
CSC 311: Introduction to Machine Learning
Lecture 4 - Linear Classification & Optimization

Richard Zemel & Murat A. Erdogdu

University of Toronto

Intro ML (UofT) CSC311-Lec4 1 / 43

Overview

Classification: predicting a discrete-valued target
I Binary classification: predicting a binary-valued target

Examples
I predict whether a patient has a disease, given the presence or

absence of various symptoms
I classify e-mails as spam or non-spam
I predict whether a financial transaction is fraudulent

Intro ML (UofT) CSC311-Lec4 2 / 43

Overview

Binary linear classification

classification: predict a discrete-valued target

binary: predict a binary target t ∈ {0, 1}
I Training examples with t = 1 are called positive examples, and

training examples with t = 0 are called negative examples. Sorry.
I t ∈ {0, 1} or t ∈ {−1,+1} is for computational convenience.

linear: model is a linear function of x, followed by a threshold r:

z = wTx + b

y =

{
1 if z ≥ r
0 if z < r

Intro ML (UofT) CSC311-Lec4 3 / 43

Some simplifications

Eliminating the threshold

We can assume WLOG that the threshold r = 0:

wTx + b ≥ r ⇐⇒ wTx + b− r︸ ︷︷ ︸
,w0

≥ 0.

Eliminating the bias

Add a dummy feature x0 which always takes the value 1. The
weight w0 = b is equivalent to a bias (same as linear regression)

Simplified model

z = wTx

y =

{
1 if z ≥ 0
0 if z < 0

Intro ML (UofT) CSC311-Lec4 4 / 43

Examples

Let’s consider some simple examples to examine the properties of
our model

Forget about generalization and suppose we just want to learn
Boolean functions

Intro ML (UofT) CSC311-Lec4 5 / 43

Examples

NOT

x0 x1 t

1 0 1
1 1 0

This is our “training set”

What conditions are needed on w0, w1 to classify all examples?
I When x1 = 0, need: z = w0x0 + w1x1 > 0 ⇐⇒ w0 > 0
I When x1 = 1, need: z = w0x0 + w1x1 < 0 ⇐⇒ w0 + w1 < 0

Example solution: w0 = 1, w1 = −2

Is this the only solution?

Intro ML (UofT) CSC311-Lec4 6 / 43

Examples

AND

x0 x1 x2 t

1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

z = w0x0 + w1x1 + w2x2

need: w0 < 0

need: w0 + w2 < 0

need: w0 + w1 < 0

need: w0 + w1 + w2 > 0

Example solution: w0 = −1.5, w1 = 1, w2 = 1

Intro ML (UofT) CSC311-Lec4 7 / 43

The Geometric Picture

Input Space, or Data Space for NOT example

x0 x1 t

1 0 1
1 1 0

Training examples are points

Weights (hypotheses) w can be represented by half-spaces
H+ = {x : wTx ≥ 0}, H− = {x : wTx < 0}

I The boundaries of these half-spaces pass through the origin (why?)

The boundary is the decision boundary: {x : wTx = 0}
I In 2-D, it’s a line, but think of it as a hyperplane

If the training examples can be perfectly separated by a linear
decision rule, we say data is linearly separable.

Intro ML (UofT) CSC311-Lec4 8 / 43

The Geometric Picture

Weight Space

w0 > 0

w0 + w1 < 0

Weights (hypotheses) w are points

Each training example x specifies a half-space w must lie in to be
correctly classified: wTx > 0 if t = 1.

For NOT example:
I x0 = 1, x1 = 0, t = 1 =⇒ (w0, w1) ∈ {w : w0 > 0}
I x0 = 1, x1 = 1, t = 0 =⇒ (w0, w1) ∈ {w : w0 + w1 < 0}

The region satisfying all the constraints is the feasible region; if
this region is nonempty, the problem is feasible, otw it is infeasible.

Intro ML (UofT) CSC311-Lec4 9 / 43

The Geometric Picture

The AND example requires three dimensions, including the dummy one.

To visualize data space and weight space for a 3-D example, we can look
at a 2-D slice.

The visualizations are similar.

I Feasible set will always have a corner at the origin.

Intro ML (UofT) CSC311-Lec4 10 / 43

The Geometric Picture

Visualizations of the AND example

Data Space

- Slice for x0 = 1 and
- example sol: w0 =−1.5, w1 =1, w2 =1
- decision boundary:
w0x0+w1x1+w2x2 =0
=⇒ −1.5+x1+x2 =0

Weight Space

- Slice for w0 = −1.5 for the
constraints
- w0 < 0
- w0 + w2 < 0
- w0 + w1 < 0
- w0 + w1 + w2 > 0

Intro ML (UofT) CSC311-Lec4 11 / 43

The Geometric Picture

Some datasets are not linearly separable, e.g. XOR

Intro ML (UofT) CSC311-Lec4 12 / 43

Overview

Recall: binary linear classifiers. Targets t ∈ {0, 1}

z = wTx + b

y =

{
1 if z ≥ 0
0 if z < 0

How can we find good values for w, b?

If training set is separable, we can solve for w, b using linear
programming

If it’s not separable, the problem is harder
I data is almost never separable in real life.

Intro ML (UofT) CSC311-Lec4 13 / 43

Loss functions

Instead: define loss function then try to minimize the resulting
cost function

I Recall: cost is loss averaged (or summed) over the training set

Seemingly obvious loss function: 0-1 loss

L0−1(y, t) =

{
0 if y = t
1 if y 6= t

= I[y 6= t]

Intro ML (UofT) CSC311-Lec4 14 / 43

Attempt 1: 0-1 loss

Usually, the cost J is the averaged loss over training examples; for
0-1 loss, this is the misclassification rate:

J =
1

N

N∑
i=1

I[y(i) 6= t(i)]

Intro ML (UofT) CSC311-Lec4 15 / 43

Attempt 1: 0-1 loss

Problem: how to optimize? In general, a hard problem (can be
NP-hard)

This is due to the step function (0-1 loss) not being nice
(continuous/smooth/convex etc)

Intro ML (UofT) CSC311-Lec4 16 / 43

Attempt 1: 0-1 loss

Minimum of a function will be at its critical points.
Let’s try to find the critical point of 0-1 loss
Chain rule:

∂L0−1
∂wj

=
∂L0−1
∂z

∂z

∂wj

But ∂L0−1/∂z is zero everywhere it’s defined!

I ∂L0−1/∂wj = 0 means that changing the weights by a very small
amount probably has no effect on the loss.

I Almost any point has 0 gradient!

Intro ML (UofT) CSC311-Lec4 17 / 43

Attempt 2: Linear Regression

Sometimes we can replace the loss function we care about with one
which is easier to optimize. This is known as relaxation with a
smooth surrogate loss function.

One problem with L0−1: defined in terms of final prediction, which
inherently involves a discontinuity

Instead, define loss in terms of wTx + b directly
I Redo notation for convenience: z = wTx + b

Intro ML (UofT) CSC311-Lec4 18 / 43

Attempt 2: Linear Regression

We already know how to fit a linear regression model. Can we use
this instead?

z = w>x + b

LSE(z, t) =
1

2
(z − t)2

Doesn’t matter that the targets are actually binary. Treat them as
continuous values.

For this loss function, it makes sense to make final predictions by
thresholding z at 1

2 (why?)

Intro ML (UofT) CSC311-Lec4 19 / 43

Attempt 2: Linear Regression

The problem:

The loss function hates when you make correct predictions with
high confidence!

If t = 1, it’s more unhappy about z = 10 than z = 0.

Intro ML (UofT) CSC311-Lec4 20 / 43

Attempt 3: Logistic Activation Function

There’s obviously no reason to predict values outside [0, 1]. Let’s
squash y into this interval.

The logistic function is a kind of sigmoid, or
S-shaped function:

σ(z) =
1

1 + e−z

σ−1(y) = log(y/(1− y)) is called the logit.

A linear model with a logistic nonlinearity is known as log-linear:

z = w>x + b

y = σ(z)

LSE(y, t) =
1

2
(y − t)2.

Used in this way, σ is called an activation function.

Intro ML (UofT) CSC311-Lec4 21 / 43

Attempt 3: Logistic Activation Function

The problem:
(plot of LSE as a function of z, assuming t = 1)

∂L
∂wj

=
∂L
∂z

∂z

∂wj

For z � 0, we have σ(z) ≈ 0.
∂L
∂z ≈ 0 (check!) =⇒ ∂L

∂wj
≈ 0 =⇒ derivative w.r.t. wj is small

=⇒ wj is like a critical point

If the prediction is really wrong, you should be far from a critical
point (which is your candidate solution).

Intro ML (UofT) CSC311-Lec4 22 / 43

Logistic Regression

Because y ∈ [0, 1], we can interpret it as the estimated probability
that t = 1.

The pundits who were 99% confident Clinton would win were
much more wrong than the ones who were only 90% confident.

Cross-entropy loss (aka log loss) captures this intuition:

LCE(y, t) =

{
− log y if t = 1
− log(1− y) if t = 0

= −t log y − (1− t) log(1− y)

Intro ML (UofT) CSC311-Lec4 23 / 43

Logistic Regression

Logistic Regression:

z = w>x + b

y = σ(z)

=
1

1 + e−z

LCE = −t log y − (1− t) log(1− y)

Plot is for target t = 1.

Intro ML (UofT) CSC311-Lec4 24 / 43

Logistic Regression

Problem: what if t = 1 but you’re really confident it’s a negative
example (z � 0)?

If y is small enough, it may be numerically zero. This can cause
very subtle and hard-to-find bugs.

y = σ(z) ⇒ y ≈ 0

LCE = −t log y − (1− t) log(1− y) ⇒ computes log 0

Instead, we combine the activation function and the loss into a
single logistic-cross-entropy function.

LLCE(z, t) = LCE(σ(z), t) = t log(1 + e−z) + (1− t) log(1 + ez)

Numerically stable computation:

E = t * np.logaddexp(0, -z) + (1-t) * np.logaddexp(0, z)

Intro ML (UofT) CSC311-Lec4 25 / 43

Logistic Regression

Comparison of loss functions: (for t = 1)

Intro ML (UofT) CSC311-Lec4 26 / 43

Gradient Descent

How do we minimize the cost J in this case? No direct solution.
I Taking derivatives of J w.r.t. w and setting them to 0 doesn’t have

an explicit solution.

Now let’s see a second way to minimize the cost function which is
more broadly applicable: gradient descent.

Gradient descent is an iterative algorithm, which means we apply
an update repeatedly until some criterion is met.

We initialize the weights to something reasonable (e.g. all zeros)
and repeatedly adjust them in the direction of steepest descent.

Intro ML (UofT) CSC311-Lec4 27 / 43

Gradient descent

This is an iterative algorithm to minimize a cost function J (w)

It uses the update rule in vector form:

w← w − α∂J
∂w

This gets its name from the gradient:

∂J
∂w

=

∂J
∂w1

...
∂J
∂wD

I This is the direction of fastest increase in J .

α ∈ (0, 1] is the learning rate (or step size). More on this soon.

Hence, gradient descent updates the weights in the direction of
fastest decrease.

Observe that once it converges, we get a critical point, i.e. ∂J
∂w = 0.

Intro ML (UofT) CSC311-Lec4 28 / 43

Gradient descent under L2 Regularization

Gradient descent update to minimize J :

w← w − α ∂

∂w
J

The gradient descent update to minimize the regularized cost
J + λR results in weight decay:

w← w − α ∂

∂w
(J + λR)

= w − α
(
∂J
∂w

+ λ
∂R
∂w

)
= w − α

(
∂J
∂w

+ λw

)
= (1− αλ)w − α∂J

∂w

Intro ML (UofT) CSC311-Lec4 29 / 43

Descent on a coordinate

Observe:
I if ∂J /∂wj > 0, then increasing wj increases J .
I if ∂J /∂wj < 0, then increasing wj decreases J .

The following update always decreases the cost function for small
enough α (unless ∂J /∂wj = 0):

wj ← wj − α
∂J
∂wj

α ∈ (0, 1] is a learning rate (or step size). The larger it is, the
faster w changes.

I We’ll see later how to tune the learning rate, but values are
typically small, e.g. 0.01 or 0.0001.

I If cost is the sum of N individual losses rather than their average,
smaller learning rate will be needed (α′ = α/N).

Intro ML (UofT) CSC311-Lec4 30 / 43

Learning Rate (step size)

In gradient descent, the learning rate α is a hyperparameter we
need to tune. Here are some things that can go wrong:

α too small:
slow progress

α too large:
oscillations

α much too large:
instability

Good values are typically between 0.001 and 0.1. You should do a
grid search if you want good performance (i.e. try
0.1, 0.03, 0.01, . . .).

Intro ML (UofT) CSC311-Lec4 31 / 43

Training Curves

To diagnose optimization problems, it’s useful to look at training
curves: plot the training cost as a function of iteration.

Warning: it’s very hard to tell from the training curves whether an
optimizer has converged. They can reveal major problems, but
they can’t guarantee convergence.

Intro ML (UofT) CSC311-Lec4 32 / 43

Gradient of logistic loss

Back to logistic regression:

LCE(y, t) =− t log(y)− (1− t) log(1− y)

y =1/(1 + e−z) and z = wTx + b

Therefore

∂LCE

∂wj
=
∂LCE

∂y
· ∂y
∂z
· ∂z
∂wj

=

(
− t
y

+
1− t
1− y

)
· y(1− y) · xj

=(y − t)xj
Gradient descent (coordinatewise) update to find the weights of logistic
regression:

wj ← wj − α
∂J
∂wj

= wj −
α

N

N∑
i=1

(y(i) − t(i))x(i)j

Intro ML (UofT) CSC311-Lec4 33 / 43

Gradient descent for Linear regression

Even for linear regression, where there is a direct solution, we
sometimes need to use GD.

Why gradient descent, if we can find the optimum directly?
I GD can be applied to a much broader set of models
I GD can be easier to implement than direct solutions
I For regression in high-dimensional spaces, GD is more efficient than

direct solution
I Linear regression solution: (XTX)−1XT t
I matrix inversion is an O(D3) algorithm
I each GD update costs O(ND)
I Huge difference if D � 1

Intro ML (UofT) CSC311-Lec4 34 / 43

Logistic Regression

Comparison of gradient descent updates:

Linear regression (verify!):

w← w − α

N

N∑
i=1

(y(i) − t(i)) x(i)

Logistic regression:

w← w − α

N

N∑
i=1

(y(i) − t(i)) x(i)

Not a coincidence! These are both examples of generalized linear
models. But we won’t go in further detail.

Notice 1
N in front of sums due to averaged losses. This is why you

need smaller learning rate when cost is summed losses (α′ = α/N).

Intro ML (UofT) CSC311-Lec4 35 / 43

Stochastic Gradient Descent

So far, the cost function J has been the average loss over the
training examples:

J (θ) =
1

N

N∑
i=1

L(i) =
1

N

N∑
i=1

L(y(x(i),θ), t(i)).

By linearity,

∂J
∂θ

=
1

N

N∑
i=1

∂L(i)

∂θ
.

Computing the gradient requires summing over all of the training
examples. This is known as batch training.

Batch training is impractical if you have a large dataset N � 1
(e.g. millions of training examples)!

Intro ML (UofT) CSC311-Lec4 36 / 43

Stochastic Gradient Descent

Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example,

1− Choose i uniformly at random, 2− θ ← θ − α∂L
(i)

∂θ

Cost of each SGD update is independent of N !

SGD can make significant progress before even seeing all the data!

Mathematical justification: if you sample a training example uniformly
at random, the stochastic gradient is an unbiased estimate of the batch
gradient:

E
[
∂L(i)

∂θ

]
=

1

N

N∑
i=1

∂L(i)

∂θ
=
∂J
∂θ

.

Problems:
I Variance in this estimate may be high
I If we only look at one training example at a time, we can’t exploit

efficient vectorized operations.
Intro ML (UofT) CSC311-Lec4 37 / 43

Stochastic Gradient Descent

Compromise approach: compute the gradients on a randomly
chosen medium-sized set of training examples M⊂ {1, . . . , N},
called a mini-batch.

Stochastic gradients computed on larger mini-batches have smaller
variance. This is similar to bagging.

The mini-batch size |M| is a hyperparameter that needs to be set.
I Too large: takes more computation, i.e. takes more memory to store

the activations, and longer to compute each gradient update
I Too small: can’t exploit vectorization, has high variance
I A reasonable value might be |M| = 100.

Intro ML (UofT) CSC311-Lec4 38 / 43

Stochastic Gradient Descent

Batch gradient descent moves directly downhill. SGD takes steps
in a noisy direction, but moves downhill on average.

batch gradient descent stochastic gradient descent

Intro ML (UofT) CSC311-Lec4 39 / 43

SGD Learning Rate

In stochastic training, the learning rate also influences the
fluctuations due to the stochasticity of the gradients.

Typical strategy:
I Use a large learning rate early in training so you can get close to

the optimum
I Gradually decay the learning rate to reduce the fluctuations

Intro ML (UofT) CSC311-Lec4 40 / 43

SGD Learning Rate

Warning: by reducing the learning rate, you reduce the
fluctuations, which can appear to make the loss drop suddenly.
But this can come at the expense of long-run performance.

Intro ML (UofT) CSC311-Lec4 41 / 43

SGD and Non-convex optimization

Local minimum

Global minimum

�3
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�4
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Stochastic Gradient descent
updates

Stochastic methods have a chance of escaping from bad minima.

Gradient descent with small step-size converges to first minimum
it finds.

Intro ML (UofT) CSC311-Lec4 42 / 43

Conclusion

We talked about linear methods for binary classification.

We learned a non-linear model: logistic regression
I but had no direct solution!

We learned gradient descent, a method to minimize general cost
functions.

We learned stochastic gradient descent which is the most common
technique used to train ML algorithms.

Intro ML (UofT) CSC311-Lec4 43 / 43

