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Announcements

Homework 1 is posted! Deadline Oct 2, 23:59.

TA office hours are announced on the course website.
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Today

Bias-Variance decomposition

Ensemble methods I: Bagging, Random Forests

Linear regression
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Bias-Variance decomposition: Loss Functions

A loss function L(y, t) defines how bad it is if, for some example x, the
algorithm predicts y, but the target is actually t.

Example: 0-1 loss for classification

L0−1(y, t) =

{
0 if y = t

1 if y 6= t

I Averaging the 0-1 loss over the training set gives the training
error rate, and averaging over the test set gives the test error
rate.

Example: squared error loss for regression

LSE(y, t) =
1

2
(y − t)2

I The average squared error loss is called mean squared error
(MSE).
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Bias-Variance Decomposition

Recall that overly simple models underfit the data, and overly complex
models overfit.

We can quantify this effect in terms of the bias/variance
decomposition.

Bias and variance of what?
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Bias-Variance Decomposition: Basic Setup

Suppose the training set D consists of N pairs (x(i), t(i)) sampled
independent and identically distributed (i.i.d.) from a sample
generating distribution psample, i.e., (x(i), t(i)) ∼ psample.

I Let pdataset denote the induced distribution over training sets, i.e.
D ∼ pdataset

Pick a fixed query point x (denoted with a green x).

Consider an experiment where we sample lots of training datasets i.i.d.
from pdataset.
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Bias-Variance Decomposition: Basic Setup

Let’s run our learning algorithm on each training set D, producing a
classifier hD

We compute each classifier’s prediction hD(x) = y at the query point x.

y is a random variable, where the randomness comes from the
choice of training set

I D is random =⇒ hD is random =⇒ hD(x) is random
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Bias-Variance Decomposition: Basic Setup

Here is the analogous setup for regression:

Since y = hD(x) is a random variable, we can talk about its expectation,
variance, etc. over the distribution of training sets pdataset
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Bias-Variance Decomposition: Basic Setup

Recap of basic setup:
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Assume (for the moment) that t is deterministic given x!

There is a distribution over the loss at x, with expectation
ED∼pdataset

[L(hD(x), t)].

For each query point x, the expected loss is different. We are interested
in quantifying how well our classifier does over the distribution psample,
averaging over training sets: Ex∼psample,D∼pdataset

[L(hD(x), t)].
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Bias-Variance Decomposition

For now, focus on squared error loss, L(y, t) = 1
2 (y − t)2.

We can decompose the expected loss (suppressing distributions x, D
drawn from for compactness) (using E[E[X |Y ]] = E[X] in second step)

Ex,D[(hD(x)− t)2] = Ex,D[(hD(x)−ED[hD(x) |x] + ED[hD(x) |x]− t)2]

= Ex[ED[(hD(x)− ED[hD(x) |x])2 + (ED[hD(x) |x]− t)2+

2(hD(x)− ED[hD(x) |x])(ED[hD(x) |x]− t) |x]]

= Ex,D[(hD(x)− ED[hD(x) |x])2]︸ ︷︷ ︸
variance

+Ex[(ED[hD(x) |x]− t)2]︸ ︷︷ ︸
bias

Bias: On average, how close is our classifier to true target? (corresponds
to underfitting)

Variance: How widely dispersed are our predictions as we generate new
datasets? (corresponds to overfitting)
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Bias and Variance

Throwing darts = predictions for each draw of a dataset

What doesn’t this capture?

We average over points x from the data distribution
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Bagging

Now, back to ensembles!
For now, we only consider bagging & random forests. We will talk
about other ensemble methods such as boosting later in the course.
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Bagging: Motivation

Suppose we could somehow sample m independent training sets
{Di}mi=1 from pdataset.

We could then learn a predictor hi := hDi based on each one, and
take the average h = 1

m

∑m
i=1 hi.

How does this affect the terms of the expected loss?
I Bias: unchanged, since the averaged prediction has the same

expectation

E
D1,...,Dm

iid∼ pdataset
[h(x)] =

1

m

m∑
i=1

EDi∼pdataset
[hi(x)] = ED∼pdataset

[hD(x)]

I Variance: reduced, since we’re averaging over independent
samples

Var
D1,...,Dm

[h(x)] =
1

m2

m∑
i=1

Var
Di

[hi(x)] =
1

m
Var
D

[hD(x)].

What if m→∞?
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Bagging: The Idea

In practice, we don’t have access to the underlying data generating
distribution psample.

It is expensive to collect many i.i.d. datasets from pdataset.

Solution: bootstrap aggregation, or bagging.

I Take a single dataset D with n examples.

I Generate m new datasets, each by sampling n training examples
from D, with replacement.

I Average the predictions of models trained on each of these datasets.
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Bagging: The Idea

Problem: the datasets are not independent, so we don’t get the
1/m variance reduction.

I Possible to show that if the sampled predictions have variance σ2

and correlation ρ, then

Var

(
1

m

m∑
i=1

hi(x)

)
=

1

m
(1− ρ)σ2 + ρσ2.

Ironically, it can be advantageous to introduce additional
variability into your algorithm, as long as it reduces the
correlation between samples.

I Intuition: you want to invest in a diversified portfolio, not just one
stock.

I Can help to use average over multiple algorithms, or multiple
configurations of the same algorithm.
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Random Forests

Random forests = bagged decision trees, with one extra trick to
decorrelate the predictions

When choosing each node of the decision tree, choose a random
set of d input features, and only consider splits on those features

The main idea in random forests is to improve the variance
reduction of bagging by reducing the correlation between the trees
(∼ ρ).

Random forests are probably the best black-box machine learning
algorithm — they often work well with no tuning whatsoever.

I one of the most widely used algorithms in Kaggle competitions
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Bayes Optimality

Let’s return to quantifying expected loss and make the situation slightly
more complicated (and realistic): what if t is not deterministic given x?
i.e. have p(t|x)

We can no longer measure bias as expected distance from true target,
since there’s a distribution over targets!

Instead, we’ll measure distance from y∗(x) = E[t |x]

I This is the best possible prediction, in the sense that it minimizes
the expected loss
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Bayes Optimality

Want to show: argminy E[(y − t)2 |x] = y∗(x) = E[t |x] (Distribution of
t ∼ p(t|x))

Proof: Start by conditioning on (fixing) x.

E[(y − t)2 |x] = E[y2 − 2yt+ t2 |x]

= y2 − 2yE[t |x] + E[t2 |x]

= y2 − 2yE[t |x] + E[t |x]2 + Var[t |x]

= y2 − 2yy∗(x) + y∗(x)2 + Var[t |x]

= (y − y∗(x))2 + Var[t |x]

The first term is nonnegative, and can be made 0 by setting y = y∗(x).

The second term doesn’t depend on y! Corresponds to the inherent
unpredictability, or noise, of the targets, and is called the Bayes error
or irreducible error.

I This is the best we can ever hope to do with any learning
algorithm. An algorithm that achieves it is Bayes optimal.
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Bayes Optimality

We can again decompose the expected loss, this time taking the
distribution of t into account (check this!):

Ex,D,t|x[(hD(x)− t)2] =

Ex[(ED[hD(x)]− y∗(x))2]︸ ︷︷ ︸
bias

+Ex,D[(hD(x)− ED[hD(x)])2]︸ ︷︷ ︸
variance

+Ex[Var[t |x]]︸ ︷︷ ︸
Bayes

Contrast if t is not random conditioned on x:

Ex[(ED[hD(x)]− t)2]︸ ︷︷ ︸
bias

+Ex,D[(hD(x)− ED[hD(x)])2]︸ ︷︷ ︸
variance

We have no control over the Bayes error! In particular, bagging/boosting
do not help.
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Bias/Variance Decomposition: Another Visualization

We can visualize this decomposition in output space, where the
axes correspond to predictions on the test examples.
If we have an overly simple model (e.g. k-NN with large k), it
might have

I high bias (because it’s too simplistic to capture the structure in the
data)

I low variance (because there’s enough data to get a stable estimate
of the decision boundary)
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Bias/Variance Decomposition: Another Visualization

If you have an overly complex model (e.g. k-NN with k = 1), it
might have

I low bias (since it learns all the relevant structure)
I high variance (it fits the quirks of the data you happened to sample)
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Summary

Bagging reduces overfitting by averaging predictions.

Used in most competition winners
I Even if a single model is great, a small ensemble usually helps.

Limitations:
I Does not reduce bias.
I There is still correlation between classifiers.

Random forest solution: Add more randomness.
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Summary so far

So far, we’ve talked about procedures for learning.
I KNN, decision trees, bagging, random forests

For the remainder of this course, we’ll take a more modular
approach:

I choose a model describing the relationships between variables of
interest

I define a loss function quantifying how bad is the fit to the data
I choose a regularizer saying how much we prefer different candidate

explanations
I fit the model, e.g. using an optimization algorithm

By mixing and matching these modular components, your ML
skills become more powerful!
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Recall the supervised learning setup

Recall that in supervised learning:

There is target t ∈ T (also called response, outcome, output, class)

There are features x ∈ X (also called inputs, covariates, design)

Objective is to learn a function f : X → T such that

t ≈ y = f(x)

based on some data D = {(t(i), x(i)) for i = 1, 2, ..., N}.
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Problem Setup: linear regression

Model: In linear regression, we use linear functions of the inputs
x = (x1, . . . , xD) to make predictions y of the target value t:

y =f(x) =
∑
j

wjxj + b

I y is the prediction
I w is the weights
I b is the bias

w and b together are the parameters

We hope that our prediction is close to the target: y ≈ t.
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What is linear? 1 feature vs D features
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If we have only 1 feature:
y = wx+ b where w, x, b ∈ R.

y is linear in x.

If we have D features:
y = w>x + b where w,x ∈ RD,
b ∈ R
y is linear in x.

Relation between the prediction y and inputs x is linear in both cases.
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Linear Regression

We have a dataset D = {(t(i), x(i)) for i = 1, 2, ..., N} where,

t(i) ∈ R is the target or response (e.g. income),

x(i) = (x
(i)
1 , x

(i)
2 , ..., x

(i)
D )> ∈ RD are the inputs (e.g. age, height)

predict t(i) with a linear function of x(i):
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t(i) ≈ y(i) = w>x(i) + b

Find the “best” line (w, b).

minimize
(w,b)

∑N
i=1 L(y(i), t(i))
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Problem Setup

Loss function: squared error (says how bad the fit is)

L(y, t) = 1
2(y − t)2

y − t is the residual, and we want to make this small in magnitude

The 1
2 factor is just to make the calculations convenient.

Cost function: loss function averaged over all training examples

J (w, b) =
1

2

N∑
i=1

(
y(i) − t(i)

)2
=

1

2

N∑
i=1

(
w>x(i) + b− t(i)

)2
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Vector notation

We can organize all the training examples into a design matrix X
with one row per training example, and all the targets into the
target vector t.

Computing the predictions for the whole dataset:

Xw + b1 =

wTx(1) + b
...

wTx(N) + b

 =

 y(1)

...

y(N)

 = y
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Vectorization

Computing the squared error cost across the whole dataset:

y = Xw + b1

J =
1

2
‖y − t‖2

We can also add a column of 1’s to design matrix, combine the
bias and the weights, and conveniently write

X =

1 [x(1)]>

1 [x(2)]>

1
...

 ∈ RN×D+1 and w =


b
w1

w2
...

 ∈ RD+1

Then, our predictions reduce to y = Xw.
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Solving the minimization problem

We defined a cost function. This is what we’d like to minimize.

Recall from calculus class: minimum of a smooth function (if it
exists) occurs at a critical point, i.e. point where the derivative is
zero.

Multivariate generalization: set the partial derivatives to zero (or
equivalently the gradient). We call this direct solution.
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Direct solution

Partial derivatives: derivatives of a multivariate function with
respect to one of its arguments.

∂

∂x1
f(x1, x2) = lim

h→0

f(x1 + h, x2)− f(x1, x2)

h

To compute, take the single variable derivatives, pretending the
other arguments are constant.
Example: partial derivatives of the prediction y

∂y

∂wj
=

∂

∂wj

∑
j′
wj′xj′ + b


= xj

∂y

∂b
=

∂

∂b

∑
j′
wj′xj′ + b


= 1
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Direct solution

Chain rule for derivatives:

∂L
∂wj

=
dL
dy

∂y

∂wj

=
d

dy

[
1

2
(y − t)2

]
· xj

= (y − t)xj
∂L
∂b

= y − t

Cost derivatives (average over data points):

∂J
∂wj

=
1

N

N∑
i=1

(y(i) − t(i))x(i)j

∂J
∂b

=
1

N

N∑
i=1

y(i) − t(i)
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Direct solution

The minimum must occur at a point where the partial derivatives
are zero.

∂J
∂wj

= 0
∂J
∂b

= 0.

If ∂J /∂wj 6= 0, you could reduce the cost by changing wj .

This turns out to give a system of linear equations, which we can
solve efficiently. Full derivation in the preliminaries.pdf.

Optimal weights:
wLS = (XTX)−1XT t

Linear regression is one of only a handful of models in this course
that permit direct solution.
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What if it isn’t linear: Polynomial curve fitting

If the relationship doesn’t look linear, we can fit a polynomial.

Fit the data using a degree-M polynomial function of the form:

y = w0 + w1x+ w2x
2 + ...+ wMx

M =
M∑
i=0

wix
i

This is called feature mapping: y = w>ψ(x) where
ψ(x) = [1, x, x2, ...]>. In general, ψ can be any function.

We can still use least squares since t is linear in w0, w1, ....

Form a feature vector x′ = (1, x, x2, ..., xM ) and solve the least
squares problem.
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Fitting polynomials: M = 0

y = w0

x

t

M = 0

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Fitting polynomials: M = 1

y = w0 + w1x

x

t

M = 1

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.

Intro ML (UofT) CSC311-Lec3 37 / 60



Fitting polynomials: M = 3

y = w0 + w1x+ w2x
2 + w3x

3

x

t

M = 3

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Fitting polynomials: M = 9

y = w0 + w1x+ w2x
2 + w3x

3 + . . .+ w9x
9

x

t

M = 9

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Generalization

Underfitting (M=0): model is too simple — does not fit the data.
Overfitting (M=9): model is too complex — fits perfectly.
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Good model (M=3): Achieves small test error (generalizes well).

x

t
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0
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Generalization

x

t

M = 9

0 1

−1

0

1

As M increases, the magnitude of coefficients gets larger.

For M = 9, the coefficients have become finely tuned to the data.

Between data points, the function exhibits large oscillations.
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Regularization

The degree of the polynomial M is a hyperparameter, just like k
in KNN. We can tune it using a validation set.

But restricting the size of the model is a crude solution, since
you’ll never be able to learn a more complex model, even if the
data support it.

Another approach: keep the model large, but regularize it
I Regularizer: a function that quantifies how much we prefer one

hypothesis vs. another
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L2 (or `2 ) Regularization

We can encourage the weights to be small by choosing as our
regularizer the L2 penalty.

R(w) = 1
2‖w‖

2
2 =

1

2

∑
j

w2
j .

I Note: to be pedantic, the L2 norm is Euclidean distance, so we’re
really regularizing the squared L2 norm.

The regularized cost function makes a tradeoff between fit to the
data and the norm of the weights.

Jreg(w) = J (w) + λR(w) = J (w) +
λ

2

∑
j

w2
j

If you fit training data poorly, J is large. If your optimal weights
have high values, R is large.

Here, λ is a hyperparameter that we can tune with a validation set.

Large λ penalizes weight values more.
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L2 Regularized least squares: Ridge regression

For the least squares problem, we have J (w) = 1
2‖Xw − t‖2.

When λ > 0 (with regularization), regularized cost gives

wRidge
λ = argmin

w
Jreg(w) = argmin

w

1

2
‖Xw − t‖22 +

λ

2
‖w‖22

=(XTX + λI)−1XT t

The case λ = 0 (no regularization) reduces to least squares
solution!
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L1 vs. L2 Regularization

The L1 norm, or sum of absolute values, is another regularizer that encourages
weights to be exactly zero. (How can you tell?)

We can design regularizers based on whatever property we’d like to encourage.

— Bishop, Pattern Recognition and Machine Learning
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Conclusion

Linear regression exemplifies recurring themes of this course:

choose a model and a loss function

formulate an optimization problem

solve the minimization problem using one of two strategies
I direct solution (set derivatives to zero)
I gradient descent (see appendix)

vectorize the algorithm, i.e. represent in terms of linear algebra

make a linear model more powerful using features

improve the generalization by adding a regularizer

Intro ML (UofT) CSC311-Lec3 46 / 60



Appendix
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Probabilistic Interpretation

For the least squares: we minimize the sum of the squares of the errors
between the predictions for each data point x(i) and the corresponding
target values t(i), i.e.,

minimize
(w,w0)

n∑
i=1

(t(i) −w>x(i) + b)2

t ≈ x>w + b, (w, b) ∈ RD × R
So far we saw that polynomial curve
fitting can be expressed in terms of
error minimization.

We now view it from probabilistic
perspective.
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Probabilistic interpretation

Suppose that our model arose from a
statistical model (b=0 for simplicity):

y(i) = w>x(i) + ε(i)

where ε(i) ∼ N (0, σ2) is independent
of anything else.

Thus, y(i)|x(i) ∼ p(y|x(i),w) =
N (w>x(i), σ2).

So far we saw that polynomial curve
fitting can be expressed in terms of
error minimization.

We now view it from probabilistic
perspective.
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Maximum Likelihood Estimation

If the samples z(i) = (y(i)|x(i),w) are assumed to be independently
distributed (not i.i.d assumption),

and drawn from a distribution

y(i) ∼ p(y|x(i),w)

where w is a parameter to be estimated,

then joint density takes the form

p(y(1), y(2), ..., y(n)|x(1), x(2), ..., x(n),w) =

n∏
i=1

p(y(i)|x(i),w) = L(w)

which is called the likelihood (which doesn’t refer to joint density!).

Maximum likelihood estimation: after observing the data samples
z(i) for i = 1, 2, ..., n we should choose w that maximizes the likelihood.
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Probabilistic Interpretation

Product of n terms is not easy to minimize. Taking log reduces it to a
sum! Two objectives are equivalent since log is strictly increasing.

Maximizing the likelihood is equivalent to minimizing the negative
log-likelihood:

`(w) = − logL(w) = − log

n∏
i=1

p(z(i)|w) = −
n∑
i=1

log p(z(i)|w)

Maximum Likelihood Estimator (MLE)

After observing z(i) for i = 1, ..., n i.i.d. samples from p(z|w), MLE is

wMLE = argmin
w

l(w) = −
n∑
i=1

log p(z(i)|w)
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Back to Linear Regression

Suppose that our model arose from a statistical model:

y(i) = w>x(i) + ε(i)

where ε(i) ∼ N (0, σ2) is independent of anything else.

p(y(i)|x(i),w) = 1√
2πσ2

exp
{
− 1

2σ2 (y(i) −w>x(i))2
}

log p(y(i)|x(i),w) = − 1
2σ2 (y(i) −w>x(i))2 − log(

√
2πσ2)

wMLE = argminw L(w) = 1
2σ2

∑n
i=1(y

(i) −w>x(i))2 + C where C
and σ doesn’t depend on w, so don’t contribute to the
minimization.

wMLE = wLS when we work with Gaussian densities!
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Gradient Descent

Now let’s see a second way to minimize the cost function which is
more broadly applicable: gradient descent.

Gradient descent is an iterative algorithm, which means we apply
an update repeatedly until some criterion is met.

We initialize the weights to something reasonable (e.g. all zeros)
and repeatedly adjust them in the direction of steepest descent.
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Gradient descent

Observe:
I if ∂J /∂wj > 0, then increasing wj increases J .
I if ∂J /∂wj < 0, then increasing wj decreases J .

The following update decreases the cost function:

wj ← wj − α
∂J
∂wj

= wj −
α

N

N∑
i=1

(y(i) − t(i))x(i)j

α is a learning rate. The larger it is, the faster w changes.
I We’ll see later how to tune the learning rate, but values are

typically small, e.g. 0.01 or 0.0001
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Gradient descent

This gets its name from the gradient:

∂J
∂w

=


∂J
∂w1

...
∂J
∂wD


I This is the direction of fastest increase in J .

Update rule in vector form:

w← w − α∂J
∂w

= w − α

N

N∑
i=1

(y(i) − t(i))x(i)

Hence, gradient descent updates the weights in the direction of
fastest decrease.
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Gradient descent

Why gradient descent, if we can find the optimum directly?
I GD can be applied to a much broader set of models
I GD can be easier to implement than direct solutions, especially

with automatic differentiation software
I For regression in high-dimensional spaces, GD is more efficient than

direct solution (matrix inversion is an O(D3) algorithm).
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Gradient descent under L2 Regularization

Recall the gradient descent update:

w← w − α∂J
∂w

The gradient descent update of the regularized cost has an
interesting interpretation as weight decay:

w← w − α
(
∂J
∂w

+ λ
∂R
∂w

)
= w − α

(
∂J
∂w

+ λw

)
= (1− αλ)w − α∂J

∂w
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Brief Matrix/vector calculus

For a function f : Rp → R, ∇f(z) denotes the gradient at z which
points in the direction of the greatest rate of increase.

∇f(x) ∈ Rp is a vector with [∇f(x)]i = ∂
∂xi
f(x).

∇2f(x) ∈ Rp×p is a matrix with [∇2f(x)]ij = ∂2

∂xi∂xj
f(x)

At any minimum of a function f , we have ∇f(w) = 0,
∇2f(w) � 0.

Consider the problem minimize
w

`(w) = 1
2‖y −Xw‖22,

∇`(w) = X>(Xw − y) = 0 =⇒ ŵ = (X>X)−1X>y (assuming
X>X is invertible)

At an arbitrary point x (old/new observation), our prediction is
y = ŵ>x.
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Vectorization

Computing the prediction using a for loop:

For-loops in Python are slow, so we vectorize algorithms by
expressing them in terms of vectors and matrices.

w = (w1, . . . , wD)T x = (x1, . . . , xD)

y = wTx + b

This is simpler and much faster:
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Vectorization

Why vectorize?

The equations, and the code, will be simpler and more readable.
Gets rid of dummy variables/indices!

Vectorized code is much faster
I Cut down on Python interpreter overhead
I Use highly optimized linear algebra libraries
I Matrix multiplication is very fast on a Graphics Processing Unit

(GPU)
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