HOMEWORK 1 - V3

Csc2547/Sta4273 Winter 2019

University of Toronto

Version history: V0 \rightarrow V1: FIX TRANSPOSE (q1.2), FIX NORM (q1.3)
V1 \rightarrow V2: FIX STATEMENT (q1.2), ADD RANGE OF ϕ (q2.3)
V2 \rightarrow V3: ADD PART B (q1.2), CLARIFY GRADIENTS
V3 \rightarrow V4: CLARIFY (q2.1)

1. Gaussian mean estimation.

1.1. Optimal shrinkage factor [10pts]. Let $X_1, X_2, ..., X_n \in \mathbb{R}^d$ be i.i.d. multivariate Gaussian random vectors, i.e., $X_i \sim \mathcal{N}(\mu, \sigma^2 I)$. Denoting the sample mean estimator with $\hat{\mu} \triangleq \frac{1}{n}$ $\frac{1}{n} \sum_{i=1}^n X_i$ consider an estimator of the form $\hat{\mu}^s = \left(1 - \frac{\tau}{\ln s}\right)$ $\|\hat{\mu}\|_2^2$ $(\hat{\mu})$. Find the optimal τ that minimizes the risk $R(\hat{\mu}^s, \mu) = \mathbb{E}[\|\hat{\mu}^s - \mu\|_2^2]$ $\binom{2}{2}$.

1.2. Generalizing Stein's lemma [10pts]. Let $X \sim p_{\eta}(x)$ and $g_{\eta}: \mathbb{R}^d \to \mathbb{R}^d$ where $p_{\eta}(x)$ and $g_n(x)$ are differentiable w.r.t η and x, and let $\mathbb{E}[g_n(X)] = \xi(\eta)$ for some function ξ . Show that

- (a) $\mathbb{E}[\nabla_x \log p_{\eta}(X) g_{\eta}(X)^{\top}] + \mathbb{E}[\nabla_x g_{\eta}(X)] = 0,$
- (b) $\mathbb{E}[\nabla_{\eta} \log p_{\eta}(X) g_{\eta}(X)^{\top}] + \mathbb{E}[\nabla_{\eta} g_{\eta}(X)] = \nabla_{\eta} \xi(\eta).$

1.3. Generalizing SURE [10pts]. Let $X \sim \mathcal{N}(\mu, \Sigma)$ where $\mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$. If $\hat{\mu}(X) \in \mathbb{R}^d$ is an estimator of the form $X + g(X)$ where $g : \mathbb{R}^d \to \mathbb{R}^d$ is differentiable. Define the functional

> $S(X, \hat{\mu}) = \text{Tr}(\Sigma) + 2 \text{Tr}(\Sigma \nabla_x g(X)) + ||g(X)||_2^2$ $rac{2}{2}$.

Then show that $S(X, \hat{\mu})$ is an unbiased estimator of the risk, i.e., $\mathbb{E}[\|\hat{\mu}(x) - \mu\|_2^2]$ 2_{2}^{2}] = $\mathbb{E}[S(X,\hat{\mu})].$

2. Exponential families.

2.1. Second moment [10pts]. For a random variable $X \sim p_{\eta}(x) = \exp(\langle \eta, \phi(x) \rangle - \psi(\eta) \rangle$, let $\mathbb{E}[\phi(X)] = \mu$. For $\xi \in \mathbb{R}^d$, find $\text{Tr}(\mathbb{E}[(\phi(X) - \xi)(\phi(X) - \xi)^{\top}])$ in terms of ξ and $\nabla_{\eta}^i \psi(\eta)$ for $i \geq 0$.

2.2. Score function [10pts]. Assume that $X \sim p_{\eta}(x)$ where p_{η} is not necessarily in the exponential family form. Denote the log-likelihood by $\ell_n(x) = \log p_n(x)$, show that

(a)
$$
\mathbb{E}[\nabla_{\eta} \ell_{\eta}(X)] = 0.
$$

\n(b) $\mathbb{E}[\nabla_{\eta} \ell_{\eta}(X) \nabla_{\eta} \ell_{\eta}(X)^{\top}] = -\mathbb{E}[\nabla^2_{\eta} \ell_{\eta}(X)]$ (Problem 1.2 may be helpful).

2.3. Maximum entropy principle *[Bonus 2pts]*. Assume that $p(x)$ is a probability mass function of a discrete random variable taking values from a finite set X. Entropy of p is defined as $H(p)$ = $-\sum_{x\in\mathcal{X}} p(x) \log p(x)$. For $\phi: \mathcal{X} \to \mathbb{R}^d$, show that the maximum entropy distribution satisfying $\mathbb{E}_p[\phi(X)] = \mu \in \mathbb{R}^d$ is a member of exponential family. That is, show that the solution to

$$
\underset{p}{\text{maximize}} H(p) \text{ subject to: } \mathbb{E}_p[\phi(X)] = \mu,
$$

is an exponential family. (Hint: Write the Lagrangian associated with the above optimization problem. Since $\mathcal X$ is finite, think of $p(x)$ as a vector and maximize over it.)