CSC 311: Introduction to Machine Learning

Lecture 3 - Ensemble methods I & Linear Regression

Murat A. Erdogdu & Richard Zemel

University of Toronto

Intro ML (UofT) CSC311-Lec3 1/ 60

Announcements

e Homework 1 is posted! Deadline Oct 2, 23:59.

@ TA office hours are announced on the course website.

Intro ML (UofT) CSC311-Lec3 2/ 60

Today

@ Bias-Variance decomposition

@ Ensemble methods I: Bagging, Random Forests

@ Linear regression

Intro ML (Uof CSC311-Lec3 3/ 60

Bias-Variance decomposition: Loss Functions

@ A loss function L(y,t) defines how bad it is if, for some example z, the
algorithm predicts y, but the target is actually ¢.

@ Example: 0-1 loss for classification

0 ify=t

Lo-1(y:t) = {1 ity #t

» Averaging the 0-1 loss over the training set gives the training
error rate, and averaging over the test set gives the test error
rate.

@ Example: squared error loss for regression

Lon(y.1) = 3 (y — 1)

» The average squared error loss is called mean squared error
(MSE).

Intro ML (UofT) CSC311-Lec3 4 / 60

Bias-Variance Decomposition

@ Recall that overly simple models underfit the data, and overly complex
models overfit.

mmmmmmmmmmmmmmmmmmmmm

vvvvv

@ We can quantify this effect in terms of the bias/variance
decomposition.

@ Bias and variance of what?

Intro ML (UofT) CSC311-Lec3 5/ 60

Bias-Variance Decomposition: Basic Setup

@ Suppose the training set D consists of N pairs (x(), () sampled
independent and identically distributed (i.i.d.) from a sample
generating distribution psampie, i€, (x(i),t(i)) ~ Psample-

> Let pgataset denote the induced distribution over training sets, i.e.
D ~ paataset
@ Pick a fixed query point x (denoted with a green x).

@ Consider an experiment where we sample lots of training datasets i.i.d.
from Pdataset -

Intro ML (UofT) CSC311-Lec3 6 / 60

Bias-Variance Decomposition: Basic Setup

@ Let’s run our learning algorithm on each training set D, producing a
classifier hp

@ We compute each classifier’s prediction hp(x) = y at the query point x.

@ y is a random variable, where the randomness comes from the
choice of training set

» Disrandom = hp is random = hp(x) is random

CSO811-Lecs 7 /60

Bias-Variance Decomposition: Basic Setup

Here is the analogous setup for regression:

fit to dataset 1 fit to dataset 2 fit to dataset 3

1

query location lots of fits histogram of y

1

Since y = hp(x) is a random variable, we can talk about its expectation,
variance, etc. over the distribution of training sets Pgataset
CSC311-Lec3

8 / 60

Bias-Variance Decomposition: Basic Setup

@ Recap of basic setup:

Hypothesis
Learning

Prediction

Test query Loss

@ Assume (for the moment) that ¢ is deterministic given z!

@ There is a distribution over the loss at x, with expectation
ED~pasiase: [L(hD (%), 1)].

@ For each query point x, the expected loss is different. We are interested
in quantifying how well our classifier does over the distribution psampie,
averaging over training sets: Exp, .00, D~paacases LMD (X)), 1)].

Intro ML (UofT) CSC311-Lec3 9/ 60

Bias-Variance Decomposition

@ For now, focus on squared error loss, L(y,t) = (y — t)°.

@ We can decompose the expected loss (suppressing distributions x, D
drawn from for compactness) (using E[E[X | Y]] = E[X] in second step)

Ex,p[(hp(x) — f)z] = Ex,p[(hp (%) —Ep[hp(x) | x] + Ep[hp(x) | x] - t)?]
Ex[Ep[(hp(x) — Ep[hp(x)|x])* + (Ep[hp(x) |x] — 1)+
2(hp(x) — Eplhp(x) [x])(Ep[hp(x) | x] — 1) [x]]
= Exp[(hp(x) = Ep[hp(x) | x])’] + Ex[(Ep[hp(x) | x] - 1)°]

variance bias

@ Bias: On average, how close is our classifier to true target? (corresponds
to underfitting)

@ Variance: How widely dispersed are our predictions as we generate new
datasets? (corresponds to overfitting)

Intro ML (UofT) CSC311-Lec3 10 / 60

Bias and Variance

e Throwing darts = predictions for each draw of a dataset

Low Variance High Vasiance

Low Bias

High Bias

e What doesn’t this capture?

e We average over points x from the data distribution

Intro ML (UofT) CSC311-Lec3 11 / 60

Bagging

Now, back to ensembles!

For now, we only consider bagging & random forests. We will talk
about other ensemble methods such as boosting later in the course.

Intro ML (UofT) CSC311-Lec3 12 / 60

Bagging: Motivation

@ Suppose we could somehow sample m independent training sets
{’Dz};ll from Pdataset -
e We could then learn a predictor h; := hp, based on each one, and
take the average h = = "™ h;.
o How does this affect the terms of the expected loss?
» Bias: unchanged, since the averaged prediction has the same

expectation
1 m
]E'Dl oD ’ifi/dpdataset [h(x)] = E Z; ED'L ~Pdataset [h’l (X)] = EDdiataset [hD (X)]

» Variance: reduced, since we'’re averaging over independent
samples

1 — 1
0, V2, 109 = 27 3 NarlhiGo)) = o Varlio (o)

What if m — oo?
CSC311-Lec3 13 / 60

Bagging: The Idea

@ In practice, we don’t have access to the underlying data generating
distribution psample-

o It is expensive to collect many i.i.d. datasets from pgasaset-

e Solution: bootstrap aggregation, or bagging.

» Take a single dataset D with n examples.

» Generate m new datasets, each by sampling n training examples
from D, with replacement.

» Average the predictions of models trained on each of these datasets.

Intro ML (UofT) CSC311-Lec3 14 / 60

Bagging: The Idea

o Problem: the datasets are not independent, so we don’t get the
1/m variance reduction.
» Possible to show that if the sampled predictions have variance o
and correlation p, then

IR _ L 2
Var <m;hl(x)> = m(l p)o= + po.

@ Ironically, it can be advantageous to introduce additional
variability into your algorithm, as long as it reduces the
correlation between samples.

2

» Intuition: you want to invest in a diversified portfolio, not just one
stock.

» Can help to use average over multiple algorithms, or multiple
configurations of the same algorithm.

Intro ML (UofT) CSC311-Lec3 15 / 60

Random Forests

e Random forests = bagged decision trees, with one extra trick to
decorrelate the predictions

e When choosing each node of the decision tree, choose a random
set of d input features, and only consider splits on those features

@ The main idea in random forests is to improve the variance
reduction of bagging by reducing the correlation between the trees

(~ p)-
e Random forests are probably the best black-box machine learning

algorithm — they often work well with no tuning whatsoever.
» one of the most widely used algorithms in Kaggle competitions

Intro ML (UofT) CSC311-Lec3 16 / 60

Bayes Optimality

@ Let’s return to quantifying expected loss and make the situation slightly
more complicated (and realistic): what if ¢ is not deterministic given x?
i.e. have p(t|x)

@ We can no longer measure bias as expected distance from true target,
since there’s a distribution over targets!

o Instead, we’ll measure distance from y.(x) = E[t| x]

» This is the best possible prediction, in the sense that it minimizes
the expected loss

Intro ML (UofT) CSC311-Lec3 17 / 60

Bayes Optimality

Want to show: argmin, E[(y — t)?|x] = y.(x) = E[t|x] (Distribution of
t ~ p(t[x))
@ Proof: Start by conditioning on (fixing) x.
El(y —)2 |x] = Bly® — 2yt + 2|
=y? — 2yE[t | x] + E[t* | x]
=% — 2E[t|x] + E[t | x]? + Var[t|x]
= 9% = 2yy.(x) + y.(x)* + Var[t | x]
= (y = y:(x))* + Vart | x]

@ The first term is nonnegative, and can be made 0 by setting y = y.(x).
@ The second term doesn’t depend on y! Corresponds to the inherent
unpredictability, or noise, of the targets, and is called the Bayes error
or irreducible error.
» This is the best we can ever hope to do with any learning
algorithm. An algorithm that achieves it is Bayes optimal.

Intro ML (UofT) CSC311-Lec3 18 / 60

Bayes Optimality

@ We can again decompose the expected loss, this time taking the
distribution of ¢ into account (check this!):

Ex,ptx[(hp(x) —)] =
Ex[(Ep[hp(x)] — y+(x))?] + Ex.p[(hp(x) — Ep[hp(x)])?] + Ex[Var[t | x]]

bias variance Bayes

@ Contrast if ¢ is not random conditioned on x:

Ex[(Ep[hp(x)] —)] + Ex,p[(hp(x) — Ep[hp(x)])?]

bias variance

@ We have no control over the Bayes error! In particular, bagging/boosting
do not help.

Intro ML (UofT) CSC311-Lec3 19 / 60

Bias/Variance Decomposition: Another Visualization

e We can visualize this decomposition in output space, where the
axes correspond to predictions on the test examples.
e If we have an overly simple model (e.g. k-NN with large k), it
might have
» high bias (because it’s too simplistic to capture the structure in the
data)
» low variance (because there’s enough data to get a stable estimate
of the decision boundary)

y from one
contours of training set
expected loss){

Intro ML (UofT) CSC311-Lec3 20 / 60

Bias/Variance Decomposition: Another Visualization

e If you have an overly complex model (e.g. k-NN with k = 1), it
might have

» low bias (since it learns all the relevant structure)
» high variance (it fits the quirks of the data you happened to sample)

X
/
/

contours of
expected loss

Intro ML (UofT) CSC311-Lec3 21 / 60

Summary

Bagging reduces overfitting by averaging predictions.

@ Used in most competition winners
» Even if a single model is great, a small ensemble usually helps.

@ Limitations:

» Does not reduce bias.
» There is still correlation between classifiers.

o Random forest solution: Add more randomness.

Intro ML (UofT) CSC311-Lec3 22 / 60

Summary so far

e So far, we’ve talked about procedures for learning.
» KNN, decision trees, bagging, random forests
o For the remainder of this course, we’ll take a more modular
approach:
» choose a model describing the relationships between variables of
interest
» define a loss function quantifying how bad is the fit to the data
» choose a regularizer saying how much we prefer different candidate

explanations
» fit the model, e.g. using an optimization algorithm

e By mixing and matching these modular components, your ML
skills become more powerful!

Intro ML (UofT) CSC311-Lec3 23 / 60

Recall the supervised learning setup

4.0

35
3.0 . P

2.5

15
1.0

0.5

0.0

Recall that in supervised learning;:
e There is target ¢t € T (also called response, outcome, output, class)
e There are features z € X' (also called inputs, covariates, design)
e Objective is to learn a function f : X — T such that

~y = f(z)
based on some data D = {(t®, z() for i = 1,2, ..., N}.
CSC311-Lec3 24 / 60

Problem Setup: linear regression

@ Model: In linear regression, we use linear functions of the inputs
x = (x1,...,2p) to make predictions y of the target value t:

y=f(x) =) wiz;+b

» y is the prediction
» w is the weights
> b is the bias

@ w and b together are the parameters

@ We hope that our prediction is close to the target: y ~ t.

Intro ML (UofT) CSC311-Lec3 25 / 60

What is linear? 1 feature vs D features

If we have only 1 feature:
y = wx + b where w, x,b € R.

@ y is linear in x.

o If we have D features:
y=Ww' X+ bwhere w,x € RP,
beR

@ y is linear in x.

Relation between the prediction y and inputs x is linear in both cases.

Intro ML (UofT) CSC311-Lec3 26 / 60

Linear Regression

We have a dataset D = {(t),2()) for i = 1,2,..., N} where,
o t() € R is the target or response (e.g. income),
o x(0 = (a:(i) xg), cery :(:%))T € RP are the inputs (e.g. age, height)

o predict t) with a linear function of x(*:

2.0 { — Fitted line]
® Data

e Find the “best” line (w,b).
e minimize Zfil L(y@,)

(W’

y: response
o
o

x: features

Intro ML (UofT) CSC311-Lec3 27 / 60

Problem Setup

e Loss function: squared error (says how bad the fit is)

Lyt) =5y —1t)°

@ y —t is the residual, and we want to make this small in magnitude
e The % factor is just to make the calculations convenient.

o Cost function: loss function averaged over all training examples

j(W,b) =

Intro ML (UofT) CSC311-Lec3 28 / 60

Vector notation

@ We can organize all the training examples into a design matrix X
with one row per training example, and all the targets into the
target vector t.

one feature across
all training examples

x(DT 810 3 0
traini
X — xg; = g —51 52 g examplo (veoton
" =

e Computing the predictions for the whole dataset:

Xw + bl = : = : |=y
wlx(N) 4 p y)

Intro ML (UofT) CSC311-Lec3 29 / 60

Vectorization

e Computing the squared error cost across the whole dataset:
y = Xw + b1
1 2
=y —t
T=3ly -t

e We can also add a column of 1’s to design matrix, combine the
bias and the weights, and conveniently write

1 xO)T b
w
X= |1 KT e RV and w= |, | € RO
L

Then, our predictions reduce to y = Xw.

Intro ML (UofT) CSC311-Lec3

30 / 60

Solving the minimization problem

o We defined a cost function. This is what we’d like to minimize.

e Recall from calculus class: minimum of a smooth function (if it
exists) occurs at a critical point, i.e. point where the derivative is
ZEro.

e Multivariate generalization: set the partial derivatives to zero (or
equivalently the gradient). We call this direct solution.

Intro ML (UofT) CSC311-Lec3 31 / 60

Direct solution

e Partial derivatives: derivatives of a multivariate function with
respect to one of its arguments.

i v J@i b)) — (31, 22)
81,1 (.'1:17.'1,’2) - }{E&) h

e To compute, take the single variable derivatives, pretending the
other arguments are constant.
e Example: partial derivatives of the prediction y

w; i

Oy
= 811)] |:Z:’u) 1T +b:|

Intro ML (UofT) CSC311-Lec3 32 / 60

Direct solution

@ Chain rule for derivatives:

oL
ow; -

oL _
ab

dc 9y
dy Jw;
a1)

3 5097 =
(y —)z,

y—t

e Cost derivatives (average over data points):

0T _ 1S,) i)y (D)
8wj_ﬁg(y -t)wj
N
%7 LR S ORI
b N

Intro ML (UofT)

CSC311-Lec3

1

.
Il

33 / 60

Direct solution

@ The minimum must occur at a point where the partial derivatives

07 _ 0T _
6wj N ob N
o If 0.7 /0w; # 0, you could reduce the cost by changing wj.

are zero.

0.

e This turns out to give a system of linear equations, which we can
solve efficiently. Full derivation in the preliminaries.pdf.

o Optimal weights:
whS = (XTX)'X"¢

@ Linear regression is one of only a handful of models in this course
that permit direct solution.

Intro ML (UofT) CSC311-Lec3 34 / 60

What if it isn’t linear: Polynomial curve fitting

If the relationship doesn’t look linear, we can fit a polynomial.

Fit the data using a degree-M polynomial function of the form:

M
Y = wo + w1 + w2x2 + ...+ waM = Zwixi
i=0
o This is called feature mapping: y = w4 (z) where
(z) =[1,2,2%,..]T. In general, ¢ can be any function.

@ We can still use least squares since t is linear in wg, wq,
e Form a feature vector x’ = (1, 2,22, ..., 2M)

squares problem.

and solve the least

Intro ML (UofT) CSC311-Lec3 35 / 60

Fitting polynomials: M = 0

Yy = wo
1 M=0
o

t

o o o
0

(o]

-1

0 1

-Pattern Recognition and Machine Learning, Christopher Bishop.

Intro ML (

CSC311-Lec3 36 / 60

Fitting polynomials: M =1

Y = wo + wix

-Pattern Recognition and Machine Learning, Christopher Bishop.

Intro ML (Uof’ CSC311-Lec3 37 / 60

Fitting polynomials: M = 3

2
Y = Wy + W1T + WXk —|—w3m3

-Pattern Recognition and Machine Learning, Christopher Bishop.

Intro ML (T CSC311-Lec3 38 / 60

Fitting polynomials: M =9

y:w0+w1x—l—w2x2+w3:p3—|—...—|—w9$9

-Pattern Recognition and Machine Learning, Christopher Bishop.

Intro ML (T CSC311-Lec3 39 / 60

Generalization

Underfitting (M=0
Overfitting (M=9):

—©— Training
—O— Test

model is too complex — fits perfectly.

): model is too simple — does not fit the data.

M =0 1
t

0

1

0
0 3 m 6 9

Good model

Intro ML (UofT)

CSC311-Lec3

(M=3): Achieves small test error (generalizes well).

40 / 60

Generalization

M=0 M=1 M=3 M=9

u 0.19 0.82 0.31 035
u 127 7.99 232.37

u -25.43 -5321.83 '
u 17.37 48568.31
. -231639.30

640042.26
-1061800.52
1042400.18
wy -557682.99
wy 125201.43

% OV TTH GOk NIH =k OF,

e As M increases, the magnitude of coefficients gets larger.
e For M =9, the coefficients have become finely tuned to the data.

e Between data points, the function exhibits large oscillations.

Intro ML (Uof’ CSC311-Lec3 41 / 60

Regularization

@ The degree of the polynomial M is a hyperparameter, just like &k
in KNN. We can tune it using a validation set.

e But restricting the size of the model is a crude solution, since
you’ll never be able to learn a more complex model, even if the
data support it.

@ Another approach: keep the model large, but regularize it

» Regularizer: a function that quantifies how much we prefer one
hypothesis vs. another

Intro ML (UofT) CSC311-Lec3 42 / 60

L?* (or {3) Regularization

e We can encourage the weights to be small by choosing as our
regularizer the L? penalty.

1
R(w) = 3lwl3 = 5 > w?.
J

» Note: to be pedantic, the L? norm is Euclidean distance, so we’re
really regularizing the squared L? norm.

o The regularized cost function makes a tradeoff between fit to the
data and the norm of the weights.

Treg(W) = T(w) 4 AR(w) = (W) + 2 3 u?
J

e If you fit training data poorly, J is large. If your optimal weights
have high values, R is large.

e Here,)\ is a hyperparameter that we can tune with a validation set.

e Large A penalizes weight values more.

Intro ML (UofT) CSC311-Lec3 43 / 60

L? Regularized least squares: Ridge regression

For the least squares problem, we have J(w) = || Xw — t||%.
e When A > 0 (with regularization), regularized cost gives
Ridge . 1 2 A 2
W — argmin reg(w) = argmin L [Xw — t]3 + 2 w3
w w
=(XTX + A1) 1xTt

e The case A = 0 (no regularization) reduces to least squares
solution!

Intro ML (UofT) CSC311-Lec3

44 / 60

L' vs. L? Regularization

@ The L' norm, or sum of absolute values, is another regularizer that encourages
weights to be exactly zero. (How can you tell?)

@ We can design regularizers based on whatever property we’d like to encourage.

wsy woy

© O

AN |
c— .

L2 regularization

L1 regularization

15 20 R = Zw? R= Z |w7|
i i

— Bishop, Pattern Recognition and Machine Learning

CSC311-Lec3 45 / 60

Conclusion

Linear regression exemplifies recurring themes of this course:
@ choose a model and a loss function

o formulate an optimization problem
@ solve the minimization problem using one of two strategies

» direct solution (set derivatives to zero)
» gradient descent (see appendix)

@ vectorize the algorithm, i.e. represent in terms of linear algebra
e make a linear model more powerful using features

e improve the generalization by adding a regularizer

Intro ML (UofT) CSC311-Lec3 46 / 60

Appendix

CSC311-Lec3 47 / 60

Probabilistic Interpretation

For the least squares: we minimize the sum of the squares of the errors

between the predictions for each data point (¥ and the corresponding
target values t@ i.e.,

mlnlmlzez @) —wT2® 4 p)2

(w,wo) —

ot~z'w+b, (w,b) e RP xR
@ So far we saw that polynomial curve

fitting can be expressed in terms of
error minimization.

@ We now view it from probabilistic
perspective.

Intro ML (UofT) CSC311-Lec3 48 / 60

Probabilistic interpretation

@ Suppose that our model arose from a
statistical model (b=0 for simplicity):

where () ~ N(0,0?) is independent
of anything else.

o Thus, y [z ~ p(y|z®, w) =
N(w'z®, 52).

@ So far we saw that polynomial curve

= — fitting can be expressed in terms of
error minimization.

e We now view it from probabilistic
perspective.

Intro ML (UofT) CSC311-Lec3 49 / 60

Maximum Likelihood Estimation

o If the samples z(") = (y|2() w) are assumed to be independently
distributed (not i.i.d assumption),

e and drawn from a distribution

y @~ p(yla®, w)
where w is a parameter to be estimated,
e then joint density takes the form

py®,5®, .y ™20 5@ 20 sy = T] py®@|s®, w) = L(w)
=1

which is called the likelihood (which doesn’t refer to joint density!).

Maximum likelihood estimation: after observing the data samples
2 for 4 = 1,2, ...,n we should choose w that maximizes the likelihood.J

Intro ML (UofT) CSC311-Lec3 50 / 60

Probabilistic Interpretation

Product of n terms is not easy to minimize. Taking log reduces it to a
sum! Two objectives are equivalent since log is strictly increasing.

Maximizing the likelihood is equivalent to minimizing the negative
log-likelihood:

{(w) = —log L(w) = —log Hp (zD|w) = Zlogp (zD|w)

Maximum Likelihood Estimator (MLE)

After observing z(® for i = 1,...,n ii.d. samples from p(z|w), MLE is

wMLE — argmin I(w Z log p(z% |w)

w

Intro ML (UofT)

CSC311-Lec3 51 / 60

Back to Linear Regression

@ Suppose that our model arose from a statistical model:

Y0 = w T 4)

where € ~ N(0,02) is independent of anything else.
o p(yW[al, w) = s exp {— gz (y@ — wT2)?}
o log p(yD|z® w) = —L (y(%) w ! 2(0)2 —log(v/2r0?)

o wMME = argmin,, L(w) = 51 S (D — wT2@)2 4 C where C
and o doesn’t depend on w, so don’t contribute to the
minimization.

wMLE — WIS when we work with Gaussian densities! J

Intro ML (UofT) CSC311-Lec3 52 / 60

Gradient Descent

o Now let’s see a second way to minimize the cost function which is
more broadly applicable: gradient descent.

o Gradient descent is an iterative algorithm, which means we apply
an update repeatedly until some criterion is met.

e We initialize the weights to something reasonable (e.g. all zeros)
and repeatedly adjust them in the direction of steepest descent.

Intro ML (UofT) CSC311-Lec3 53 / 60

Gradient descent

o Observe:
» if 0J /Ow; > 0, then increasing w; increases J.
» if 0J/0w; < 0, then increasing w; decreases J.

@ The following update decreases the cost function:

oJ
J
N
a i i i
:wj—ﬁz(y()—t())$§)
i=1

@ « is a learning rate. The larger it is, the faster w changes.
» We'll see later how to tune the learning rate, but values are
typically small, e.g. 0.01 or 0.0001

Intro ML (UofT) CSC311-Lec3 54 / 60

Gradient descent

e This gets its name from the gradient:

oJ

0
oF |
ow o7

ow D

» This is the direction of fastest increase in J.

e Update rule in vector form:

w%w—aa—j
ow
N

_ Z) 4(0)) 50

e Hence, gradient descent updates the weights in the direction of
fastest decrease.

Intro ML (UofT) CSC311-Lec3 55 / 60

Gradient descent

e Why gradient descent, if we can find the optimum directly?
» GD can be applied to a much broader set of models
» GD can be easier to implement than direct solutions, especially
with automatic differentiation software
» For regression in high-dimensional spaces, GD is more efficient than
direct solution (matrix inversion is an O(D?) algorithm).

Intro ML (UofT) CSC311-Lec3 56 / 60

Gradient descent under L? Regularization

@ Recall the gradient descent update:
N4

W W — ——
ow

e The gradient descent update of the regularized cost has an
interesting interpretation as weight decay:

W~ W— o 07 /\a—R
ow ow
—w—a(aj—l—)\W)
ow
:(1—a)\)w—ag—;z

Intro ML (UofT) CSC311-Lec3 57 / 60

Brief Matrix/vector calculus

e For a function f: RP — R, V f(z) denotes the gradient at z which
points in the direction of the greatest rate of increase.

o Vf(x) € RPis a vector with [V f(z)]; = %f(x)

o V2f(z) € RP*P is a matrix with [V2f(z)];; = #;x]f(z:)
e At any minimum of a function f, we have V f(w) =0,
V2f(w) = 0.

o Consider the problem minimize £(w) = 3|ly — Xw][3,
W

o V(W) =X"T(Xw—-9y)=0 = W= (X"X)"'XTy (assuming
X TX is invertible)

T

At an arbitrary point x (old/new observation), our prediction is J
Yy=w .

Intro ML (UofT) CSC311-Lec3 58 / 60

Vectorization

e Computing the prediction using a for loop:
y=bhb
for j in range(M):
y += wlil * x[j]
e For-loops in Python are slow, so we vectorize algorithms by
expressing them in terms of vectors and matrices.

T

w = (wy,...,wp) x = (z1,...,2D)

y=wlx+b

e This is simpler and much faster:
y = np.dot(w, xJ + b

Intro ML (UofT) CSC311-Lec3 59 / 60

Vectorization

Why vectorize?
@ The equations, and the code, will be simpler and more readable.
Gets rid of dummy variables/indices!
@ Vectorized code is much faster

» Cut down on Python interpreter overhead
» Use highly optimized linear algebra libraries
» Matrix multiplication is very fast on a Graphics Processing Unit

(GPU)

Intro ML (UofT) CSC311-Lec3 60 / 60

	Introduction

