CSC 311: Introduction to Machine Learning

Lecture 3 - Ensemble methods I \& Linear Regression

Murat A. Erdogdu \& Richard Zemel

University of Toronto

Announcements

- Homework 1 is posted! Deadline Oct 2, 23:59.
- TA office hours are announced on the course website.

Today

- Bias-Variance decomposition
- Ensemble methods I: Bagging, Random Forests
- Linear regression

Bias-Variance decomposition: Loss Functions

- A loss function $L(y, t)$ defines how bad it is if, for some example x, the algorithm predicts y, but the target is actually t.
- Example: 0-1 loss for classification

$$
L_{0-1}(y, t)= \begin{cases}0 & \text { if } y=t \\ 1 & \text { if } y \neq t\end{cases}
$$

- Averaging the 0-1 loss over the training set gives the training error rate, and averaging over the test set gives the test error rate.
- Example: squared error loss for regression

$$
L_{\mathrm{SE}}(y, t)=\frac{1}{2}(y-t)^{2}
$$

- The average squared error loss is called mean squared error (MSE).

Bias-Variance Decomposition

- Recall that overly simple models underfit the data, and overly complex models overfit.

- We can quantify this effect in terms of the bias/variance decomposition.
- Bias and variance of what?

Bias-Variance Decomposition: Basic Setup

- Suppose the training set \mathcal{D} consists of N pairs $\left(\mathbf{x}^{(i)}, t^{(i)}\right)$ sampled independent and identically distributed (i.i.d.) from a sample generating distribution $p_{\text {sample }}$, i.e., $\left(\mathbf{x}^{(i)}, t^{(i)}\right) \sim p_{\text {sample }}$.
- Let $p_{\text {dataset }}$ denote the induced distribution over training sets, i.e.

$$
\mathcal{D} \sim p_{\text {dataset }}
$$

- Pick a fixed query point \mathbf{x} (denoted with a green x).
- Consider an experiment where we sample lots of training datasets i.i.d. from $p_{\text {dataset }}$.

Bias-Variance Decomposition: Basic Setup

- Let's run our learning algorithm on each training set \mathcal{D}, producing a classifier $h_{\mathcal{D}}$
- We compute each classifier's prediction $h_{\mathcal{D}}(\mathbf{x})=y$ at the query point \mathbf{x}.
- y is a random variable, where the randomness comes from the choice of training set
- \mathcal{D} is random $\Longrightarrow h_{\mathcal{D}}$ is random $\Longrightarrow h_{\mathcal{D}}(\mathbf{x})$ is random

$$
y=
$$

$y=$

$y=$

Bias-Variance Decomposition: Basic Setup

Here is the analogous setup for regression:

Since $y=h_{\mathcal{D}}(\mathbf{x})$ is a random variable, we can talk about its expectation, variance, etc. over the distribution of training sets $p_{\text {dataset }}$

Bias-Variance Decomposition: Basic Setup

- Recap of basic setup:

- Assume (for the moment) that t is deterministic given x !
- There is a distribution over the loss at \mathbf{x}, with expectation $\mathbb{E}_{\mathcal{D} \sim p_{\text {dataset }}}\left[L\left(h_{\mathcal{D}}(\mathbf{x}), t\right)\right]$.
- For each query point \mathbf{x}, the expected loss is different. We are interested in quantifying how well our classifier does over the distribution $p_{\text {sample }}$, averaging over training sets: $\mathbb{E}_{\mathbf{x} \sim p_{\text {sample }}, \mathcal{D} \sim p_{\text {dataset }}}\left[L\left(h_{\mathcal{D}}(\mathbf{x}), t\right)\right]$.

Bias-Variance Decomposition

- For now, focus on squared error loss, $L(y, t)=\frac{1}{2}(y-t)^{2}$.
- We can decompose the expected loss (suppressing distributions \mathbf{x}, \mathcal{D} drawn from for compactness) (using $\mathbb{E}[\mathbb{E}[X \mid Y]]=\mathbb{E}[X]$ in second step)

$$
\begin{aligned}
& \mathbb{E}_{\mathbf{x}, \mathcal{D}}\left[\left(h_{\mathcal{D}}(\mathbf{x})-t\right)^{2}\right]= \mathbb{E}_{\mathbf{x}, \mathcal{D}}\left[\left(h_{\mathcal{D}}(\mathbf{x})-\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x}) \mid \mathbf{x}\right]+\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x}) \mid \mathbf{x}\right]-t\right)^{2}\right] \\
&= \mathbb{E}_{\mathbf{x}}\left[\mathbb { E } _ { \mathcal { D } } \left[\left(h_{\mathcal{D}}(\mathbf{x})-\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x}) \mid \mathbf{x}\right]\right)^{2}+\left(\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x}) \mid \mathbf{x}\right]-t\right)^{2}+\right.\right. \\
&\left.\left.\quad 2\left(h_{\mathcal{D}}(\mathbf{x})-\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x}) \mid \mathbf{x}\right]\right)\left(\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x}) \mid \mathbf{x}\right]-t\right) \mid \mathbf{x}\right]\right] \\
&= \underbrace{\mathbb{E}_{\mathbf{x}, \mathcal{D}}\left[\left(h_{\mathcal{D}}(\mathbf{x})-\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x}) \mid \mathbf{x}\right]\right)^{2}\right]}_{\text {variance }}+\underbrace{\mathbb{E}_{\mathbf{x}}\left[\left(\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x}) \mid \mathbf{x}\right]-t\right)^{2}\right]}_{\text {bias }}
\end{aligned}
$$

- Bias: On average, how close is our classifier to true target? (corresponds to underfitting)
- Variance: How widely dispersed are our predictions as we generate new datasets? (corresponds to overfitting)

Bias and Variance

- Throwing darts $=$ predictions for each draw of a dataset

- What doesn't this capture?
- We average over points \mathbf{x} from the data distribution

Bagging

Now, back to ensembles!
For now, we only consider bagging \& random forests. We will talk about other ensemble methods such as boosting later in the course.

Bagging: Motivation

- Suppose we could somehow sample m independent training sets $\left\{\mathcal{D}_{i}\right\}_{i=1}^{m}$ from $p_{\text {dataset }}$.
- We could then learn a predictor $h_{i}:=h_{\mathcal{D}_{i}}$ based on each one, and take the average $h=\frac{1}{m} \sum_{i=1}^{m} h_{i}$.
- How does this affect the terms of the expected loss?
- Bias: unchanged, since the averaged prediction has the same expectation

$$
\mathbb{E}_{\mathcal{D}_{1}, \ldots, \mathcal{D}_{m} \stackrel{i i d}{\sim} p_{\text {dataset }}}[h(\mathbf{x})]=\frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{\mathcal{D}_{i} \sim p_{\text {dataset }}}\left[h_{i}(\mathbf{x})\right]=\mathbb{E}_{\mathcal{D} \sim p_{\text {dataset }}}\left[h_{\mathcal{D}}(\mathbf{x})\right]
$$

- Variance: reduced, since we're averaging over independent samples

$$
\underset{\mathcal{D}_{1}, \ldots, \mathcal{D}_{m}}{\operatorname{Var}}[h(\mathbf{x})]=\frac{1}{m^{2}} \sum_{i=1}^{m} \underset{\mathcal{D}_{i}}{\operatorname{Var}}\left[h_{i}(\mathbf{x})\right]=\frac{1}{m} \underset{\mathcal{D}}{\operatorname{Var}}\left[h_{\mathcal{D}}(\mathbf{x})\right] .
$$

What if $m \rightarrow \infty$?

Bagging: The Idea

- In practice, we don't have access to the underlying data generating distribution $p_{\text {sample }}$.
- It is expensive to collect many i.i.d. datasets from $p_{\text {dataset }}$.
- Solution: bootstrap aggregation, or bagging.
- Take a single dataset \mathcal{D} with n examples.
- Generate m new datasets, each by sampling n training examples from \mathcal{D}, with replacement.
- Average the predictions of models trained on each of these datasets.

Bagging: The Idea

- Problem: the datasets are not independent, so we don't get the $1 / m$ variance reduction.
- Possible to show that if the sampled predictions have variance σ^{2} and correlation ρ, then

$$
\operatorname{Var}\left(\frac{1}{m} \sum_{i=1}^{m} h_{i}(\mathbf{x})\right)=\frac{1}{m}(1-\rho) \sigma^{2}+\rho \sigma^{2} .
$$

- Ironically, it can be advantageous to introduce additional variability into your algorithm, as long as it reduces the correlation between samples.
- Intuition: you want to invest in a diversified portfolio, not just one stock.
- Can help to use average over multiple algorithms, or multiple configurations of the same algorithm.

Random Forests

- Random forests $=$ bagged decision trees, with one extra trick to decorrelate the predictions
- When choosing each node of the decision tree, choose a random set of d input features, and only consider splits on those features
- The main idea in random forests is to improve the variance reduction of bagging by reducing the correlation between the trees $(\sim \rho)$.
- Random forests are probably the best black-box machine learning algorithm - they often work well with no tuning whatsoever.
- one of the most widely used algorithms in Kaggle competitions

Bayes Optimality

- Let's return to quantifying expected loss and make the situation slightly more complicated (and realistic): what if t is not deterministic given \mathbf{x} ? i.e. have $p(t \mid \mathbf{x})$
- We can no longer measure bias as expected distance from true target, since there's a distribution over targets!
- Instead, we'll measure distance from $y_{*}(\mathbf{x})=\mathbb{E}[t \mid \mathbf{x}]$
- This is the best possible prediction, in the sense that it minimizes the expected loss

Bayes Optimality

Want to show: $\operatorname{argmin}_{y} \mathbb{E}\left[(y-t)^{2} \mid \mathbf{x}\right]=y_{*}(\mathbf{x})=\mathbb{E}[t \mid \mathbf{x}]$ (Distribution of $t \sim p(t \mid \mathbf{x}))$

- Proof: Start by conditioning on (fixing) \mathbf{x}.

$$
\begin{aligned}
\mathbb{E}\left[(y-t)^{2} \mid \mathbf{x}\right] & =\mathbb{E}\left[y^{2}-2 y t+t^{2} \mid \mathbf{x}\right] \\
& =y^{2}-2 y \mathbb{E}[t \mid \mathbf{x}]+\mathbb{E}\left[t^{2} \mid \mathbf{x}\right] \\
& =y^{2}-2 y \mathbb{E}[t \mid \mathbf{x}]+\mathbb{E}[t \mid \mathbf{x}]^{2}+\operatorname{Var}[t \mid \mathbf{x}] \\
& =y^{2}-2 y y_{*}(\mathbf{x})+y_{*}(\mathbf{x})^{2}+\operatorname{Var}[t \mid \mathbf{x}] \\
& =\left(y-y_{*}(\mathbf{x})\right)^{2}+\operatorname{Var}[t \mid \mathbf{x}]
\end{aligned}
$$

- The first term is nonnegative, and can be made 0 by setting $y=y_{*}(\mathbf{x})$.
- The second term doesn't depend on y ! Corresponds to the inherent unpredictability, or noise, of the targets, and is called the Bayes error or irreducible error.
- This is the best we can ever hope to do with any learning algorithm. An algorithm that achieves it is Bayes optimal.

Bayes Optimality

- We can again decompose the expected loss, this time taking the distribution of t into account (check this!):

$$
\begin{aligned}
& \mathbb{E}_{\mathbf{x}, \mathcal{D}, t \mid \mathbf{x}}\left[\left(h_{\mathcal{D}}(\mathbf{x})-t\right)^{2}\right]= \\
& \underbrace{\mathbb{E}_{\mathbf{x}}\left[\left(\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x})\right]-y_{*}(\mathbf{x})\right)^{2}\right]}_{\text {bias }}+\underbrace{\mathbb{E}_{\mathbf{x}, \mathcal{D}}\left[\left(h_{\mathcal{D}}(\mathbf{x})-\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x})\right]\right)^{2}\right]}_{\text {variance }}+\underbrace{\mathbb{E}_{\mathbf{x}}[\operatorname{Var}[t \mid \mathbf{x}]]}_{\text {Bayes }}
\end{aligned}
$$

- Contrast if t is not random conditioned on \mathbf{x} :

$$
\underbrace{\mathbb{E}_{\mathbf{x}}\left[\left(\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x})\right]-t\right)^{2}\right]}_{\text {bias }}+\underbrace{\mathbb{E}_{\mathbf{x}, \mathcal{D}}\left[\left(h_{\mathcal{D}}(\mathbf{x})-\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x})\right]\right)^{2}\right]}_{\text {variance }}
$$

- We have no control over the Bayes error! In particular, bagging/boosting do not help.

Bias/Variance Decomposition: Another Visualization

- We can visualize this decomposition in output space, where the axes correspond to predictions on the test examples.
- If we have an overly simple model (e.g. k-NN with large k), it might have
- high bias (because it's too simplistic to capture the structure in the data)
- low variance (because there's enough data to get a stable estimate of the decision boundary)

Bias/Variance Decomposition: Another Visualization

- If you have an overly complex model (e.g. k-NN with $k=1$), it might have
- low bias (since it learns all the relevant structure)
- high variance (it fits the quirks of the data you happened to sample)

Summary

- Bagging reduces overfitting by averaging predictions.
- Used in most competition winners
- Even if a single model is great, a small ensemble usually helps.
- Limitations:
- Does not reduce bias.
- There is still correlation between classifiers.
- Random forest solution: Add more randomness.

Summary so far

- So far, we've talked about procedures for learning.
- KNN, decision trees, bagging, random forests
- For the remainder of this course, we'll take a more modular approach:
- choose a model describing the relationships between variables of interest
- define a loss function quantifying how bad is the fit to the data
- choose a regularizer saying how much we prefer different candidate explanations
- fit the model, e.g. using an optimization algorithm
- By mixing and matching these modular components, your ML skills become more powerful!

Recall the supervised learning setup

Recall that in supervised learning:

- There is target $t \in \mathcal{T}$ (also called response, outcome, output, class)
- There are features $x \in \mathcal{X}$ (also called inputs, covariates, design)
- Objective is to learn a function $f: \mathcal{X} \rightarrow \mathcal{T}$ such that

$$
t \approx y=f(x)
$$

based on some data $\mathcal{D}=\left\{\left(t^{(i)}, x^{(i)}\right)\right.$ for $\left.i=1,2, \ldots, N\right\}$.

Problem Setup: linear regression

- Model: In linear regression, we use linear functions of the inputs $\mathbf{x}=\left(x_{1}, \ldots, x_{D}\right)$ to make predictions y of the target value t :

$$
y=f(\mathbf{x})=\sum_{j} w_{j} x_{j}+b
$$

- y is the prediction
- \mathbf{w} is the weights
- b is the bias
- \mathbf{w} and b together are the parameters
- We hope that our prediction is close to the target: $y \approx t$.

What is linear? 1 feature vs D features

- If we have only 1 feature:
$y=w x+b$ where $w, x, b \in \mathbb{R}$.
- y is linear in x.
- If we have D features:
$y=\mathbf{w}^{\top} \mathbf{x}+b$ where $\mathbf{w}, \mathbf{x} \in \mathbb{R}^{D}$, $b \in \mathbb{R}$
- y is linear in \mathbf{x}.

Relation between the prediction y and inputs \mathbf{x} is linear in both cases.

Linear Regression

We have a dataset $\mathcal{D}=\left\{\left(t^{(i)}, x^{(i)}\right)\right.$ for $\left.i=1,2, \ldots, N\right\}$ where,

- $t^{(i)} \in \mathbb{R}$ is the target or response (e.g. income),
- $\mathbf{x}^{(i)}=\left(x_{1}^{(i)}, x_{2}^{(i)}, \ldots, x_{D}^{(i)}\right)^{\top} \in \mathbb{R}^{D}$ are the inputs (e.g. age, height)
- predict $t^{(i)}$ with a linear function of $\mathbf{x}^{(i)}$:

- $t^{(i)} \approx y^{(i)}=\mathbf{w}^{\top} \mathbf{x}^{(i)}+b$
- Find the "best" line (\mathbf{w}, b).
- $\underset{(\mathbf{w}, b)}{\operatorname{minimize}} \sum_{i=1}^{N} \mathcal{L}\left(y^{(i)}, t^{(i)}\right)$

Problem Setup

- Loss function: squared error (says how bad the fit is)

$$
\mathcal{L}(y, t)=\frac{1}{2}(y-t)^{2}
$$

- $y-t$ is the residual, and we want to make this small in magnitude
- The $\frac{1}{2}$ factor is just to make the calculations convenient.
- Cost function: loss function averaged over all training examples

$$
\begin{aligned}
\mathcal{J}(\mathbf{w}, b) & =\frac{1}{2} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right)^{2} \\
& =\frac{1}{2} \sum_{i=1}^{N}\left(\mathbf{w}^{\top} \mathbf{x}^{(i)}+b-t^{(i)}\right)^{2}
\end{aligned}
$$

Vector notation

- We can organize all the training examples into a design matrix \mathbf{X} with one row per training example, and all the targets into the target vector \mathbf{t}.

> one feature across
> all training examples

$$
\left.\mathbf{X}=\left(\begin{array}{l}
\mathbf{x}^{(1) \top} \\
\mathbf{x}^{(2) \top} \\
\mathbf{x}^{(3) \top}
\end{array}\right)=\begin{array}{c|c|cc}
\cline { 2 - 4 } & 0 & 3 & 0 \\
\hline 6 & -1 & 5 & 3 \\
\hline 2 & 5 & -2 & 8
\end{array}\right) \text { come training }
$$

- Computing the predictions for the whole dataset:

$$
\mathbf{X} \mathbf{w}+b \mathbf{1}=\left(\begin{array}{c}
\mathbf{w}^{T} \mathbf{x}^{(1)}+b \\
\vdots \\
\mathbf{w}^{T} \mathbf{x}^{(N)}+b
\end{array}\right)=\left(\begin{array}{c}
y^{(1)} \\
\vdots \\
y^{(N)}
\end{array}\right)=\mathbf{y}
$$

Vectorization

- Computing the squared error cost across the whole dataset:

$$
\begin{aligned}
& \mathbf{y}=\mathbf{X} \mathbf{w}+b \mathbf{1} \\
& \mathcal{J}=\frac{1}{2}\|\mathbf{y}-\mathbf{t}\|^{2}
\end{aligned}
$$

- We can also add a column of 1's to design matrix, combine the bias and the weights, and conveniently write

$$
\mathbf{X}=\left[\begin{array}{cc}
1 & {\left[\mathbf{x}^{(1)}\right]^{\top}} \\
1 & {\left[\mathbf{x}^{(2)}\right]^{\top}} \\
1 & \vdots
\end{array}\right] \in \mathbb{R}^{N \times D+1} \quad \text { and } \quad \mathbf{w}=\left[\begin{array}{c}
b \\
w_{1} \\
w_{2} \\
\vdots
\end{array}\right] \in \mathbb{R}^{D+1}
$$

Then, our predictions reduce to $\mathbf{y}=\mathbf{X w}$.

Solving the minimization problem

- We defined a cost function. This is what we'd like to minimize.
- Recall from calculus class: minimum of a smooth function (if it exists) occurs at a critical point, i.e. point where the derivative is zero.
- Multivariate generalization: set the partial derivatives to zero (or equivalently the gradient). We call this direct solution.

Direct solution

- Partial derivatives: derivatives of a multivariate function with respect to one of its arguments.

$$
\frac{\partial}{\partial x_{1}} f\left(x_{1}, x_{2}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{1}+h, x_{2}\right)-f\left(x_{1}, x_{2}\right)}{h}
$$

- To compute, take the single variable derivatives, pretending the other arguments are constant.
- Example: partial derivatives of the prediction y

$$
\begin{aligned}
\frac{\partial y}{\partial w_{j}} & =\frac{\partial}{\partial w_{j}}\left[\sum_{j^{\prime}} w_{j^{\prime}} x_{j^{\prime}}+b\right] \\
& =x_{j} \\
\frac{\partial y}{\partial b} & =\frac{\partial}{\partial b}\left[\sum_{j^{\prime}} w_{j^{\prime}} x_{j^{\prime}}+b\right] \\
& =1
\end{aligned}
$$

Direct solution

- Chain rule for derivatives:

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial w_{j}} & =\frac{\mathrm{d} \mathcal{L}}{\mathrm{~d} y} \frac{\partial y}{\partial w_{j}} \\
& =\frac{\mathrm{d}}{\mathrm{~d} y}\left[\frac{1}{2}(y-t)^{2}\right] \cdot x_{j} \\
& =(y-t) x_{j} \\
\frac{\partial \mathcal{L}}{\partial b} & =y-t
\end{aligned}
$$

- Cost derivatives (average over data points):

$$
\begin{aligned}
\frac{\partial \mathcal{J}}{\partial w_{j}} & =\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) x_{j}^{(i)} \\
\frac{\partial \mathcal{J}}{\partial b} & =\frac{1}{N} \sum_{i=1}^{N} y^{(i)}-t^{(i)}
\end{aligned}
$$

Direct solution

- The minimum must occur at a point where the partial derivatives are zero.

$$
\frac{\partial \mathcal{J}}{\partial w_{j}}=0 \quad \frac{\partial \mathcal{J}}{\partial b}=0
$$

- If $\partial \mathcal{J} / \partial w_{j} \neq 0$, you could reduce the cost by changing w_{j}.
- This turns out to give a system of linear equations, which we can solve efficiently. Full derivation in the preliminaries.pdf.
- Optimal weights:

$$
\mathbf{w}^{\mathrm{LS}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{t}
$$

- Linear regression is one of only a handful of models in this course that permit direct solution.

What if it isn't linear: Polynomial curve fitting

If the relationship doesn't look linear, we can fit a polynomial.

Fit the data using a degree- M polynomial function of the form:

$$
y=w_{0}+w_{1} x+w_{2} x^{2}+\ldots+w_{M} x^{M}=\sum_{i=0}^{M} w_{i} x^{i}
$$

- This is called feature mapping: $y=\mathbf{w}^{\top} \boldsymbol{\psi}(x)$ where $\boldsymbol{\psi}(x)=\left[1, x, x^{2}, \ldots\right]^{\top}$. In general, $\boldsymbol{\psi}$ can be any function.
- We can still use least squares since t is linear in w_{0}, w_{1}, \ldots.
- Form a feature vector $\mathbf{x}^{\prime}=\left(1, x, x^{2}, \ldots, x^{M}\right)$ and solve the least squares problem.

Fitting polynomials: $M=0$

$$
y=w_{0}
$$

-Pattern Recognition and Machine Learning, Christopher Bishop.

Fitting polynomials: $M=1$

$$
y=w_{0}+w_{1} x
$$

-Pattern Recognition and Machine Learning, Christopher Bishop.

Fitting polynomials: $M=3$

-Pattern Recognition and Machine Learning, Christopher Bishop.

Fitting polynomials: $M=9$

$$
y=w_{0}+w_{1} x+w_{2} x^{2}+w_{3} x^{3}+\ldots+w_{9} x^{9}
$$

-Pattern Recognition and Machine Learning, Christopher Bishop.

Generalization

Underfitting $(\mathrm{M}=0)$: model is too simple - does not fit the data. Overfitting ($M=9$): model is too complex - fits perfectly.

Good model $(\mathrm{M}=3)$: Achieves small test error (generalizes well).

Generalization

- As M increases, the magnitude of coefficients gets larger.
- For $M=9$, the coefficients have become finely tuned to the data.
- Between data points, the function exhibits large oscillations.

Regularization

- The degree of the polynomial M is a hyperparameter, just like k in KNN. We can tune it using a validation set.
- But restricting the size of the model is a crude solution, since you'll never be able to learn a more complex model, even if the data support it.
- Another approach: keep the model large, but regularize it
- Regularizer: a function that quantifies how much we prefer one hypothesis vs. another

$L^{2}\left(\right.$ or $\left.\ell_{2}\right)$ Regularization

- We can encourage the weights to be small by choosing as our regularizer the L^{2} penalty.

$$
\mathcal{R}(\mathbf{w})=\frac{1}{2}\|\mathbf{w}\|_{2}^{2}=\frac{1}{2} \sum_{j} w_{j}^{2}
$$

- Note: to be pedantic, the L^{2} norm is Euclidean distance, so we're really regularizing the squared L^{2} norm.
- The regularized cost function makes a tradeoff between fit to the data and the norm of the weights.

$$
\mathcal{J}_{\mathrm{reg}}(\mathbf{w})=\mathcal{J}(\mathbf{w})+\lambda \mathcal{R}(\mathbf{w})=\mathcal{J}(\mathbf{w})+\frac{\lambda}{2} \sum_{j} w_{j}^{2}
$$

- If you fit training data poorly, \mathcal{J} is large. If your optimal weights have high values, \mathcal{R} is large.
- Here, λ is a hyperparameter that we can tune with a validation set.
- Large λ penalizes weight values more.

L^{2} Regularized least squares: Ridge regression

For the least squares problem, we have $\mathcal{J}(\mathbf{w})=\frac{1}{2}\|\mathbf{X w}-\mathbf{t}\|^{2}$.

- When $\lambda>0$ (with regularization), regularized cost gives

$$
\begin{aligned}
\mathbf{w}_{\lambda}^{\text {Ridge }}=\underset{\mathbf{w}}{\operatorname{argmin}} \mathcal{J}_{\mathrm{reg}}(\mathbf{w}) & =\underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{t}\|_{2}^{2}+\frac{\lambda}{2}\|\mathbf{w}\|_{2}^{2} \\
& =\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{t}
\end{aligned}
$$

- The case $\lambda=0$ (no regularization) reduces to least squares solution!

L^{1} vs. L^{2} Regularization

- The L^{1} norm, or sum of absolute values, is another regularizer that encourages weights to be exactly zero. (How can you tell?)
- We can design regularizers based on whatever property we'd like to encourage.

L2 regularization

$$
\mathcal{R}=\sum_{i} w_{i}^{2}
$$

L1 regularization

$$
\mathcal{R}=\sum_{i}\left|w_{i}\right|
$$

- Bishop, Pattern Recognition and Machine Learning

Conclusion

Linear regression exemplifies recurring themes of this course:

- choose a model and a loss function
- formulate an optimization problem
- solve the minimization problem using one of two strategies
- direct solution (set derivatives to zero)
- gradient descent (see appendix)
- vectorize the algorithm, i.e. represent in terms of linear algebra
- make a linear model more powerful using features
- improve the generalization by adding a regularizer

Appendix

Probabilistic Interpretation

For the least squares: we minimize the sum of the squares of the errors between the predictions for each data point $x^{(i)}$ and the corresponding target values $t^{(i)}$, i.e.,

$$
\underset{\left(\mathbf{w}, \mathbf{w}_{0}\right)}{\operatorname{minimize}} \sum_{i=1}^{n}\left(t^{(i)}-\mathbf{w}^{\top} x^{(i)}+b\right)^{2}
$$

- $t \approx x^{\top} \mathbf{w}+b,(\mathbf{w}, b) \in \mathbb{R}^{D} \times \mathbb{R}$
- So far we saw that polynomial curve fitting can be expressed in terms of error minimization.
- We now view it from probabilistic perspective.

Probabilistic interpretation

- Suppose that our model arose from a statistical model ($b=0$ for simplicity):

$$
y^{(i)}=\mathbf{w}^{\top} x^{(i)}+\epsilon^{(i)}
$$

where $\epsilon^{(i)} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ is independent of anything else.

- Thus, $y^{(i)} \mid x^{(i)} \sim p\left(y \mid x^{(i)}, \mathbf{w}\right)=$ $\mathcal{N}\left(\mathbf{w}^{\top} x^{(i)}, \sigma^{2}\right)$.
- So far we saw that polynomial curve fitting can be expressed in terms of error minimization.
- We now view it from probabilistic perspective.

Maximum Likelihood Estimation

- If the samples $z^{(i)}=\left(y^{(i)} \mid x^{(i)}, \mathbf{w}\right)$ are assumed to be independently distributed (not i.i.d assumption),
- and drawn from a distribution

$$
y^{(i)} \sim p\left(y \mid x^{(i)}, \mathbf{w}\right)
$$

where \mathbf{w} is a parameter to be estimated,

- then joint density takes the form
$p\left(y^{(1)}, y^{(2)}, \ldots, y^{(n)} \mid x^{(1)}, x^{(2)}, \ldots, x^{(n)}, \mathbf{w}\right)=\prod_{i=1}^{n} p\left(y^{(i)} \mid x^{(i)}, \mathbf{w}\right)=L(\mathbf{w})$
which is called the likelihood (which doesn't refer to joint density!).
Maximum likelihood estimation: after observing the data samples $z^{(i)}$ for $i=1,2, \ldots, n$ we should choose \mathbf{w} that maximizes the likelihood.

Probabilistic Interpretation

Product of n terms is not easy to minimize. Taking log reduces it to a sum! Two objectives are equivalent since \log is strictly increasing.

Maximizing the likelihood is equivalent to minimizing the negative log-likelihood:

$$
\ell(\mathbf{w})=-\log L(\mathbf{w})=-\log \prod_{i=1}^{n} p\left(z^{(i)} \mid \mathbf{w}\right)=-\sum_{i=1}^{n} \log p\left(z^{(i)} \mid \mathbf{w}\right)
$$

Maximum Likelihood Estimator (MLE)

After observing $z^{(i)}$ for $i=1, \ldots, n$ i.i.d. samples from $p(z \mid \mathbf{w})$, MLE is

$$
\mathbf{w}^{\mathrm{MLE}}=\underset{\mathbf{w}}{\operatorname{argmin}} l(\mathbf{w})=-\sum_{i=1}^{n} \log p\left(z^{(i)} \mid \mathbf{w}\right)
$$

Back to Linear Regression

- Suppose that our model arose from a statistical model:

$$
y^{(i)}=\mathbf{w}^{\top} x^{(i)}+\epsilon^{(i)}
$$

where $\epsilon^{(i)} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ is independent of anything else.

- $p\left(y^{(i)} \mid x^{(i)}, \mathbf{w}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(y^{(i)}-\mathbf{w}^{\top} x^{(i)}\right)^{2}\right\}$
- $\log p\left(y^{(i)} \mid x^{(i)}, \mathbf{w}\right)=-\frac{1}{2 \sigma^{2}}\left(y^{(i)}-\mathbf{w}^{\top} x^{(i)}\right)^{2}-\log \left(\sqrt{2 \pi \sigma^{2}}\right)$
- $\mathbf{w}^{\mathrm{MLE}}=\operatorname{argmin}_{\mathbf{w}} \mathcal{L}(\mathbf{w})=\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y^{(i)}-\mathbf{w}^{\top} x^{(i)}\right)^{2}+C$ where C and σ doesn't depend on \mathbf{w}, so don't contribute to the minimization.
$\mathbf{w}^{\mathrm{MLE}}=\mathbf{w}^{\mathrm{LS}}$ when we work with Gaussian densities!

Gradient Descent

- Now let's see a second way to minimize the cost function which is more broadly applicable: gradient descent.
- Gradient descent is an iterative algorithm, which means we apply an update repeatedly until some criterion is met.
- We initialize the weights to something reasonable (e.g. all zeros) and repeatedly adjust them in the direction of steepest descent.

Gradient descent

- Observe:
- if $\partial \mathcal{J} / \partial w_{j}>0$, then increasing w_{j} increases \mathcal{J}.
- if $\partial \mathcal{J} / \partial w_{j}<0$, then increasing w_{j} decreases \mathcal{J}.
- The following update decreases the cost function:

$$
\begin{aligned}
w_{j} & \leftarrow w_{j}-\alpha \frac{\partial \mathcal{J}}{\partial w_{j}} \\
& =w_{j}-\frac{\alpha}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) x_{j}^{(i)}
\end{aligned}
$$

- α is a learning rate. The larger it is, the faster \mathbf{w} changes.
- We'll see later how to tune the learning rate, but values are typically small, e.g. 0.01 or 0.0001

Gradient descent

- This gets its name from the gradient:

$$
\frac{\partial \mathcal{J}}{\partial \mathbf{w}}=\left(\begin{array}{c}
\frac{\partial \mathcal{J}}{\partial w_{1}} \\
\vdots \\
\frac{\partial \mathcal{J}}{\partial w_{D}}
\end{array}\right)
$$

- This is the direction of fastest increase in \mathcal{J}.
- Update rule in vector form:

$$
\begin{aligned}
\mathbf{w} & \leftarrow \mathbf{w}-\alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}} \\
& =\mathbf{w}-\frac{\alpha}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) \mathbf{x}^{(i)}
\end{aligned}
$$

- Hence, gradient descent updates the weights in the direction of fastest decrease.

Gradient descent

- Why gradient descent, if we can find the optimum directly?
- GD can be applied to a much broader set of models
- GD can be easier to implement than direct solutions, especially with automatic differentiation software
- For regression in high-dimensional spaces, GD is more efficient than direct solution (matrix inversion is an $\mathcal{O}\left(D^{3}\right)$ algorithm).

Gradient descent under L^{2} Regularization

- Recall the gradient descent update:

$$
\mathbf{w} \leftarrow \mathbf{w}-\alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}}
$$

- The gradient descent update of the regularized cost has an interesting interpretation as weight decay:

$$
\begin{aligned}
\mathbf{w} & \leftarrow \mathbf{w}-\alpha\left(\frac{\partial \mathcal{J}}{\partial \mathbf{w}}+\lambda \frac{\partial \mathcal{R}}{\partial \mathbf{w}}\right) \\
& =\mathbf{w}-\alpha\left(\frac{\partial \mathcal{J}}{\partial \mathbf{w}}+\lambda \mathbf{w}\right) \\
& =(1-\alpha \lambda) \mathbf{w}-\alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}}
\end{aligned}
$$

Brief Matrix/vector calculus

- For a function $f: \mathbb{R}^{p} \rightarrow \mathbb{R}, \nabla f(z)$ denotes the gradient at z which points in the direction of the greatest rate of increase.
- $\nabla f(x) \in \mathbb{R}^{p}$ is a vector with $[\nabla f(x)]_{i}=\frac{\partial}{\partial x_{i}} f(x)$.
- $\nabla^{2} f(x) \in \mathbb{R}^{p \times p}$ is a matrix with $\left[\nabla^{2} f(x)\right]_{i j}=\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f(x)$
- At any minimum of a function f, we have $\nabla f(\mathbf{w})=0$, $\nabla^{2} f(\mathbf{w}) \succeq 0$.
- Consider the problem $\underset{\mathbf{w}}{\operatorname{minimize}} \ell(\mathbf{w})=\frac{1}{2}\|y-X \mathbf{w}\|_{2}^{2}$,
- $\nabla \ell(\mathbf{w})=X^{\top}(X \mathbf{w}-y)=0 \Longrightarrow \hat{\mathbf{w}}=\left(X^{\top} X\right)^{-1} X^{\top} y$ (assuming $X^{\top} X$ is invertible)

At an arbitrary point x (old/new observation), our prediction is $y=\hat{\mathbf{w}}^{\top} x$.

Vectorization

- Computing the prediction using a for loop:

$$
\begin{aligned}
& y=b \\
& \text { for } j \text { in range(M): } \\
& y+=w[j] * \times[j]
\end{aligned}
$$

- For-loops in Python are slow, so we vectorize algorithms by expressing them in terms of vectors and matrices.

$$
\begin{gathered}
\mathbf{w}=\left(w_{1}, \ldots, w_{D}\right)^{T} \quad \mathbf{x}=\left(x_{1}, \ldots, x_{D}\right) \\
y=\mathbf{w}^{T} \mathbf{x}+b
\end{gathered}
$$

- This is simpler and much faster:

$$
y=n p \cdot \operatorname{dot}(w, x)+b
$$

Vectorization

Why vectorize?

- The equations, and the code, will be simpler and more readable. Gets rid of dummy variables/indices!
- Vectorized code is much faster
- Cut down on Python interpreter overhead
- Use highly optimized linear algebra libraries
- Matrix multiplication is very fast on a Graphics Processing Unit (GPU)

