CSC 311: Introduction to Machine Learning Lecture 2 - Decision Trees & Ensembles I

Richard Zemel & Murat A. Erdogdu

University of Toronto

Today

• Decision Trees

- ▶ Simple but powerful learning algorithm
- One of the most widely used learning algorithms in Kaggle competitions
- ▶ Lets us introduce ensembles, a key idea in ML
- Useful information theoretic concepts (entropy, mutual information, etc.)
- Bias-Variance decomposition

- **Decision trees** make predictions by recursively splitting on different attributes according to a tree structure.
- Example: classifying fruit as an orange or lemon based on height and width

3 / 44

- For continuous attributes, split based on less than or greater than some threshold
- Thus, input space is divided into regions with boundaries parallel to axes

Example with Discrete Inputs

What	$\mathbf{i}\mathbf{f}$	$_{\rm the}$	attributes	are	discrete?
	What	What if	What if the	What if the attributes	What if the attributes are

Example	Input Attributes					Goal					
Linumpie	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	$y_1 = Yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60	$y_2 = No$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10	$y_3 = Yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10–30	$y_4 = Yes$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = No$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	$y_6 = Yes$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	$y_7 = No$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	$y_8 = Yes$
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = No$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10–30	$y_{10} = No$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	$y_{11} = No$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	$y_{12} = Y_{es}$

1.	Alternate: whether there is a suitable alternative restaurant nearby.
2.	Bar: whether the restaurant has a comfortable bar area to wait in.
з.	Fri/Sat: true on Fridays and Saturdays.
4.	Hungry: whether we are hungry.
5.	Patrons: how many people are in the restaurant (values are None, Some, and Full).
6.	Price: the restaurant's price range (\$, \$\$, \$\$\$).
7.	Raining: whether it is raining outside.
8.	Reservation: whether we made a reservation.
9.	Type: the kind of restaurant (French, Italian, Thai or Burger).
10.	WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Attributes:

Intro ML (UofT)

Decision Tree: Example with Discrete Inputs

• Possible tree to decide whether to wait (T) or not (F)

- Internal nodes test attributes
- Branching is determined by attribute value
- Leaf nodes are outputs (predictions)

Decision Tree: Classification and Regression

- Each path from root to a leaf defines a region R_m of input space
- Let $\{(x^{(m_1)}, t^{(m_1)}), \dots, (x^{(m_k)}, t^{(m_k)})\}$ be the training examples that fall into R_m

• Classification tree:

- discrete output
- ► leaf value y^m typically set to the most common value in $\{t^{(m_1)}, \ldots, t^{(m_k)}\}$

• Regression tree:

- continuous output
- leaf value y^m typically set to the mean value in $\{t^{(m_1)}, \ldots, t^{(m_k)}\}$

Note: We will focus on classification

• How do we construct a useful decision tree?

Learning Decision Trees

Learning the simplest (smallest) decision tree which correctly classifies training set is an NP complete problem [if you are interested, check: Hyafil & Rivest'76]

- Resort to a **greedy heuristic**! Start with empty decision tree and complete training set
 - ▶ Split on the "best" attribute, i.e. partition dataset
 - Recurse on subpartitions
- When should we stop?
- Which attribute is the "best" (and where should we split, if continuous)?
 - ▶ Choose based on accuracy?
 - ▶ Loss: misclassification rate
 - Say region R is split in R_1 and R_2 based on loss L(R).
 - Accuracy gain is $L(R) \frac{|R_1|L(R_1)+|R_2|L(R_2)|}{|R_1|+|R_2|}$

Choosing a Good Split

- Why isn't accuracy a good measure?
- Classify by the majority, loss is misclassification rate.

• Is this split good? Zero accuracy gain

$$L(R) - \frac{|R_1|L(R_1) + |R_2|L(R_2)|}{|R_1| + |R_2|} = \frac{49}{149} - \frac{50 \times 0 + 99 \times \frac{49}{99}}{149}$$

• But we've reduced our uncertainty about whether a fruit is a lemon

Intro ML (UofT)

- How can we quantify uncertainty in prediction for a given leaf node?
 - ▶ All examples in leaf have same class: good, low uncertainty
 - Each class has same amount of examples in leaf: bad, high uncertainty
- Idea: Use counts at leaves to define probability distributions, and use information theory to measure uncertainty

```
Sequence 1:
000100000000000100...?
Sequence 2:
010101110100110101...?
     16
                            10
                       8
              versus
          2
     0
          1
                       0
                            1
```

Quantifying Uncertainty

Entropy is a measure of expected "surprise": How uncertain are we of the value of a draw from this distribution?

$$H(X) = -\mathbb{E}_{X \sim p}[\log_2 p(X)] = -\sum_{x \in X} p(x) \log_2 p(x)$$

$$\begin{array}{c} 8/9 \\ 1 \\ 0 \\ 1 \end{array} \qquad \begin{array}{c} 4/9 \\ 0 \\ 1 \end{array} \qquad \begin{array}{c} 5/9 \\ 0 \\ 1 \end{array}$$

$$-\frac{8}{9}\log_2\frac{8}{9} - \frac{1}{9}\log_2\frac{1}{9} \approx \frac{1}{2} \qquad -\frac{4}{9}\log_2\frac{4}{9} - \frac{5}{9}\log_2\frac{5}{9} \approx 0.99$$

- Averages over information content of each observation
- Unit = **bits** (based on the base of logarithm)
- A fair coin flip has 1 bit of entropy Intro ML (UofT) CSC311-Lec2

Quantifying Uncertainty

Entropy

• "High Entropy":

- ▶ Variable has a uniform like distribution
- Flat histogram
- ▶ Values sampled from it are less predictable

• "Low Entropy"

- Distribution of variable has peaks and valleys
- Histogram has lows and highs
- ▶ Values sampled from it are more predictable

[Slide credit: Vibhav Gogate]

Entropy of a Joint Distribution

• Example: $X = \{\text{Raining}, \text{Not raining}\}, Y = \{\text{Cloudy}, \text{Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

$$H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(x,y)$$

= $-\frac{24}{100} \log_2 \frac{24}{100} - \frac{1}{100} \log_2 \frac{1}{100} - \frac{25}{100} \log_2 \frac{25}{100} - \frac{50}{100} \log_2 \frac{50}{100}$
 ≈ 1.56 bits

Specific Conditional Entropy

• Example: $X = \{ \text{Raining}, \text{Not raining} \}, Y = \{ \text{Cloudy}, \text{Not cloudy} \}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• What is the entropy of cloudiness Y, given that it is raining?

$$H(Y|X = \text{raining}) = -\sum_{y \in Y} p(y|\text{raining}) \log_2 p(y|\text{raining})$$
$$= -\frac{24}{25} \log_2 \frac{24}{25} - \frac{1}{25} \log_2 \frac{1}{25}$$
$$\approx 0.24 \text{bits}$$

• We used: $p(y|x) = \frac{p(x,y)}{p(x)}$, and $p(x) = \sum_{y} p(x,y)$ (sum in a row) Intro ML (UofT) CSC311-Lec2

Conditional Entropy

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• The expected conditional entropy:

$$H(Y|X) = \mathbb{E}_{X \sim p(x)}[H(Y|X)]$$
(1)
$$= \sum_{x \in X} p(x)H(Y|X = x)$$

$$= -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(y|x)$$

$$= -\mathbb{E}_{(X,Y) \sim p(x,y)}[\log_2 p(Y|X)]$$

Conditional Entropy

• Example: $X = \{\text{Raining}, \text{Not raining}\}, Y = \{\text{Cloudy}, \text{Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• What is the entropy of cloudiness, given the knowledge of whether or not it is raining?

$$\begin{split} H(Y|X) &= \sum_{x \in X} p(x) H(Y|X=x) \\ &= \frac{1}{4} H(\text{cloudyness}|\text{is raining}) + \frac{3}{4} H(\text{cloudyness}|\text{not raining}) \\ &\approx 0.75 \text{ bits} \end{split}$$

Intro ML (UofT)

- Some useful properties for the discrete case:
 - ▶ *H* is always non-negative.
 - ▶ Chain rule: H(X,Y) = H(X|Y) + H(Y) = H(Y|X) + H(X)
 - If X and Y independent, then X doesn't tell us anything about Y: H(Y|X) = H(Y)
 - But Y tells us everything about Y: H(Y|Y) = 0
 - ▶ By knowing X, we can only decrease uncertainty about Y: $H(Y|X) \le H(Y)$

Verify these.

Information Gain

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• How much information about cloudiness do we get by discovering whether it is raining?

$$IG(Y|X) = H(Y) - H(Y|X)$$

 $\approx 0.25 \text{ bits}$

- This is called the **information gain** in Y due to X, or the **mutual information** of Y and X
- If X is completely uninformative about Y: IG(Y|X) = 0
- If X is completely informative about Y: IG(Y|X) = H(Y)Intro ML (UofT) CSC311-Lec2

Revisiting Our Original Example

- Information gain measures the informativeness of a variable, which is exactly what we desire in a decision tree attribute!
- What is the information gain of this split?

- Let Y be r.v. denoting lemon or orange, B be r.v. denoting whether left or right split taken, and treat counts as probabilities.
- Root entropy: $H(Y) = -\frac{49}{149} \log_2(\frac{49}{149}) \frac{100}{149} \log_2(\frac{100}{149}) \approx 0.91$
- Leafs entropy: H(Y|B = left) = 0, $H(Y|B = \text{right}) \approx 1$.

•
$$IG(Y|B) = H(Y) - H(Y|B)$$

= $H(Y) - \{H(Y|B = \text{left})\mathbb{P}(B = \text{left}) + H(Y|B = \text{right})\mathbb{P}(B = \text{right})\}$
 $\approx 0.91 - (0 \cdot \frac{1}{3} + 1 \cdot \frac{2}{3}) \approx 0.24 > 0$

Constructing Decision Trees

- At each level, one must choose:
 - 1. Which variable to split.
 - 2. Possibly where to split it.
- Choose them based on how much information we would gain from the decision! (choose attribute that gives the **best** gain)

Decision Tree Construction Algorithm

- Simple, greedy, recursive approach, builds up tree node-by-node
- Start with empty decision tree and complete training set
 - ▶ Split on the most informative attribute, partitioning dataset
 - Recurse on subpartitions
- Possible termination condition: end if all examples in current subpartition share the same class

Back to Our Example

Example	Input Attributes						Goal				
pic	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	$y_1 = Yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60	$y_2 = No$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10	$y_3 = Yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10–30	$y_4 = Yes$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = No$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	$y_6 = Yes$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	$y_7 = No$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	$y_8 = Yes$
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = No$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10–30	$y_{10} = No$
x_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	$y_{11} = No$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	$y_{12} = Yes$

1.	Alternate: whether there is a suitable alternative restaurant nearby.
2.	Bar: whether the restaurant has a comfortable bar area to wait in.
З.	Fri/Sat: true on Fridays and Saturdays.
4.	Hungry: whether we are hungry.
5.	Patrons: how many people are in the restaurant (values are None, Some, and Full).
6.	Price: the restaurant's price range (\$, \$\$, \$\$\$).
7.	Raining: whether it is raining outside.
8.	Reservation: whether we made a reservation.
9.	Type: the kind of restaurant (French, Italian, Thai or Burger).
10.	WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60). [fro

Attributes:

[from: Russell & Norvig]

Intro ML (UofT)

Attribute Selection

$$IG(Y) = H(Y) - H(Y|X)$$

$$IG(type) = 1 - \left[\frac{2}{12}H(Y|\text{Fr.}) + \frac{2}{12}H(Y|\text{It.}) + \frac{4}{12}H(Y|\text{Thai}) + \frac{4}{12}H(Y|\text{Bur.})\right] = 0$$

$$IG(Patrons) = 1 - \left[\frac{2}{12}H(0,1) + \frac{4}{12}H(1,0) + \frac{6}{12}H(\frac{2}{6},\frac{4}{6})\right] \approx 0.541$$
Intro ML (Uoff)
$$CSC311\text{-Lec2} \qquad 28 / 44$$

Which Tree is Better?

What Makes a Good Tree?

- Not too small: need to handle important but possibly subtle distinctions in data
- Not too big:
 - ▶ Computational efficiency (avoid redundant, spurious attributes)
 - Avoid over-fitting training examples
 - Human interpretability
- "Occam's Razor": find the simplest hypothesis that fits the observations
 - ▶ Useful principle, but hard to formalize (how to define simplicity?)
 - See Domingos, 1999, "The role of Occam's razor in knowledge discovery"
- We desire small trees with informative nodes near the root

Expressiveness

• Discrete-input, discrete-output case:

- ▶ Decision trees can express any function of the input attributes
- ▶ E.g., for Boolean functions, truth table row \rightarrow path to leaf:

• Continuous-input, continuous-output case:

- Can approximate any function arbitrarily closely
- Trivially, there is a consistent decision tree for any training set w/ one path to leaf for each example (unless f nondeterministic in x) but it probably won't generalize to new examples

[Slide credit: S. Russell]

Decision Tree Miscellany

• Problems:

- ▶ You have exponentially less data at lower levels
- ▶ Too big of a tree can overfit the data
- ▶ Greedy algorithms don't necessarily yield the global optimum
- Mistakes at top-level propagate down tree
- Handling continuous attributes
 - ▶ Split based on a threshold, chosen to maximize information gain
- Decision trees can also be used for regression on real-valued outputs. Choose splits to minimize squared error, rather than maximize information gain.

Advantages of decision trees over k-NN

- Good with discrete attributes
- Easily deals with missing values (just treat as another value)
- Robust to scale of inputs- only depends on ordering
- Fast at test time
- More interpretable

Advantages of k-NN over decision trees

- Able to handle attributes/features that interact in complex ways (e.g. pixels)
- Can incorporate interesting distance measures (e.g. shape contexts)

Summary so far

- We've seen two particular learning algorithms: k-NN and decision trees
- Next lecture: **combine multiple models into an ensemble** which performs better than the individual members
 - ▶ Generic class of techniques that can be applied to almost any learning algorithms...
 - ... but are particularly well suited to decision trees
 - Understanding generalization using the bias/variance decomposition (this lecture)
 - Reducing variance using bagging
- Next lecture
 - ▶ Making a weak classifier stronger (i.e. reducing bias) using bagging

Ensemble methods: Brief overview

- An **ensemble** of predictors is a set of predictors whose individual decisions are combined in some way to predict new examples
 - ▶ E.g., (possibly weighted) majority vote
- For this to be nontrivial, the learned hypotheses must differ somehow, e.g.
 - Different algorithm
 - Different choice of hyperparameters
 - Trained on different data
 - ▶ Trained with different weighting of the training examples
- Ensembles are usually easy to implement. The hard part is deciding what kind of ensemble you want, based on your goals.

Bias-Variance decomposition: Loss Functions

- A loss function L(y,t) defines how bad it is if, for some example x, the algorithm predicts y, but the target is actually t.
- Example: 0-1 loss for classification

$$L_{0-1}(y,t) = \begin{cases} 0 & \text{if } y = t \\ 1 & \text{if } y \neq t \end{cases}$$

- Averaging the 0-1 loss over the training set gives the **training error rate**, and averaging over the test set gives the **test error rate**.
- Example: squared error loss for regression

$$L_{\rm SE}(y,t) = \frac{1}{2}(y-t)^2$$

• The average squared error loss is called **mean squared error** (MSE).

Intro ML (UofT)

Bias-Variance Decomposition

• Recall that overly simple models underfit the data, and overly complex models overfit.

- We can quantify this effect in terms of the **bias/variance** decomposition.
- Bias and variance of what?

- Suppose the training set \mathcal{D} consists of N pairs $(\mathbf{x}^{(i)}, t^{(i)})$ sampled independent and identically distributed (i.i.d.) from a single data generating distribution p_{sample} .
 - Let p_{dataset} denote the induced distribution over training sets, i.e. $\mathcal{D} \sim p_{\text{dataset}}$
- Pick a fixed query point **x** (denoted with a green x).
- Consider an experiment where we sample lots of training sets independently from p_{datasl}

- Let's run our learning algorithm on each training set \mathcal{D} , producing a classifier $h_{\mathcal{D}}$
- We compute each classifier's prediction $h_{\mathcal{D}}(\mathbf{x}) = y$ at the query point \mathbf{x} .
- y is a random variable, where the **randomness comes from the choice of training set**
 - \mathcal{D} is random $\implies h_{\mathcal{D}}$ is random $\implies h_{\mathcal{D}}(\mathbf{x})$ is random

Here is the analogous setup for regression:

Since $y = h_{\mathcal{D}}(\mathbf{x})$ is a random variable, we can talk about its expectation, variance, etc. over the distribution of training sets p_{dataset}

• Recap of basic setup:

- Assume (for the moment) that t is deterministic given x
- There is a distribution over the loss at \mathbf{x} , with expectation $\mathbb{E}_{\mathcal{D}\sim p_{\text{dataset}}}[L(h_{\mathcal{D}}(\mathbf{x}), t)].$
- For each query point **x**, the expected loss is different. We are interested in quantifying how well our classifier does over the distribution p_{sample} , averaging over training sets: $\mathbb{E}_{\mathbf{x} \sim p_{\text{sample}}, \mathcal{D} \sim p_{\text{dataset}}} [L(h_{\mathcal{D}}(\mathbf{x}), t)].$

Bias-Variance Decomposition

- For now, focus on squared error loss, $L(y,t) = \frac{1}{2}(y-t)^2$.
- We can decompose the expected loss (suppressing distributions **x**, \mathcal{D} drawn from for compactness):

$$\mathbb{E}_{\mathbf{x},\mathcal{D}}[(h_{\mathcal{D}}(\mathbf{x})-t)^{2}] = \mathbb{E}_{\mathbf{x},\mathcal{D}}[(h_{\mathcal{D}}(\mathbf{x})-\mathbb{E}_{\mathcal{D}}[h_{\mathcal{D}}(\mathbf{x})] + \mathbb{E}_{\mathcal{D}}[h_{\mathcal{D}}(\mathbf{x})] - t)^{2}]$$

$$= \mathbb{E}_{\mathbf{x},\mathcal{D}}[(h_{\mathcal{D}}(\mathbf{x}) - \mathbb{E}_{\mathcal{D}}[h_{\mathcal{D}}(\mathbf{x})])^{2} + (\mathbb{E}_{\mathcal{D}}[h_{\mathcal{D}}(\mathbf{x})] - t)^{2} + 2(h_{\mathcal{D}}(\mathbf{x}) - \mathbb{E}_{\mathcal{D}}[h_{\mathcal{D}}(\mathbf{x})])(\mathbb{E}_{\mathcal{D}}[h_{\mathcal{D}}(\mathbf{x})] - t)]$$

$$= \underbrace{\mathbb{E}_{\mathbf{x},\mathcal{D}}[(h_{\mathcal{D}}(\mathbf{x}) - \mathbb{E}_{\mathcal{D}}[h_{\mathcal{D}}(\mathbf{x})])^{2}]}_{\text{variance}} + \underbrace{\mathbb{E}_{\mathbf{x}}[(\mathbb{E}_{\mathcal{D}}[h_{\mathcal{D}}(\mathbf{x})] - t)^{2}]}_{\text{bias}}$$

- Bias: On average, how close is our classifier to true target? (corresponds to underfitting)
- Variance: How widely dispersed are our predictions as we generate new datasets? (corresponds to overfitting)

Bias and Variance

• Throwing darts = predictions for each draw of a dataset

- What doesn't this capture?
- \bullet We average over points ${\bf x}$ from the data distribution

Intro ML (UofT)