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Today

@ Decision Trees

» Simple but powerful learning algorithm

» One of the most widely used learning algorithms in Kaggle
competitions

» Lets us introduce ensembles, a key idea in ML
@ Useful information theoretic concepts (entropy, mutual information, etc.)

@ Bias-Variance decomposition
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Decision Trees

@ Decision trees make predictions by recursively splitting on different
attributes according to a tree structure.

o Example: classifying fruit as an orange or lemon based on height and
width

E/vidth > 6.5cm? ]

Yes No

helght >9.5cm? helght >6.0cm?
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Decision Trees

Test example

l [width > 6.5cm? ]

- Yes o

[height>9.50m? ] [height>6.0cm? ]
YesA\lo
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Decision Trees

@ For continuous attributes, split based on less than or greater than some
threshold
@ Thus, input space is divided into regions with boundaries parallel to axes
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Example with Discrete Inputs

@ What if the attributes are discrete?

Example Input Attributes Goal

Alt | Bar | Fri | Hun| Pat | Price | Rain | Res | Type Est WillWait
X1 Yes| No | No | Yes| Some| $$8 No | Yes| French| 0-10 | y, = Yes
Xo Yes| No | No | Yes Full 3 No | No Thai 3060 | y, = No
X3 No | Yes| No | No | Some 3 No | No | Burger| 0-10 | y3= Yes
Xy Yes| No | Yes| Yes Full 3 Yes | No Thai 10-30 | y4 = Yes
X5 Yes| No | Yes| No | Full | $$8  No | Yes| French| >60 | ys= No
Xg No | Yes No | Yes| Some| 38 | Yes| Yes| ltalian | 0-10 | ys= Yes
X7 No | Yes| No | No | None $ Yes | No | Burger | 0-10 | yr= No
Xg No| No | No | Yes| Some| 3§ | VYes| Yes Thai 0-10 | ys= Yes
X9 No | Yes| Yes| No Full 3 Yes | No | Burger| >60 Yo = No
X10 Yes | Yes| Yes| Yes| Full | $$8  No | Yes| ltalian | 10-30 | yio= No
X11 No | No | No | No | None 3 No | No Thai 0-10 | y1; = No
X12 Yes | Yes| Yes| Yes| Full 3 No | No | Burger | 30-60 | y12 = Yes

Alternate: whether there is a suitable alternative restaurant nearby.

Bar: whether the restaurant has a comfortable bar area to wait in.

Fri/Sat: true on Fridays and Saturdays.

Hungry: whether we are hungry.

Patrons: how many people are in the restaurant (values are None, Some, and Full)
Price: the restaurant's price range ($, $$, $$$).

Raining: whether it is raining outside.

Reservation: whether we made a reservation

S © I S S S S

Type: the kind of restaurant (French, Italian, Thai or Burger)
3 . 10. - E H .
Attrlbutes. WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60)
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Decision Tree: Example with Discrete Inputs

@ Possible tree to decide whether to wait (T) or not (F)

Alternate?
No Yes No

| Reservation? || Fri/Sat? |

Alternate?
No

No Yes No Yes

No Yes
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Decision Trees

[_Atternate? | [ Hungry? |
No Yes N Yes

| Reservation? || Fri/Sat? ] | Alternate? |

No Yes No Yes No Yes
No Yes

@ Internal nodes test attributes

@ Branching is determined by attribute value

o Leaf nodes are outputs (predictions)
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Decision Tree: Classification and Regression

@ Each path from root to a leaf defines a region R, - N *
of input space . £ar ¢
o Let {(z(m) ¢(m)) . (z(me) (7))} be the ﬁ
training examples that fall into R, ‘ : <o

@ Classification tree:
» discrete output

> leaf value y™ typically set to the most common value in
{t(m) | ¢me)}

@ Regression tree:
» continuous output
» leaf value 3™ typically set to the mean value in {t(™1) ... ¢(ms)}

Note: We will focus on classification
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How do we Learn a DecisionTree?

e How do we construct a useful decision tree?
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Learning Decision Trees

Learning the simplest (smallest) decision tree which correctly classifies

training set is an NP complete problem [if you are interested, check: Hyafil &
Rivest’76]

@ Resort to a greedy heuristic! Start with empty decision tree and
complete training set

» Split on the “best” attribute, i.e. partition dataset
» Recurse on subpartitions

@ When should we stop?

@ Which attribute is the “best” (and where should we split, if continuous)?
Choose based on accuracy?

Loss: misclassification rate

Say region R is split in Ry and Ry based on loss L(R).

Accuracy gain is L(R) — |R1‘L(|gll)|ﬂ§jL(R2)

v

>
>
>
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Choosing a Good Split

@ Why isn’t accuracy a good measure?

@ Classify by the majority, loss is misclassification rate.

/width >65 cm?\, 00 ke
\ / 49 oranges
. —

YES NO
€ ¢
(
N4 A
50 lemons S\OIr;mns
0 oranges 49 oranges

@ Is this split good? Zero accuracy gain

|Ri|L(Ry) + |Ro|L(Ry) 49 50 x 0+ 99 x g3

L(R —
(&) |R1| + | Ra| 149 149

@ But we've reduced our uncertainty about whether a fruit is a lemon
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Choosing a Good Split

@ How can we quantify uncertainty in prediction for a given leaf node?

» All examples in leaf have same class: good, low uncertainty
» Each class has same amount of examples in leaf: bad, high
uncertainty

@ Idea: Use counts at leaves to define probability distributions, and use
information theory to measure uncertainty

Intro ML (UofT) CSC311-Lec2 13 / 44



We Flip Two Different Coins

Sequence 1:
0001000000000 00100 ... 7

Sequence 2:
1010111010011 0101...7
16
8 10
Versus
2 Ll
.
0 1 0 1
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Quantifying Uncertainty

Entropy is a measure of expected “surprise”: How uncertain are we of the
value of a draw from this distribution?

H(X) = —Ex~pllogs p(X)] = = > p(x) log, p(x)

reX
8/9
49 S
1/9 D D
Cl 0 1
0 1
8 8 1 1 1 4 4 5 5
—§log2§—§log2§~§ —§log2§—§log2§%0.99

@ Averages over information content of each observation
@ Unit = bits (based on the base of logarithm)
@ A fair coin flip has 1 bit of entropy
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Quantifying Uncertainty

entropy
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Entropy

o “High Entropy”:

» Variable has a uniform like distribution
» Flat histogram
» Values sampled from it are less predictable

o “Low Entropy”

» Distribution of variable has peaks and valleys
» Histogram has lows and highs
» Values sampled from it are more predictable

[Slide credit: Vibhav Gogate]
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Entropy of a Joint Distribution

@ Example: X = {Raining, Not raining}, ¥ = {Cloudy, Not cloudy}

Cloudy [ Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 | 50/100

H(X7Y) = _Zzp(‘rvy)IOng(x’y)
reX yeY
24 24 1 1% 2% 50 50
= ——logy— — ——=logy — — —logy — — ——log, —
100 %2700 ~ 100 22700 100 %2700 100 22100
~ 1.56bits
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Specific Conditional Entropy

o Example: X = {Raining, Not raining}, ¥ = {Cloudy, Not cloudy}

Cloudy [Not Cloudy

Raining | 247100 | 17100

Not Raining| 25/100 50/100

@ What is the entropy of cloudiness Y, given that it is raining?

H(Y|X =raining) = -— Z p(y|raining) log, p(y|raining)
yey
o 1]
T 725 %235 25 %8235
~ 0.24bits

@ We used: p(y|z) = pz(:f’l)’), and p(r) =3, p(z,y) (sum in arow)

x
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Conditional Entropy

Cloudy |Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

@ The expected conditional entropy:

H(Y|X) Exp(a) [H(Y]X)] (1)

= Y p@HY|X =)

zeX

= — Z Zp(x,y) log, p(ylz)

zeX yeYy
= —Exy)p(zpllogs p(Y]X)]
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Conditional Entropy

@ Example: X = {Raining, Not raining}, ¥ = {Cloudy, Not cloudy}

Cloudy |Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

@ What is the entropy of cloudiness, given the knowledge of whether or not
it is raining?

HY|X) = Y p@HY|X =)
zeX
1 L 3 .
= ZH (cloudyness|is raining) + ZH (cloudyness|not raining)

~ 0.75 bits
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Conditional Entropy

@ Some useful properties for the discrete case:

» H is always non-negative.

» Chain rule: H(X,Y)=H(X|Y)+ HY)=HY|X)+ H(X)

» If X and Y independent, then X doesn’t tell us anything about Y:
H(Y[X) = H(Y)

» But Y tells us everything about Y: H(Y]Y) =0

» By knowing X, we can only decrease uncertainty about Y:
H(Y|X) < H(Y)

Verify these.
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Information Gain

Cloudy [Not Cloudy

Raining | 247100 | 1/100

Not Raining| 25/100 50/100

@ How much information about cloudiness do we get by discovering
whether it is raining?

IG(Y|X)

H(Y) - H(Y|X)
0.25 bits

@ This is called the information gain in Y due to X, or the mutual
information of Y and X

e If X is completely uninformative about Y: IG(Y]X) =0

o If X is completely informative about Y: IG(Y|X) = H(Y)
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Revisiting Our Original Example

@ Information gain measures the informativeness of a variable, which is
exactly what we desire in a decision tree attribute!

@ What is the information gain of this split?

Ve N
| widh>65cm? | lg%lrz:‘;::
A S
YES NO
e AN
f \ ( \
( ) { )
\ \ /
- 4
50 lemons 56Er;|;)ns
0 oranges 49 oranges

@ Let Y be r.v. denoting lemon or orange, B be r.v. denoting whether left
or right split taken, and treat counts as probabilities.

@ Root entropy: H(Y) = 149 log2(149) }23 logQ(%) ~

o Leafs entropy: H(Y|B = left) =0, H(Y|B =right) ~ 1

o IGYY|B)=H(Y)—- H(Y|B)
= H(Y) — {H(Y|B=left)P(B=left) + H(Y|B=right)P(B=right)}
~091—-(0-3+1-2)=024>0

Intro ML (UofT) CSC311-Lec2 24 / 44



Constructing Decision Trees

1o &g s "’
Ao Ve e
1.,
g° w2 ;
s (4 width > 6.5cm?
£
=
3
te -
—
L ¥
-
4 . © oranges
4 lemons Yes/\No Yes N
4 6 8 10

width (cm)

@ At each level, one must choose:

1. Which variable to split.
2. Possibly where to split it.

@ Choose them based on how much information we would gain from the
decision! (choose attribute that gives the best gain)
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Decision Tree Construction Algorithm

@ Simple, greedy, recursive approach, builds up tree node-by-node
@ Start with empty decision tree and complete training set

» Split on the most informative attribute, partitioning dataset
» Recurse on subpartitions

@ Possible termination condition: end if all examples in current
subpartition share the same class

Intro ML (UofT) CSC311-Lec2 26 / 44



Back to Our Example

Example ) ) Input_Attributcs
Alt | Bar | Fri | Hun | Pat | Price | Rain | Res | Type Est

X1 Yes No | No| Yes| Some| $3$ | No | Yes| French| 0-10
X3 Yes No | No | Yes| Full $ No | No Thai | 30-60
X3 No | Yes No | No | Some $ No | No | Burger| 0-10
X4 Yes No | Yes| Yes| Full $ Yes | No Thai | 10-30
X5 Yes| No | Yes| No | Full | $3%3 | No | Yes| French| >60
Xg No | Yes| No | Yes| Some| $$ | Yes| Yes| ltalian | 0-10
X7 No | Yes No | No | None $ Yes | No | Burger| 0-10
X3 No| No No| Yes| Some| $§ | Yes| Yes| Thai 0-10
Xg No ‘ Yes | Yes| No Full $ Yes | No | Burger| >60
X10 Yes | Yes | Yes| Yes| Full | $85 | No | Yes| ltalian | 10-30
X11 No ‘ No | No | No | None 3 No | No Thai 0-10
X12 Yes ‘ Yes | Yes| Yes | Full $ No | No | Burger| 30-60

1. Alternate: whether there is a suitable alternative restaurant nearby.

2. | | Bar: whether the restaurant has a comfortable bar area to wait in.

3. | | Fri/sat: true on Fridays and Saturdays.

4 Hungry: whether we are hungry.

5. | | Patrons: how many people are in the restaurant (values are None, Some, and Full)

6. | | Price: the restaurant's price range (§, $3, $$$).

7. Raining: whether it is raining outside.

8, Reservation: whether we made a reservation.

9. Type: the kind of restaurant (French, Italian, Thai or Burger).

Attributes: |10 || Waitestmate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Intro ML (UofT)
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Goal
WillWait
y1 = Yes
yo = No
y3 = Yes
yy = Yes
ys = No
ye = Yes
yr = No
ys = Yes
Yo = No
y10 = No
yi = No
Y12 = Yes

[from: Russell & Norvig]
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Attribute Selection

Patrons?

IG(Y) = H(Y) — H(Y|X)

2 2 4 o4
IG(type) =1 — [EH(Y|FL) + EH(Y|It.) + EH(YlThal) + EH(Y|Bur.):| =0

2 4 6 2 4
IG(P =1—-|—=H(0,1 —H(1 —H(=,=-)| =~ 0.541
G(Patrons) {12 (0,1) + T (1,0) + 12 (6’ 6)} 0.5
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Which Tree is Better?

Patrons?

Full

None

French Burger

Patrons?

No

| Reservation? ” Fri/Sat? |

No Yes
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What Makes a Good Tree?

@ Not too small: need to handle important but possibly subtle distinctions
in data

@ Not too big:

» Computational efficiency (avoid redundant, spurious attributes)
» Avoid over-fitting training examples
» Human interpretability

@ “Occam’s Razor”: find the simplest hypothesis that fits the
observations

» Useful principle, but hard to formalize (how to define simplicity?)

» See Domingos, 1999, “The role of Occam’s razor in knowledge
discovery”

@ We desire small trees with informative nodes near the root
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Expressiveness

@ Discrete-input, discrete-output case:

» Decision trees can express any function of the input attributes
» E.g., for Boolean functions, truth table row — path to leaf:

“ =TT >
=M= W
LEEE

@ Continuous-input, continuous-output case:
» Can approximate any function arbitrarily closely

o Trivially, there is a consistent decision tree for any training set w/ one
path to leaf for each example (unless f nondeterministic in z) but it
probably won’t generalize to new examples

[Slide credit: S. Russell]
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Decision Tree Miscellany

@ Problems:

v

You have exponentially less data at lower levels

v

Too big of a tree can overfit the data

v

Greedy algorithms don’t necessarily yield the global optimum

v

Mistakes at top-level propagate down tree

@ Handling continuous attributes

» Split based on a threshold, chosen to maximize information gain

@ Decision trees can also be used for regression on real-valued outputs.
Choose splits to minimize squared error, rather than maximize
information gain.
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Comparison to k-NN

Advantages of decision trees over k-NN

e Good with discrete attributes

Easily deals with missing values (just treat as another value)

@ Robust to scale of inputs- only depends on ordering

o Fast at test time

@ More interpretable
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Comparison to k-NN

Advantages of k-NN over decision trees

e Able to handle attributes/features that interact in complex ways
(e.g. pixels)

e Can incorporate interesting distance measures (e.g. shape
contexts)
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Summary so far

@ We've seen two particular learning algorithms: k-NN and decision trees

@ Next lecture: combine multiple models into an ensemble which
performs better than the individual members

» Generic class of techniques that can be applied to almost any
learning algorithms...

> ... but are particularly well suited to decision trees

» Understanding generalization using the bias/variance
decomposition (this lecture)

» Reducing variance using bagging

@ Next lecture

» Making a weak classifier stronger (i.e. reducing bias) using bagging
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Ensemble methods: Brief overview

@ An ensemble of predictors is a set of predictors whose individual
decisions are combined in some way to predict new examples

» E.g., (possibly weighted) majority vote

@ For this to be nontrivial, the learned hypotheses must differ somehow,
e.g.

Different algorithm

Different choice of hyperparameters

Trained on different data

Trained with different weighting of the training examples

v vy VvYy

@ Ensembles are usually easy to implement. The hard part is deciding
what kind of ensemble you want, based on your goals.
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Bias-Variance decomposition: Loss Functions

@ A loss function L(y,t) defines how bad it is if, for some example z, the
algorithm predicts y, but the target is actually ¢.

@ Example: 0-1 loss for classification

0 ify=t

Lo-1(y:t) = {1 ity #t

» Averaging the 0-1 loss over the training set gives the training
error rate, and averaging over the test set gives the test error
rate.

@ Example: squared error loss for regression

Lon(y.1) = 3 (y — 1)

» The average squared error loss is called mean squared error
(MSE).
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Bias-Variance Decomposition

@ Recall that overly simple models underfit the data, and overly complex
models overfit.

mmmmmmmmmmmmmmmmmmmmm

vvvvv

@ We can quantify this effect in terms of the bias/variance
decomposition.

@ Bias and variance of what?
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Bias-Variance Decomposition: Basic Setup

@ Suppose the training set D consists of N pairs (x(), () sampled
independent and identically distributed (i.i.d.) from a single data
generating distribution pgample.

> Let pgataset denote the induced distribution over training sets, i.e.
D ~ paataset

@ Pick a fixed query point x (denoted with a green x).

@ Consider an experiment where we sample lots of training sets
independently from pgatas.
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Bias-Variance Decomposition: Basic Setup

@ Let’s run our learning algorithm on each training set D, producing a
classifier hp

@ We compute each classifier’s prediction hp(x) = y at the query point x.

@ y is a random variable, where the randomness comes from the
choice of training set

» Disrandom = hp is random = hp(x) is random
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Bias-Variance Decomposition: Basic Setup

Here is the analogous setup for regression:

fit to dataset 1 fit to dataset 2 fit to dataset 3

1

query location lots of fits histogram of y

1

Since y = hp(x) is a random variable, we can talk about its expectation,
variance, etc. over the distribution of training sets Pgataset
CSC311-Lec2
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Bias-Variance Decomposition: Basic Setup

@ Recap of basic setup:

Hypothesis
Learning

Prediction

Test query Loss

@ Assume (for the moment) that ¢ is deterministic given x

@ There is a distribution over the loss at x, with expectation
ED~pasiase: [L(hD (%), 1)].

@ For each query point x, the expected loss is different. We are interested
in quantifying how well our classifier does over the distribution psampie,
averaging over training sets: Exp, .00, D~paacases LMD (X)), 1)].
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Bias-Variance Decomposition

@ For now, focus on squared error loss, L(y,t) = (y — t)°.

@ We can decompose the expected loss (suppressing distributions x, D
drawn from for compactness):

Ex,p[(hp (%) — )] = Ex p[(hp(x)~Ep[hp(x)] + Ep[hp(x)] — )]
= Exp[(hp(x) = Ep[hp(x)])? + (Ep[ho (x)] — 1)+
2(hp(x) — Ep[hp(x)])(Ep[hp(x)] — 1)]
= Exp[(hp(x) = Ep[hp(x)])?] + Ex[(Ep[hp(x)] — 1)°]

variance bias

@ Bias: On average, how close is our classifier to true target? (corresponds
to underfitting)

@ Variance: How widely dispersed are our predictions as we generate new
datasets? (corresponds to overfitting)
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Bias and Variance

e Throwing darts = predictions for each draw of a dataset

Low Variance High Vasiance

Low Bias

High Bias

e What doesn’t this capture?

e We average over points x from the data distribution
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