Overview

- **Classification**: predicting a discrete-valued target
 - **Binary classification**: predicting a binary-valued target
 - **Multiclass classification**: predicting a discrete (> 2)-valued target

- **Examples of multi-class classification**
 - predict the value of a handwritten digit
 - classify e-mails as spam, travel, work, personal
Multiclass Classification

Classification tasks with more than two categories:

- Some examples from an earlier version of the net
Multiclass Classification

- Targets form a discrete set \(\{1, \ldots, K\} \).
- It’s often more convenient to represent them as one-hot vectors, or a one-of-K encoding:

\[
t = (0, \ldots, 0, 1, 0, \ldots, 0) \in \mathbb{R}^K
\]

entry \(k \) is 1
Multiclass Classification

- Now there are D input dimensions and K output dimensions, so we need $K \times D$ weights, which we arrange as a weight matrix W.
- Also, we have a K-dimensional vector b of biases.
- Linear predictions:

$$z_k = \sum_{j=1}^{D} w_{kj} x_j + b_k \quad \text{for} \quad k = 1, 2, \ldots, K$$

- Vectorized:

$$z = Wx + b$$
Multiclass Classification

- Predictions are like probabilities: want $1 \geq y_k \geq 0$ and $\sum_k y_k = 1$
- A natural activation function to use is the softmax function, a multivariable generalization of the logistic function:

$$y_k = \text{softmax}(z_1, \ldots, z_K)_k = \frac{e^{z_k}}{\sum_{k'} e^{z_{k'}}}$$

- The inputs z_k are called the logits.
- Properties:
 - Outputs are positive and sum to 1 (so they can be interpreted as probabilities)
 - If one of the z_k is much larger than the others, $\text{softmax}(z)_k \approx 1$ (behaves like argmax).
 - Exercise: how does the case of $K = 2$ relate to the logistic function?
- Note: sometimes $\sigma(z)$ is used to denote the softmax function; in this class, it will denote the logistic function applied elementwise.
If a model outputs a vector of class probabilities, we can use cross-entropy as the loss function:

\[L_{\text{CE}}(y, t) = -\sum_{k=1}^{K} t_k \log y_k \]

where the log is applied elementwise.

Just like with logistic regression, we typically combine the softmax and cross-entropy into a \textit{softmax-cross-entropy} function.
Multiclass Classification

- **Softmax regression:**
 \[
 z = \mathbf{Wx} + \mathbf{b} \\
 \mathbf{y} = \text{softmax}(z) \\
 \mathcal{L}_{\text{CE}} = -\mathbf{t}^\top (\log \mathbf{y})
 \]

- Gradient descent updates can be derived for each row of \(\mathbf{W} \):
 \[
 \frac{\partial \mathcal{L}_{\text{CE}}}{\partial \mathbf{w}_k} = \left(\frac{\partial \mathcal{L}_{\text{CE}}}{\partial z_k} \right) \cdot \frac{\partial z_k}{\mathbf{w}_k} = (y_k - t_k) \cdot \mathbf{x}
 \]
 \[
 \mathbf{w}_k \leftarrow \mathbf{w}_k - \alpha \frac{1}{N} \sum_{i=1}^{N} (y_k^{(i)} - t_k^{(i)}) \mathbf{x}^{(i)}
 \]

- Similar to linear/logistic reg (no coincidence) (verify the update)
Visually, it’s obvious that **XOR** is not linearly separable. But how to show this?
Limits of Linear Classification

Showing that XOR is not linearly separable (proof by contradiction)

- If two points lie in a half-space, line segment connecting them also lie in the same halfspace.

- Suppose there were some feasible weights (hypothesis). If the positive examples are in the positive half-space, then the green line segment must be as well.

- Similarly, the red line segment must line within the negative half-space.

- But the intersection can’t lie in both half-spaces. Contradiction!
Limits of Linear Classification

- Sometimes we can overcome this limitation using feature maps, just like for linear regression. E.g., for XOR:

 \[\psi(x) = \begin{pmatrix} x_1 \\ x_2 \\ x_1 x_2 \end{pmatrix} \]

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(\psi_1(x))</th>
<th>(\psi_2(x))</th>
<th>(\psi_3(x))</th>
<th>(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- This is linearly separable. (Try it!)

- Not a general solution: it can be hard to pick good basis functions. Instead, we’ll use neural nets to learn nonlinear hypotheses directly.
Neural Networks

\[w_{11} \]

\[w_{43} \]
Neurons receive input signals and accumulate voltage. After some threshold they will fire spiking responses.

[Pic credit: www.moleculardevices.com]
Inspiration: The Brain

- For neural nets, we use a much simpler model neuron, or **unit**:

\[
y = \sigma \left(w^\top x + b \right)
\]

- Compare with logistic regression: \(y = \sigma (w^\top x + b) \)

- By throwing together lots of these incredibly simplistic neuron-like processing units, we can do some powerful computations!
Multilayer Perceptrons

- We can connect lots of units together into a directed acyclic graph.
- Typically, units are grouped together into layers.
- This gives a feed-forward neural network. That’s in contrast to recurrent neural networks, which can have cycles.
Multilayer Perceptrons

- Each hidden layer \(i \) connects \(N_{i-1} \) input units to \(N_i \) output units.
- In the simplest case, all input units are connected to all output units. We call this a **fully connected layer**. We’ll consider other layer types later.
- Note: the inputs and outputs for a layer are distinct from the inputs and outputs to the network.
- If we need to compute \(M \) outputs from \(N \) inputs, we can do so in parallel using matrix multiplication. This means we’ll be using a \(M \times N \) matrix.
- The output units are a function of the input units:
 \[
 y = f(x) = \phi(Wx + b)
 \]
- A multilayer network consisting of fully connected layers is called a **multilayer perceptron**. Despite the name, it has nothing to do with perceptrons!
Multilayer Perceptrons

Some activation functions:

Identity

\[y = z \]

Rectified Linear Unit (ReLU)

\[y = \max(0, z) \]

Soft ReLU

\[y = \log(1 + e^z) \]
Some activation functions:

Hard Threshold

\[y = \begin{cases}
 1 & \text{if } z > 0 \\
 0 & \text{if } z \leq 0
\end{cases} \]

Logistic

\[y = \frac{1}{1 + e^{-z}} \]

Hyperbolic Tangent (tanh)

\[y = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}} \]
Multilayer Perceptrons

- Each layer computes a function, so the network computes a composition of functions:

\[h^{(1)} = f^{(1)}(x) = \phi(W^{(1)}x + b^{(1)}) \]
\[h^{(2)} = f^{(2)}(h^{(1)}) = \phi(W^{(2)}h^{(1)} + b^{(2)}) \]
\[\vdots \]
\[y = f^{(L)}(h^{(L-1)}) \]

- Or more simply:

\[y = f^{(L)} \circ \ldots \circ f^{(1)}(x). \]

- Neural nets provide modularity: we can implement each layer’s computations as a black box.
Feature Learning

Last layer:

- If task is regression: choose
 \[y = f^{(L)}(h^{(L-1)}) = (w^{(L)})^T h^{(L-1)} + b^{(L)} \]

- If task is binary classification: choose
 \[y = f^{(L)}(h^{(L-1)}) = \sigma((w^{(L)})^T h^{(L-1)} + b^{(L)}) \]

- Neural nets can be viewed as a way of learning features:

 ![Diagram of neural network](image)

- The goal:
Suppose we’re trying to classify images of handwritten digits. Each image is represented as a vector of $28 \times 28 = 784$ pixel values.

Each first-layer hidden unit computes $\phi(w_i^T x)$. It acts as a feature detector.

We can visualize w by reshaping it into an image. Here’s an example that responds to a diagonal stroke.
Feature Learning

Here are some of the features learned by the first hidden layer of a handwritten digit classifier:
We’ve seen that there are some functions that linear classifiers can’t represent. Are deep networks any better?

Suppose a layer’s activation function was the identity, so the layer just computes a affine transformation of the input

- We call this a linear layer

Any sequence of linear layers can be equivalently represented with a single linear layer.

\[y = \underbrace{W^{(3)}W^{(2)}W^{(1)}}_{\equiv W'} x \]

- Deep linear networks are no more expressive than linear regression.
Expressive Power

- Multilayer feed-forward neural nets with *nonlinear* activation functions are **universal function approximators**: they can approximate any function arbitrarily well.

- This has been shown for various activation functions (thresholds, logistic, ReLU, etc.)
 - Even though ReLU is “almost” linear, it’s nonlinear enough.

![Graph showing the ReLU activation function](image)

Intro ML (UofT) | CSC311-Lec5 | 24 / 46
Multilayer Perceptrons

Designing a network to classify XOR:
Assume hard threshold activation function
Multilayer Perceptrons

- h_1 computes $I[x_1 + x_2 - 0.5 > 0]$
 - i.e. $x_1 \text{ OR } x_2$
- h_2 computes $I[x_1 + x_2 - 1.5 > 0]$
 - i.e. $x_1 \text{ AND } x_2$
- y computes $I[h_1 - h_2 - 0.5 > 0] \equiv I[h_1 + (1 - h_2) - 1.5 > 0]$
 - i.e. $h_1 \text{ AND (NOT } h_2) = x_1 \text{ XOR } x_2$
Expressive Power

Universality for binary inputs and targets:

- Hard threshold hidden units, linear output
- Strategy: 2^D hidden units, each of which responds to one particular input configuration

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Only requires one hidden layer, though it needs to be extremely wide.
What about the logistic activation function?

You can approximate a hard threshold by scaling up the weights and biases:

\[y = \sigma(x) \]

\[y = \sigma(5x) \]

This is good: logistic units are differentiable, so we can train them with gradient descent.
Limits of universality

- You may need to represent an exponentially large network.
- How can you find the appropriate weights to represent a given function?
- If you can learn any function, you’ll just overfit.
- Really, we desire a *compact* representation.
Training neural networks with backpropagation
Recall: gradient descent moves opposite the gradient (the direction of steepest descent)

Weight space for a multilayer neural net: one coordinate for each weight or bias of the network, in all the layers

Conceptually, not any different from what we’ve seen so far — just higher dimensional and harder to visualize!

We want to define a loss \mathcal{L} and compute the gradient of the cost $d\mathcal{J}/dw$, which is the vector of partial derivatives.

This is the average of $d\mathcal{L}/dw$ over all the training examples, so in this lecture we focus on computing $d\mathcal{L}/dw$.
Univariate Chain Rule

- We’ve already been using the univariate Chain Rule.
- Recall: if $f(x)$ and $x(t)$ are univariate functions, then

$$\frac{d}{dt} f(x(t)) = \frac{df}{dx} \frac{dx}{dt}.$$
Recall: Univariate logistic least squares model

\[z = wx + b \]
\[y = \sigma(z) \]
\[\mathcal{L} = \frac{1}{2} (y - t)^2 \]

Let’s compute the loss derivatives \(\frac{\partial \mathcal{L}}{\partial w}, \frac{\partial \mathcal{L}}{\partial b} \)
Univariate Chain Rule

How you would have done it in calculus class

\[L = \frac{1}{2} (\sigma(wx + b) - t)^2 \]

\[\frac{\partial L}{\partial w} = \frac{\partial}{\partial w} \left[\frac{1}{2} (\sigma(wx + b) - t)^2 \right] \]

\[= \frac{1}{2} \frac{\partial}{\partial w} (\sigma(wx + b) - t)^2 \]

\[= (\sigma(wx + b) - t) \frac{\partial}{\partial w} (\sigma(wx + b) - t) \]

\[= (\sigma(wx + b) - t)\sigma'(wx + b) \frac{\partial}{\partial w} (wx + b) \]

\[= (\sigma(wx + b) - t)\sigma'(wx + b)x \]

\[\frac{\partial L}{\partial b} = \frac{\partial}{\partial b} \left[\frac{1}{2} (\sigma(wx + b) - t)^2 \right] \]

\[= \frac{1}{2} \frac{\partial}{\partial b} (\sigma(wx + b) - t)^2 \]

\[= (\sigma(wx + b) - t) \frac{\partial}{\partial b} (\sigma(wx + b) - t) \]

\[= (\sigma(wx + b) - t)\sigma'(wx + b) \frac{\partial}{\partial b} (wx + b) \]

\[= (\sigma(wx + b) - t)\sigma'(wx + b) \]

What are the disadvantages of this approach?
Univariate Chain Rule

A more structured way to do it

Computing the loss:
\[z = wx + b \]
\[y = \sigma(z) \]
\[\mathcal{L} = \frac{1}{2} (y - t)^2 \]

Computing the derivatives:
\[\frac{d\mathcal{L}}{dy} = y - t \]
\[\frac{d\mathcal{L}}{dz} = \frac{d\mathcal{L}}{dy} \frac{dy}{dz} = \frac{d\mathcal{L}}{dy} \sigma'(z) \]
\[\frac{\partial\mathcal{L}}{\partial w} = \frac{d\mathcal{L}}{dz} \frac{dz}{dw} = \frac{d\mathcal{L}}{dz} x \]
\[\frac{\partial\mathcal{L}}{\partial b} = \frac{d\mathcal{L}}{dz} \frac{dz}{db} = \frac{d\mathcal{L}}{dz} \]

Remember, the goal isn’t to obtain closed-form solutions, but to be able to write a program that efficiently computes the derivatives.
Univariate Chain Rule

- We can diagram out the computations using a computation graph.
- The nodes represent all the inputs and computed quantities, and the edges represent which nodes are computed directly as a function of which other nodes.

Computing the loss:

\[
\begin{align*}
 z &= wx + b \\
 y &= \sigma(z) \\
 \mathcal{L} &= \frac{1}{2} (y - t)^2
\end{align*}
\]
Univariate Chain Rule

A slightly more convenient notation:

- Use \bar{y} to denote the derivative dL/dy, sometimes called the error signal.
- This emphasizes that the error signals are just values our program is computing (rather than a mathematical operation).

Computing the loss:

$$z = wx + b$$
$$y = \sigma(z)$$
$$L = \frac{1}{2}(y - t)^2$$

Computing the derivatives:

$$\bar{y} = y - t$$
$$\bar{z} = \bar{y} \sigma'(z)$$
$$\bar{w} = \bar{z} x$$
$$\bar{b} = \bar{z}$$
Multivariate Chain Rule

Problem: what if the computation graph has fan-out \(> 1 \)?
This requires the **multivariate Chain Rule**!

\(L_2 \)-Regularized regression

- \(z = wx + b \)
- \(y = \sigma(z) \)
- \(\mathcal{L} = \frac{1}{2} (y - t)^2 \)
- \(\mathcal{R} = \frac{1}{2} w^2 \)
- \(\mathcal{L}_{\text{reg}} = \mathcal{L} + \lambda \mathcal{R} \)

Softmax regression

- \(z_\ell = \sum_j w_{\ell j} x_j + b_\ell \)
- \(y_k = \frac{e^{z_k}}{\sum_\ell e^{z_\ell}} \)
- \(\mathcal{L} = -\sum_k t_k \log y_k \)
Multivariate Chain Rule

Suppose we have a function $f(x, y)$ and functions $x(t)$ and $y(t)$. (All the variables here are scalar-valued.) Then

$$\frac{d}{dt} f(x(t), y(t)) = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$

Example:

$$f(x, y) = y + e^{xy}$$

$$x(t) = \cos t$$

$$y(t) = t^2$$

Plug in to Chain Rule:

$$\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$

$$= (ye^{xy}) \cdot (-\sin t) + (1 + xe^{xy}) \cdot 2t$$
Multivariable Chain Rule

- In the context of backpropagation:

\[\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} \]

Mathematical expressions to be evaluated

Values already computed by our program

- In our notation:

\[\bar{t} = \bar{x} \frac{dx}{dt} + \bar{y} \frac{dy}{dt} \]
Backpropagation

Full backpropagation algorithm:
Let v_1, \ldots, v_N be a **topological ordering** of the computation graph (i.e. parents come before children.)

v_N denotes the variable we’re trying to compute derivatives of (e.g. loss).

Forward pass

For $i = 1, \ldots, N$

Compute v_i as a function of $\text{Pa}(v_i)$

$$v_N = 1$$

Backward pass

For $i = N - 1, \ldots, 1$

$$v_i = \sum_{j \in \text{Ch}(v_i)} v_j \frac{\partial v_j}{\partial v_i}$$
Example: univariate logistic least squares regression

Forward pass:
\[
\begin{align*}
z &= wx + b \\
y &= \sigma(z) \\
\mathcal{L} &= \frac{1}{2} (y - t)^2 \\
\mathcal{R} &= \frac{1}{2} w^2 \\
\mathcal{L}_{\text{reg}} &= \mathcal{L} + \lambda \mathcal{R}
\end{align*}
\]

Backward pass:
\[
\begin{align*}
\overline{\mathcal{L}_{\text{reg}}} &= 1 \\
\overline{\mathcal{R}} &= \frac{\overline{\mathcal{L}_{\text{reg}}}}{\overline{d \mathcal{R}}} \\
&= \overline{\mathcal{L}_{\text{reg}} \lambda} \\
\overline{\mathcal{L}} &= \frac{\overline{d \mathcal{L}_{\text{reg}}}}{\overline{d \mathcal{L}}} \\
&= \overline{\mathcal{L}_{\text{reg}}} \\
\overline{y} &= \frac{\overline{d \mathcal{L}}}{\overline{dy}} \\
&= \overline{\mathcal{L}} (y - t) \\
\overline{z} &= \frac{\overline{dy}}{\overline{dz}} \\
&= \overline{y} \sigma'(z) \\
\overline{w} &= \overline{z} \frac{\overline{\partial z}}{\overline{\partial w}} + \overline{\mathcal{R}} \frac{\overline{d \mathcal{R}}}{\overline{dw}} \\
&= \overline{z} x + \overline{\mathcal{R}} w \\
\overline{b} &= \overline{z} \frac{\overline{\partial z}}{\overline{\partial b}} \\
&= \overline{z}
\end{align*}
\]
Backpropagation

Multilayer Perceptron (multiple outputs):

Forward pass:

\[z_i = \sum_j w_{ij}^{(1)} x_j + b_i^{(1)} \]
\[h_i = \sigma(z_i) \]
\[y_k = \sum_i w_{ki}^{(2)} h_i + b_k^{(2)} \]
\[\mathcal{L} = \frac{1}{2} \sum_k (y_k - t_k)^2 \]

Backward pass:

\[\overline{\mathcal{L}} = 1 \]
\[\overline{y_k} = \overline{\mathcal{L}} (y_k - t_k) \]
\[\overline{w_{ki}^{(2)}} = \overline{y_k} \overline{h_i} \]
\[\overline{b_k^{(2)}} = \overline{y_k} \]
\[\overline{h_i} = \sum_k \overline{y_k} \overline{w_{ki}^{(2)}} \]
\[\overline{z_i} = \overline{h_i} \sigma'(z_i) \]
\[\overline{w_{ij}^{(1)}} = \overline{z_i} x_j \]
\[\overline{b_i^{(1)}} = \overline{z_i} \]
Backpropagation

In vectorized form:

Forward pass:
\[z = W^{(1)}x + b^{(1)} \]
\[h = \sigma(z) \]
\[y = W^{(2)}h + b^{(2)} \]
\[\mathcal{L} = \frac{1}{2} \| t - y \|^2 \]

Backward pass:
\[\overline{\mathcal{L}} = 1 \]
\[\overline{y} = \overline{\mathcal{L}} \left(y - t \right) \]
\[\overline{W}^{(2)} = \overline{y}h^\top \]
\[\overline{b}^{(2)} = \overline{y} \]
\[\overline{h} = W^{(2)^\top} \overline{y} \]
\[\overline{z} = \overline{h} \circ \sigma'(z) \]
\[\overline{W}^{(1)} = \overline{zx}^\top \]
\[\overline{b}^{(1)} = \overline{z} \]
Computational Cost

- Computational cost of forward pass: one \textbf{add-multiply operation} per weight

\[z_i = \sum_j w_{ij}^{(1)} x_j + b_i^{(1)} \]

- Computational cost of backward pass: two add-multiply operations per weight

\[w_{ki}^{(2)} = y_k h_i \]
\[h_i = \sum_k y_k w_{ki}^{(2)} \]

- Rule of thumb: the backward pass is about as expensive as two forward passes.

- For a multilayer perceptron, this means the cost is linear in the number of layers, quadratic in the number of units per layer.
Backpropagation

- Backprop is used to train the overwhelming majority of neural nets today.
 - Even optimization algorithms much fancier than gradient descent (e.g. second-order methods) use backprop to compute the gradients.

- Despite its practical success, backprop is believed to be neurally implausible.