a probability mass function of a discrete random variable taking values from a finite set \mathcal{X} . Entropy of p is defined as $H(p) = -\sum_{x \in \mathcal{X}} p(x) \log p(x)$. For $\phi : \mathcal{X} \to \mathbb{R}^d$, show that the maximum entropy distribution satisfying $\mathbb{E}_p[\phi(X)] = \mu \in \mathbb{R}^d$ is a member of exponential family. That is, show that the solution to

$$\underset{p}{\text{maximize}} H(p) \text{ subject to: } \mathbb{E}_p[\phi(X)] = \mu,$$

is an exponential family. (Hint: Write the Lagrangian associated with the above optimization problem. Since \mathcal{X} is finite, think of p(x) as a vector and maximize over it.)