
CSC 311: Introduction to Machine Learning
Lecture 3 - Ensemble methods I & Linear Regression

Murat A. Erdogdu & Richard Zemel

University of Toronto

Intro ML (UofT) CSC311-Lec3 1 / 60

Announcements

Homework 1 is posted! Deadline Oct 2, 23:59.

TA office hours are announced on the course website.

Intro ML (UofT) CSC311-Lec3 2 / 60

Today

Bias-Variance decomposition

Ensemble methods I: Bagging, Random Forests

Linear regression

Intro ML (UofT) CSC311-Lec3 3 / 60

Bias-Variance decomposition: Loss Functions

A loss function L(y, t) defines how bad it is if, for some example x, the
algorithm predicts y, but the target is actually t.

Example: 0-1 loss for classification

L0−1(y, t) =

{
0 if y = t

1 if y 6= t

I Averaging the 0-1 loss over the training set gives the training
error rate, and averaging over the test set gives the test error
rate.

Example: squared error loss for regression

LSE(y, t) =
1

2
(y − t)2

I The average squared error loss is called mean squared error
(MSE).

Intro ML (UofT) CSC311-Lec3 4 / 60

Bias-Variance Decomposition

Recall that overly simple models underfit the data, and overly complex
models overfit.

We can quantify this effect in terms of the bias/variance
decomposition.

Bias and variance of what?

Intro ML (UofT) CSC311-Lec3 5 / 60

Bias-Variance Decomposition: Basic Setup

Suppose the training set D consists of N pairs (x(i), t(i)) sampled
independent and identically distributed (i.i.d.) from a sample
generating distribution psample, i.e., (x(i), t(i)) ∼ psample.

I Let pdataset denote the induced distribution over training sets, i.e.
D ∼ pdataset

Pick a fixed query point x (denoted with a green x).

Consider an experiment where we sample lots of training datasets i.i.d.
from pdataset.

Intro ML (UofT) CSC311-Lec3 6 / 60

Bias-Variance Decomposition: Basic Setup

Let’s run our learning algorithm on each training set D, producing a
classifier hD

We compute each classifier’s prediction hD(x) = y at the query point x.

y is a random variable, where the randomness comes from the
choice of training set

I D is random =⇒ hD is random =⇒ hD(x) is random

Intro ML (UofT) CSC311-Lec3 7 / 60

Bias-Variance Decomposition: Basic Setup

Here is the analogous setup for regression:

Since y = hD(x) is a random variable, we can talk about its expectation,
variance, etc. over the distribution of training sets pdataset

Intro ML (UofT) CSC311-Lec3 8 / 60

Bias-Variance Decomposition: Basic Setup

Recap of basic setup:

!"#$

{ &((), +(() }

&, +

Training set

Test query

Data
Sa

m
pl

e

Sam
ple

ℎ
Learning

. Prediction

Hypothesis

&

/
Loss

+

Assume (for the moment) that t is deterministic given x!

There is a distribution over the loss at x, with expectation
ED∼pdataset

[L(hD(x), t)].

For each query point x, the expected loss is different. We are interested
in quantifying how well our classifier does over the distribution psample,
averaging over training sets: Ex∼psample,D∼pdataset

[L(hD(x), t)].

Intro ML (UofT) CSC311-Lec3 9 / 60

Bias-Variance Decomposition

For now, focus on squared error loss, L(y, t) = 1
2 (y − t)2.

We can decompose the expected loss (suppressing distributions x, D
drawn from for compactness) (using E[E[X |Y]] = E[X] in second step)

Ex,D[(hD(x)− t)2] = Ex,D[(hD(x)−ED[hD(x) |x] + ED[hD(x) |x]− t)2]

= Ex[ED[(hD(x)− ED[hD(x) |x])2 + (ED[hD(x) |x]− t)2+

2(hD(x)− ED[hD(x) |x])(ED[hD(x) |x]− t) |x]]

= Ex,D[(hD(x)− ED[hD(x) |x])2]︸ ︷︷ ︸
variance

+Ex[(ED[hD(x) |x]− t)2]︸ ︷︷ ︸
bias

Bias: On average, how close is our classifier to true target? (corresponds
to underfitting)

Variance: How widely dispersed are our predictions as we generate new
datasets? (corresponds to overfitting)

Intro ML (UofT) CSC311-Lec3 10 / 60

Bias and Variance

Throwing darts = predictions for each draw of a dataset

What doesn’t this capture?

We average over points x from the data distribution

Intro ML (UofT) CSC311-Lec3 11 / 60

Bagging

Now, back to ensembles!
For now, we only consider bagging & random forests. We will talk
about other ensemble methods such as boosting later in the course.

Intro ML (UofT) CSC311-Lec3 12 / 60

Bagging: Motivation

Suppose we could somehow sample m independent training sets
{Di}mi=1 from pdataset.

We could then learn a predictor hi := hDi based on each one, and
take the average h = 1

m

∑m
i=1 hi.

How does this affect the terms of the expected loss?
I Bias: unchanged, since the averaged prediction has the same

expectation

E
D1,...,Dm

iid∼ pdataset
[h(x)] =

1

m

m∑
i=1

EDi∼pdataset
[hi(x)] = ED∼pdataset

[hD(x)]

I Variance: reduced, since we’re averaging over independent
samples

Var
D1,...,Dm

[h(x)] =
1

m2

m∑
i=1

Var
Di

[hi(x)] =
1

m
Var
D

[hD(x)].

What if m→∞?
Intro ML (UofT) CSC311-Lec3 13 / 60

Bagging: The Idea

In practice, we don’t have access to the underlying data generating
distribution psample.

It is expensive to collect many i.i.d. datasets from pdataset.

Solution: bootstrap aggregation, or bagging.

I Take a single dataset D with n examples.

I Generate m new datasets, each by sampling n training examples
from D, with replacement.

I Average the predictions of models trained on each of these datasets.

Intro ML (UofT) CSC311-Lec3 14 / 60

Bagging: The Idea

Problem: the datasets are not independent, so we don’t get the
1/m variance reduction.

I Possible to show that if the sampled predictions have variance σ2

and correlation ρ, then

Var

(
1

m

m∑
i=1

hi(x)

)
=

1

m
(1− ρ)σ2 + ρσ2.

Ironically, it can be advantageous to introduce additional
variability into your algorithm, as long as it reduces the
correlation between samples.

I Intuition: you want to invest in a diversified portfolio, not just one
stock.

I Can help to use average over multiple algorithms, or multiple
configurations of the same algorithm.

Intro ML (UofT) CSC311-Lec3 15 / 60

Random Forests

Random forests = bagged decision trees, with one extra trick to
decorrelate the predictions

When choosing each node of the decision tree, choose a random
set of d input features, and only consider splits on those features

The main idea in random forests is to improve the variance
reduction of bagging by reducing the correlation between the trees
(∼ ρ).

Random forests are probably the best black-box machine learning
algorithm — they often work well with no tuning whatsoever.

I one of the most widely used algorithms in Kaggle competitions

Intro ML (UofT) CSC311-Lec3 16 / 60

Bayes Optimality

Let’s return to quantifying expected loss and make the situation slightly
more complicated (and realistic): what if t is not deterministic given x?
i.e. have p(t|x)

We can no longer measure bias as expected distance from true target,
since there’s a distribution over targets!

Instead, we’ll measure distance from y∗(x) = E[t |x]

I This is the best possible prediction, in the sense that it minimizes
the expected loss

Intro ML (UofT) CSC311-Lec3 17 / 60

Bayes Optimality

Want to show: argminy E[(y − t)2 |x] = y∗(x) = E[t |x] (Distribution of
t ∼ p(t|x))

Proof: Start by conditioning on (fixing) x.

E[(y − t)2 |x] = E[y2 − 2yt+ t2 |x]

= y2 − 2yE[t |x] + E[t2 |x]

= y2 − 2yE[t |x] + E[t |x]2 + Var[t |x]

= y2 − 2yy∗(x) + y∗(x)2 + Var[t |x]

= (y − y∗(x))2 + Var[t |x]

The first term is nonnegative, and can be made 0 by setting y = y∗(x).

The second term doesn’t depend on y! Corresponds to the inherent
unpredictability, or noise, of the targets, and is called the Bayes error
or irreducible error.

I This is the best we can ever hope to do with any learning
algorithm. An algorithm that achieves it is Bayes optimal.

Intro ML (UofT) CSC311-Lec3 18 / 60

Bayes Optimality

We can again decompose the expected loss, this time taking the
distribution of t into account (check this!):

Ex,D,t|x[(hD(x)− t)2] =

Ex[(ED[hD(x)]− y∗(x))2]︸ ︷︷ ︸
bias

+Ex,D[(hD(x)− ED[hD(x)])2]︸ ︷︷ ︸
variance

+Ex[Var[t |x]]︸ ︷︷ ︸
Bayes

Contrast if t is not random conditioned on x:

Ex[(ED[hD(x)]− t)2]︸ ︷︷ ︸
bias

+Ex,D[(hD(x)− ED[hD(x)])2]︸ ︷︷ ︸
variance

We have no control over the Bayes error! In particular, bagging/boosting
do not help.

Intro ML (UofT) CSC311-Lec3 19 / 60

Bias/Variance Decomposition: Another Visualization

We can visualize this decomposition in output space, where the
axes correspond to predictions on the test examples.
If we have an overly simple model (e.g. k-NN with large k), it
might have

I high bias (because it’s too simplistic to capture the structure in the
data)

I low variance (because there’s enough data to get a stable estimate
of the decision boundary)

Intro ML (UofT) CSC311-Lec3 20 / 60

Bias/Variance Decomposition: Another Visualization

If you have an overly complex model (e.g. k-NN with k = 1), it
might have

I low bias (since it learns all the relevant structure)
I high variance (it fits the quirks of the data you happened to sample)

Intro ML (UofT) CSC311-Lec3 21 / 60

Summary

Bagging reduces overfitting by averaging predictions.

Used in most competition winners
I Even if a single model is great, a small ensemble usually helps.

Limitations:
I Does not reduce bias.
I There is still correlation between classifiers.

Random forest solution: Add more randomness.

Intro ML (UofT) CSC311-Lec3 22 / 60

Summary so far

So far, we’ve talked about procedures for learning.
I KNN, decision trees, bagging, random forests

For the remainder of this course, we’ll take a more modular
approach:

I choose a model describing the relationships between variables of
interest

I define a loss function quantifying how bad is the fit to the data
I choose a regularizer saying how much we prefer different candidate

explanations
I fit the model, e.g. using an optimization algorithm

By mixing and matching these modular components, your ML
skills become more powerful!

Intro ML (UofT) CSC311-Lec3 23 / 60

Recall the supervised learning setup

Recall that in supervised learning:

There is target t ∈ T (also called response, outcome, output, class)

There are features x ∈ X (also called inputs, covariates, design)

Objective is to learn a function f : X → T such that

t ≈ y = f(x)

based on some data D = {(t(i), x(i)) for i = 1, 2, ..., N}.
Intro ML (UofT) CSC311-Lec3 24 / 60

Problem Setup: linear regression

Model: In linear regression, we use linear functions of the inputs
x = (x1, . . . , xD) to make predictions y of the target value t:

y =f(x) =
∑
j

wjxj + b

I y is the prediction
I w is the weights
I b is the bias

w and b together are the parameters

We hope that our prediction is close to the target: y ≈ t.

Intro ML (UofT) CSC311-Lec3 25 / 60

What is linear? 1 feature vs D features

2 1 0 1 2
x: features

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y:
 re

sp
on

se

Fitted line
Data

If we have only 1 feature:
y = wx+ b where w, x, b ∈ R.

y is linear in x.

If we have D features:
y = w>x + b where w,x ∈ RD,
b ∈ R
y is linear in x.

Relation between the prediction y and inputs x is linear in both cases.

Intro ML (UofT) CSC311-Lec3 26 / 60

Linear Regression

We have a dataset D = {(t(i), x(i)) for i = 1, 2, ..., N} where,

t(i) ∈ R is the target or response (e.g. income),

x(i) = (x
(i)
1 , x

(i)
2 , ..., x

(i)
D)> ∈ RD are the inputs (e.g. age, height)

predict t(i) with a linear function of x(i):

2 1 0 1 2
x: features

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y:
 re

sp
on

se

Data

2 1 0 1 2
x: features

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y:
 re

sp
on

se

Fitted line
Data

t(i) ≈ y(i) = w>x(i) + b

Find the “best” line (w, b).

minimize
(w,b)

∑N
i=1 L(y(i), t(i))

Intro ML (UofT) CSC311-Lec3 27 / 60

Problem Setup

Loss function: squared error (says how bad the fit is)

L(y, t) = 1
2(y − t)2

y − t is the residual, and we want to make this small in magnitude

The 1
2 factor is just to make the calculations convenient.

Cost function: loss function averaged over all training examples

J (w, b) =
1

2

N∑
i=1

(
y(i) − t(i)

)2
=

1

2

N∑
i=1

(
w>x(i) + b− t(i)

)2

Intro ML (UofT) CSC311-Lec3 28 / 60

Vector notation

We can organize all the training examples into a design matrix X
with one row per training example, and all the targets into the
target vector t.

Computing the predictions for the whole dataset:

Xw + b1 =

wTx(1) + b
...

wTx(N) + b

 =

 y(1)

...

y(N)

 = y

Intro ML (UofT) CSC311-Lec3 29 / 60

Vectorization

Computing the squared error cost across the whole dataset:

y = Xw + b1

J =
1

2
‖y − t‖2

We can also add a column of 1’s to design matrix, combine the
bias and the weights, and conveniently write

X =

1 [x(1)]>

1 [x(2)]>

1
...

 ∈ RN×D+1 and w =


b
w1

w2
...

 ∈ RD+1

Then, our predictions reduce to y = Xw.

Intro ML (UofT) CSC311-Lec3 30 / 60

Solving the minimization problem

We defined a cost function. This is what we’d like to minimize.

Recall from calculus class: minimum of a smooth function (if it
exists) occurs at a critical point, i.e. point where the derivative is
zero.

Multivariate generalization: set the partial derivatives to zero (or
equivalently the gradient). We call this direct solution.

Intro ML (UofT) CSC311-Lec3 31 / 60

Direct solution

Partial derivatives: derivatives of a multivariate function with
respect to one of its arguments.

∂

∂x1
f(x1, x2) = lim

h→0

f(x1 + h, x2)− f(x1, x2)

h

To compute, take the single variable derivatives, pretending the
other arguments are constant.
Example: partial derivatives of the prediction y

∂y

∂wj
=

∂

∂wj

∑
j′
wj′xj′ + b


= xj

∂y

∂b
=

∂

∂b

∑
j′
wj′xj′ + b


= 1

Intro ML (UofT) CSC311-Lec3 32 / 60

Direct solution

Chain rule for derivatives:

∂L
∂wj

=
dL
dy

∂y

∂wj

=
d

dy

[
1

2
(y − t)2

]
· xj

= (y − t)xj
∂L
∂b

= y − t

Cost derivatives (average over data points):

∂J
∂wj

=
1

N

N∑
i=1

(y(i) − t(i))x(i)j

∂J
∂b

=
1

N

N∑
i=1

y(i) − t(i)

Intro ML (UofT) CSC311-Lec3 33 / 60

Direct solution

The minimum must occur at a point where the partial derivatives
are zero.

∂J
∂wj

= 0
∂J
∂b

= 0.

If ∂J /∂wj 6= 0, you could reduce the cost by changing wj .

This turns out to give a system of linear equations, which we can
solve efficiently. Full derivation in the preliminaries.pdf.

Optimal weights:
wLS = (XTX)−1XT t

Linear regression is one of only a handful of models in this course
that permit direct solution.

Intro ML (UofT) CSC311-Lec3 34 / 60

What if it isn’t linear: Polynomial curve fitting

If the relationship doesn’t look linear, we can fit a polynomial.

Fit the data using a degree-M polynomial function of the form:

y = w0 + w1x+ w2x
2 + ...+ wMx

M =
M∑
i=0

wix
i

This is called feature mapping: y = w>ψ(x) where
ψ(x) = [1, x, x2, ...]>. In general, ψ can be any function.

We can still use least squares since t is linear in w0, w1,

Form a feature vector x′ = (1, x, x2, ..., xM) and solve the least
squares problem.

Intro ML (UofT) CSC311-Lec3 35 / 60

Fitting polynomials: M = 0

y = w0

x

t

M = 0

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.

Intro ML (UofT) CSC311-Lec3 36 / 60

Fitting polynomials: M = 1

y = w0 + w1x

x

t

M = 1

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.

Intro ML (UofT) CSC311-Lec3 37 / 60

Fitting polynomials: M = 3

y = w0 + w1x+ w2x
2 + w3x

3

x

t

M = 3

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.

Intro ML (UofT) CSC311-Lec3 38 / 60

Fitting polynomials: M = 9

y = w0 + w1x+ w2x
2 + w3x

3 + . . .+ w9x
9

x

t

M = 9

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.

Intro ML (UofT) CSC311-Lec3 39 / 60

Generalization

Underfitting (M=0): model is too simple — does not fit the data.
Overfitting (M=9): model is too complex — fits perfectly.

x

t

M = 0

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1

Good model (M=3): Achieves small test error (generalizes well).

x

t

M = 3

0 1

−1

0

1

Intro ML (UofT) CSC311-Lec3 40 / 60

Generalization

x

t

M = 9

0 1

−1

0

1

As M increases, the magnitude of coefficients gets larger.

For M = 9, the coefficients have become finely tuned to the data.

Between data points, the function exhibits large oscillations.

Intro ML (UofT) CSC311-Lec3 41 / 60

Regularization

The degree of the polynomial M is a hyperparameter, just like k
in KNN. We can tune it using a validation set.

But restricting the size of the model is a crude solution, since
you’ll never be able to learn a more complex model, even if the
data support it.

Another approach: keep the model large, but regularize it
I Regularizer: a function that quantifies how much we prefer one

hypothesis vs. another

Intro ML (UofT) CSC311-Lec3 42 / 60

L2 (or `2) Regularization

We can encourage the weights to be small by choosing as our
regularizer the L2 penalty.

R(w) = 1
2‖w‖

2
2 =

1

2

∑
j

w2
j .

I Note: to be pedantic, the L2 norm is Euclidean distance, so we’re
really regularizing the squared L2 norm.

The regularized cost function makes a tradeoff between fit to the
data and the norm of the weights.

Jreg(w) = J (w) + λR(w) = J (w) +
λ

2

∑
j

w2
j

If you fit training data poorly, J is large. If your optimal weights
have high values, R is large.

Here, λ is a hyperparameter that we can tune with a validation set.

Large λ penalizes weight values more.

Intro ML (UofT) CSC311-Lec3 43 / 60

L2 Regularized least squares: Ridge regression

For the least squares problem, we have J (w) = 1
2‖Xw − t‖2.

When λ > 0 (with regularization), regularized cost gives

wRidge
λ = argmin

w
Jreg(w) = argmin

w

1

2
‖Xw − t‖22 +

λ

2
‖w‖22

=(XTX + λI)−1XT t

The case λ = 0 (no regularization) reduces to least squares
solution!

Intro ML (UofT) CSC311-Lec3 44 / 60

L1 vs. L2 Regularization

The L1 norm, or sum of absolute values, is another regularizer that encourages
weights to be exactly zero. (How can you tell?)

We can design regularizers based on whatever property we’d like to encourage.

— Bishop, Pattern Recognition and Machine Learning

Intro ML (UofT) CSC311-Lec3 45 / 60

Conclusion

Linear regression exemplifies recurring themes of this course:

choose a model and a loss function

formulate an optimization problem

solve the minimization problem using one of two strategies
I direct solution (set derivatives to zero)
I gradient descent (see appendix)

vectorize the algorithm, i.e. represent in terms of linear algebra

make a linear model more powerful using features

improve the generalization by adding a regularizer

Intro ML (UofT) CSC311-Lec3 46 / 60

Appendix

Intro ML (UofT) CSC311-Lec3 47 / 60

Probabilistic Interpretation

For the least squares: we minimize the sum of the squares of the errors
between the predictions for each data point x(i) and the corresponding
target values t(i), i.e.,

minimize
(w,w0)

n∑
i=1

(t(i) −w>x(i) + b)2

t ≈ x>w + b, (w, b) ∈ RD × R
So far we saw that polynomial curve
fitting can be expressed in terms of
error minimization.

We now view it from probabilistic
perspective.

Intro ML (UofT) CSC311-Lec3 48 / 60

Probabilistic interpretation

Suppose that our model arose from a
statistical model (b=0 for simplicity):

y(i) = w>x(i) + ε(i)

where ε(i) ∼ N (0, σ2) is independent
of anything else.

Thus, y(i)|x(i) ∼ p(y|x(i),w) =
N (w>x(i), σ2).

So far we saw that polynomial curve
fitting can be expressed in terms of
error minimization.

We now view it from probabilistic
perspective.

Intro ML (UofT) CSC311-Lec3 49 / 60

Maximum Likelihood Estimation

If the samples z(i) = (y(i)|x(i),w) are assumed to be independently
distributed (not i.i.d assumption),

and drawn from a distribution

y(i) ∼ p(y|x(i),w)

where w is a parameter to be estimated,

then joint density takes the form

p(y(1), y(2), ..., y(n)|x(1), x(2), ..., x(n),w) =

n∏
i=1

p(y(i)|x(i),w) = L(w)

which is called the likelihood (which doesn’t refer to joint density!).

Maximum likelihood estimation: after observing the data samples
z(i) for i = 1, 2, ..., n we should choose w that maximizes the likelihood.

Intro ML (UofT) CSC311-Lec3 50 / 60

Probabilistic Interpretation

Product of n terms is not easy to minimize. Taking log reduces it to a
sum! Two objectives are equivalent since log is strictly increasing.

Maximizing the likelihood is equivalent to minimizing the negative
log-likelihood:

`(w) = − logL(w) = − log

n∏
i=1

p(z(i)|w) = −
n∑
i=1

log p(z(i)|w)

Maximum Likelihood Estimator (MLE)

After observing z(i) for i = 1, ..., n i.i.d. samples from p(z|w), MLE is

wMLE = argmin
w

l(w) = −
n∑
i=1

log p(z(i)|w)

Intro ML (UofT) CSC311-Lec3 51 / 60

Back to Linear Regression

Suppose that our model arose from a statistical model:

y(i) = w>x(i) + ε(i)

where ε(i) ∼ N (0, σ2) is independent of anything else.

p(y(i)|x(i),w) = 1√
2πσ2

exp
{
− 1

2σ2 (y(i) −w>x(i))2
}

log p(y(i)|x(i),w) = − 1
2σ2 (y(i) −w>x(i))2 − log(

√
2πσ2)

wMLE = argminw L(w) = 1
2σ2

∑n
i=1(y

(i) −w>x(i))2 + C where C
and σ doesn’t depend on w, so don’t contribute to the
minimization.

wMLE = wLS when we work with Gaussian densities!

Intro ML (UofT) CSC311-Lec3 52 / 60

Gradient Descent

Now let’s see a second way to minimize the cost function which is
more broadly applicable: gradient descent.

Gradient descent is an iterative algorithm, which means we apply
an update repeatedly until some criterion is met.

We initialize the weights to something reasonable (e.g. all zeros)
and repeatedly adjust them in the direction of steepest descent.

Intro ML (UofT) CSC311-Lec3 53 / 60

Gradient descent

Observe:
I if ∂J /∂wj > 0, then increasing wj increases J .
I if ∂J /∂wj < 0, then increasing wj decreases J .

The following update decreases the cost function:

wj ← wj − α
∂J
∂wj

= wj −
α

N

N∑
i=1

(y(i) − t(i))x(i)j

α is a learning rate. The larger it is, the faster w changes.
I We’ll see later how to tune the learning rate, but values are

typically small, e.g. 0.01 or 0.0001

Intro ML (UofT) CSC311-Lec3 54 / 60

Gradient descent

This gets its name from the gradient:

∂J
∂w

=


∂J
∂w1

...
∂J
∂wD


I This is the direction of fastest increase in J .

Update rule in vector form:

w← w − α∂J
∂w

= w − α

N

N∑
i=1

(y(i) − t(i))x(i)

Hence, gradient descent updates the weights in the direction of
fastest decrease.

Intro ML (UofT) CSC311-Lec3 55 / 60

Gradient descent

Why gradient descent, if we can find the optimum directly?
I GD can be applied to a much broader set of models
I GD can be easier to implement than direct solutions, especially

with automatic differentiation software
I For regression in high-dimensional spaces, GD is more efficient than

direct solution (matrix inversion is an O(D3) algorithm).

Intro ML (UofT) CSC311-Lec3 56 / 60

Gradient descent under L2 Regularization

Recall the gradient descent update:

w← w − α∂J
∂w

The gradient descent update of the regularized cost has an
interesting interpretation as weight decay:

w← w − α
(
∂J
∂w

+ λ
∂R
∂w

)
= w − α

(
∂J
∂w

+ λw

)
= (1− αλ)w − α∂J

∂w

Intro ML (UofT) CSC311-Lec3 57 / 60

Brief Matrix/vector calculus

For a function f : Rp → R, ∇f(z) denotes the gradient at z which
points in the direction of the greatest rate of increase.

∇f(x) ∈ Rp is a vector with [∇f(x)]i = ∂
∂xi
f(x).

∇2f(x) ∈ Rp×p is a matrix with [∇2f(x)]ij = ∂2

∂xi∂xj
f(x)

At any minimum of a function f , we have ∇f(w) = 0,
∇2f(w) � 0.

Consider the problem minimize
w

`(w) = 1
2‖y −Xw‖22,

∇`(w) = X>(Xw − y) = 0 =⇒ ŵ = (X>X)−1X>y (assuming
X>X is invertible)

At an arbitrary point x (old/new observation), our prediction is
y = ŵ>x.

Intro ML (UofT) CSC311-Lec3 58 / 60

Vectorization

Computing the prediction using a for loop:

For-loops in Python are slow, so we vectorize algorithms by
expressing them in terms of vectors and matrices.

w = (w1, . . . , wD)T x = (x1, . . . , xD)

y = wTx + b

This is simpler and much faster:

Intro ML (UofT) CSC311-Lec3 59 / 60

Vectorization

Why vectorize?

The equations, and the code, will be simpler and more readable.
Gets rid of dummy variables/indices!

Vectorized code is much faster
I Cut down on Python interpreter overhead
I Use highly optimized linear algebra libraries
I Matrix multiplication is very fast on a Graphics Processing Unit

(GPU)

Intro ML (UofT) CSC311-Lec3 60 / 60

	Introduction

