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Today

Decision Trees

I Simple but powerful learning algorithm

I One of the most widely used learning algorithms in Kaggle
competitions

I Lets us introduce ensembles, a key idea in ML

Useful information theoretic concepts (entropy, mutual information, etc.)

Bias-Variance decomposition
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Decision Trees

Decision trees make predictions by recursively splitting on different
attributes according to a tree structure.

Example: classifying fruit as an orange or lemon based on height and
width

Yes No 

Yes No Yes No 
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Decision Trees
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Decision Trees

For continuous attributes, split based on less than or greater than some
threshold

Thus, input space is divided into regions with boundaries parallel to axes
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Example with Discrete Inputs

What if the attributes are discrete?

Attributes:
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Decision Tree: Example with Discrete Inputs

Possible tree to decide whether to wait (T) or not (F)
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Decision Trees

Internal nodes test attributes

Branching is determined by attribute value

Leaf nodes are outputs (predictions)
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Decision Tree: Classification and Regression

Each path from root to a leaf defines a region Rm

of input space

Let {(x(m1), t(m1)), . . . , (x(mk), t(mk))} be the
training examples that fall into Rm

Classification tree:

I discrete output

I leaf value ym typically set to the most common value in
{t(m1), . . . , t(mk)}

Regression tree:

I continuous output

I leaf value ym typically set to the mean value in {t(m1), . . . , t(mk)}

Note: We will focus on classification
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How do we Learn a DecisionTree?

How do we construct a useful decision tree?
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Learning Decision Trees

Learning the simplest (smallest) decision tree which correctly classifies
training set is an NP complete problem [if you are interested, check: Hyafil &
Rivest’76]

Resort to a greedy heuristic! Start with empty decision tree and
complete training set

I Split on the “best” attribute, i.e. partition dataset
I Recurse on subpartitions

When should we stop?

Which attribute is the “best” (and where should we split, if continuous)?

I Choose based on accuracy?
I Loss: misclassification rate
I Say region R is split in R1 and R2 based on loss L(R).
I Accuracy gain is L(R)− |R1|L(R1)+|R2|L(R2)

|R1|+|R2|
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Choosing a Good Split

Why isn’t accuracy a good measure?

Classify by the majority, loss is misclassification rate.

Is this split good? Zero accuracy gain

L(R)− |R1|L(R1) + |R2|L(R2)

|R1|+ |R2|
=

49

149
−

50× 0 + 99× 49
99

149

But we’ve reduced our uncertainty about whether a fruit is a lemon
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Choosing a Good Split

How can we quantify uncertainty in prediction for a given leaf node?

I All examples in leaf have same class: good, low uncertainty
I Each class has same amount of examples in leaf: bad, high

uncertainty

Idea: Use counts at leaves to define probability distributions, and use
information theory to measure uncertainty
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We Flip Two Different Coins

Sequence 1: 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 ... ?	

Sequence 2: 
0 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 ... ?	

16 

2 
8 10 

0	 1	

versus 

0	 1	
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Quantifying Uncertainty

Entropy is a measure of expected “surprise”: How uncertain are we of the
value of a draw from this distribution?

H(X) = −EX∼p[log2 p(X)] = −
∑
x∈X

p(x) log2 p(x)

0	 1	

8/9 

1/9 

−8

9
log2

8

9
− 1

9
log2

1

9
≈ 1

2

0	 1	

4/9 5/9 

−4

9
log2

4

9
− 5

9
log2

5

9
≈ 0.99

Averages over information content of each observation

Unit = bits (based on the base of logarithm)

A fair coin flip has 1 bit of entropy
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Quantifying Uncertainty

H(X) = −
∑
x∈X

p(x) log2 p(x)

0.2 0.4 0.6 0.8 1.0
probability p of heads

0.2

0.4

0.6

0.8

1.0

entropy
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Entropy

“High Entropy”:

I Variable has a uniform like distribution
I Flat histogram
I Values sampled from it are less predictable

“Low Entropy”

I Distribution of variable has peaks and valleys
I Histogram has lows and highs
I Values sampled from it are more predictable

[Slide credit: Vibhav Gogate]
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Entropy of a Joint Distribution

Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(x, y)

= − 24

100
log2

24

100
− 1

100
log2

1

100
− 25

100
log2

25

100
− 50

100
log2

50

100

≈ 1.56bits
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Specific Conditional Entropy

Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

What is the entropy of cloudiness Y , given that it is raining?

H(Y |X = raining) = −
∑
y∈Y

p(y|raining) log2 p(y|raining)

= −24

25
log2

24

25
− 1

25
log2

1

25

≈ 0.24bits

We used: p(y|x) = p(x,y)
p(x) , and p(x) =

∑
y p(x, y) (sum in a row)
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Conditional Entropy

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

The expected conditional entropy:

H(Y |X) = EX∼p(x)[H(Y |X)] (1)

=
∑
x∈X

p(x)H(Y |X = x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(y|x)

= −E(X,Y )∼p(x,y)[log2 p(Y |X)]
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Conditional Entropy

Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

What is the entropy of cloudiness, given the knowledge of whether or not
it is raining?

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x)

=
1

4
H(cloudyness|is raining) +

3

4
H(cloudyness|not raining)

≈ 0.75 bits
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Conditional Entropy

Some useful properties for the discrete case:

I H is always non-negative.

I Chain rule: H(X,Y ) = H(X|Y ) + H(Y ) = H(Y |X) + H(X)

I If X and Y independent, then X doesn’t tell us anything about Y :
H(Y |X) = H(Y )

I But Y tells us everything about Y : H(Y |Y ) = 0

I By knowing X, we can only decrease uncertainty about Y :
H(Y |X) ≤ H(Y )

Verify these.
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Information Gain

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

How much information about cloudiness do we get by discovering
whether it is raining?

IG(Y |X) = H(Y )−H(Y |X)

≈ 0.25 bits

This is called the information gain in Y due to X, or the mutual
information of Y and X

If X is completely uninformative about Y : IG(Y |X) = 0

If X is completely informative about Y : IG(Y |X) = H(Y )
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Revisiting Our Original Example

Information gain measures the informativeness of a variable, which is
exactly what we desire in a decision tree attribute!

What is the information gain of this split?

Let Y be r.v. denoting lemon or orange, B be r.v. denoting whether left
or right split taken, and treat counts as probabilities.

Root entropy: H(Y ) = − 49
149 log2( 49

149 )− 100
149 log2( 100

149 ) ≈ 0.91

Leafs entropy: H(Y |B = left) = 0, H(Y |B = right) ≈ 1.

IG(Y |B) = H(Y )−H(Y |B)

= H(Y )− {H(Y |B=left)P(B=left) + H(Y |B=right)P(B=right)}
≈ 0.91− (0 · 13 + 1 · 23 ) ≈ 0.24 > 0
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Constructing Decision Trees

Yes No 

Yes No Yes No 

At each level, one must choose:

1. Which variable to split.
2. Possibly where to split it.

Choose them based on how much information we would gain from the
decision! (choose attribute that gives the best gain)
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Decision Tree Construction Algorithm

Simple, greedy, recursive approach, builds up tree node-by-node

Start with empty decision tree and complete training set

I Split on the most informative attribute, partitioning dataset
I Recurse on subpartitions

Possible termination condition: end if all examples in current
subpartition share the same class
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Back to Our Example

Attributes: [from: Russell & Norvig]
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Attribute Selection

IG(Y ) = H(Y )−H(Y |X)

IG(type) = 1−
[

2

12
H(Y |Fr.) +

2

12
H(Y |It.) +

4

12
H(Y |Thai) +

4

12
H(Y |Bur.)

]
= 0

IG(Patrons) = 1−
[

2

12
H(0, 1) +

4

12
H(1, 0) +

6

12
H(

2

6
,

4

6
)

]
≈ 0.541
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Which Tree is Better?
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What Makes a Good Tree?

Not too small: need to handle important but possibly subtle distinctions
in data

Not too big:

I Computational efficiency (avoid redundant, spurious attributes)

I Avoid over-fitting training examples

I Human interpretability

“Occam’s Razor”: find the simplest hypothesis that fits the
observations

I Useful principle, but hard to formalize (how to define simplicity?)

I See Domingos, 1999, “The role of Occam’s razor in knowledge
discovery”

We desire small trees with informative nodes near the root
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Expressiveness

Discrete-input, discrete-output case:

I Decision trees can express any function of the input attributes
I E.g., for Boolean functions, truth table row → path to leaf:

Continuous-input, continuous-output case:

I Can approximate any function arbitrarily closely

Trivially, there is a consistent decision tree for any training set w/ one
path to leaf for each example (unless f nondeterministic in x) but it
probably won’t generalize to new examples

[Slide credit: S. Russell]
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Decision Tree Miscellany

Problems:

I You have exponentially less data at lower levels

I Too big of a tree can overfit the data

I Greedy algorithms don’t necessarily yield the global optimum

I Mistakes at top-level propagate down tree

Handling continuous attributes

I Split based on a threshold, chosen to maximize information gain

Decision trees can also be used for regression on real-valued outputs.
Choose splits to minimize squared error, rather than maximize
information gain.
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Comparison to k-NN

Advantages of decision trees over k-NN

Good with discrete attributes

Easily deals with missing values (just treat as another value)

Robust to scale of inputs- only depends on ordering

Fast at test time

More interpretable
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Comparison to k-NN

Advantages of k-NN over decision trees

Able to handle attributes/features that interact in complex ways
(e.g. pixels)

Can incorporate interesting distance measures (e.g. shape
contexts)

Intro ML (UofT) CSC311-Lec2 34 / 44



Summary so far

We’ve seen two particular learning algorithms: k-NN and decision trees

Next lecture: combine multiple models into an ensemble which
performs better than the individual members

I Generic class of techniques that can be applied to almost any
learning algorithms...

I ... but are particularly well suited to decision trees
I Understanding generalization using the bias/variance

decomposition (this lecture)
I Reducing variance using bagging

Next lecture

I Making a weak classifier stronger (i.e. reducing bias) using bagging
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Ensemble methods: Brief overview

An ensemble of predictors is a set of predictors whose individual
decisions are combined in some way to predict new examples

I E.g., (possibly weighted) majority vote

For this to be nontrivial, the learned hypotheses must differ somehow,
e.g.

I Different algorithm
I Different choice of hyperparameters
I Trained on different data
I Trained with different weighting of the training examples

Ensembles are usually easy to implement. The hard part is deciding
what kind of ensemble you want, based on your goals.
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Bias-Variance decomposition: Loss Functions

A loss function L(y, t) defines how bad it is if, for some example x, the
algorithm predicts y, but the target is actually t.

Example: 0-1 loss for classification

L0−1(y, t) =

{
0 if y = t

1 if y 6= t

I Averaging the 0-1 loss over the training set gives the training
error rate, and averaging over the test set gives the test error
rate.

Example: squared error loss for regression

LSE(y, t) =
1

2
(y − t)2

I The average squared error loss is called mean squared error
(MSE).
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Bias-Variance Decomposition

Recall that overly simple models underfit the data, and overly complex
models overfit.

We can quantify this effect in terms of the bias/variance
decomposition.

Bias and variance of what?
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Bias-Variance Decomposition: Basic Setup

Suppose the training set D consists of N pairs (x(i), t(i)) sampled
independent and identically distributed (i.i.d.) from a single data
generating distribution psample.

I Let pdataset denote the induced distribution over training sets, i.e.
D ∼ pdataset

Pick a fixed query point x (denoted with a green x).

Consider an experiment where we sample lots of training sets
independently from pdataset.

Intro ML (UofT) CSC311-Lec2 39 / 44



Bias-Variance Decomposition: Basic Setup

Let’s run our learning algorithm on each training set D, producing a
classifier hD

We compute each classifier’s prediction hD(x) = y at the query point x.

y is a random variable, where the randomness comes from the
choice of training set

I D is random =⇒ hD is random =⇒ hD(x) is random
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Bias-Variance Decomposition: Basic Setup

Here is the analogous setup for regression:

Since y = hD(x) is a random variable, we can talk about its expectation,
variance, etc. over the distribution of training sets pdataset
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Bias-Variance Decomposition: Basic Setup

Recap of basic setup:

!"#$

{ &((), +(() }
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Test query

Data
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. Prediction

Hypothesis

&
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Loss

+

Assume (for the moment) that t is deterministic given x

There is a distribution over the loss at x, with expectation
ED∼pdataset

[L(hD(x), t)].

For each query point x, the expected loss is different. We are interested
in quantifying how well our classifier does over the distribution psample,
averaging over training sets: Ex∼psample,D∼pdataset

[L(hD(x), t)].
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Bias-Variance Decomposition

For now, focus on squared error loss, L(y, t) = 1
2 (y − t)2.

We can decompose the expected loss (suppressing distributions x, D
drawn from for compactness):

Ex,D[(hD(x)− t)2] = Ex,D[(hD(x)−ED[hD(x)] + ED[hD(x)]− t)2]

= Ex,D[(hD(x)− ED[hD(x)])2 + (ED[hD(x)]− t)2+

2(hD(x)− ED[hD(x)])(ED[hD(x)]− t)]

= Ex,D[(hD(x)− ED[hD(x)])2]︸ ︷︷ ︸
variance

+Ex[(ED[hD(x)]− t)2]︸ ︷︷ ︸
bias

Bias: On average, how close is our classifier to true target? (corresponds
to underfitting)

Variance: How widely dispersed are our predictions as we generate new
datasets? (corresponds to overfitting)
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Bias and Variance

Throwing darts = predictions for each draw of a dataset

What doesn’t this capture?

We average over points x from the data distribution
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