CSC 311: Introduction to Machine Learning
Lecture 5 - Multiclass Classification & Neural Networks I

Murat A. Erdogdu & Richard Zemel

University of Toronto

Intro ML (UofT) CSC311-Lech 1/ 46

Overview

o Classification: predicting a discrete-valued target

» Binary classification: predicting a binary-valued target
» Multiclass classification: predicting a discrete(> 2)-valued target

e Examples of multi-class classification

» predict the value of a handwritten digit
» classify e-mails as spam, travel, work, personal

Intro ML (UofT) CSC311-Lech 2/ 46

Multiclass Classification

o Classification tasks with more than two categories:

buzen 1235

2679977658
LsLzo)N 11239

837849497

Intro ML (UofT) CSC311-Lech 3/ 46

Multiclass Classification

o Targets form a discrete set {1,..., K}.

e It’s often more convenient to represent them as one-hot vectors, or
a one-of-K encoding:

t=(0,...,0,1,0,...,0) e RE

entry k is 1

Intro ML (UofT) CSC311-Lech 4 / 46

Multiclass Classification

Now there are D input dimensions and K output dimensions, so
we need K x D weights, which we arrange as a weight matrix W.

e Also, we have a K-dimensional vector b of biases.

@ Vectorized:

Linear predictions:

D
ZE = Zwkjl'j + b, for k=1,2,... K
j=1

z=Wx+b

Intro ML (UofT) CSC311-Lech 5/ 46

Multiclass Classification

Predictions are like probabilities: want 1 >y, > 0 and),y =1

A natural activation function to use is the softmax function, a
multivariable generalization of the logistic function:

e’k

yr = softmax(z1,...,2x)r = e
k/

The inputs z; are called the logits.

Properties:
» Outputs are positive and sum to 1 (so they can be interpreted as
probabilities)
» If one of the zj is much larger than the others, softmax(z) ~ 1
(behaves like argmax).
» Exercise: how does the case of K = 2 relate to the logistic
function?

e Note: sometimes o(z) is used to denote the softmax function; in
this class, it will denote the logistic function applied elementwise.

Intro ML (UofT) CSC311-Lech 6 / 46

Multiclass Classification

e If a model outputs a vector of class probabilities, we can use
cross-entropy as the loss function:

K
Lop(y,t) == tylogy
k=1

= —t"(logy),

where the log is applied elementwise.

o Just like with logistic regression, we typically combine the softmax
and cross-entropy into a softmax-cross-entropy function.

Intro ML (UofT) CSC311-Lech 7/ 46

Multiclass Classification

e Softmax regression:

z=Wx+b

y = softmax(z)

Leg = —t' (logy)
e Gradient descent updates can be derived for each row of W:

Oen _ Oken Oz _ (yp — ty) - x

ow, Oz Wi
IRSYNCRON
Wi & Wi — s Zl(yk — 1)x®

e Similar to linear/logistic reg (no coincidence) (verify the update)

Intro ML (UofT) CSC311-Lech 8 / 46

Limits of Linear Classification

e Visually, it’s obvious that XOR is not linearly separable. But how
to show this?

Intro ML (UofT) CSC311-Lech 9 / 46

Limits of Linear Classification

Showing that XOR is not linearly separable (proof by
contradiction)

o If two points lie in a half-space, line segment connecting them also lie in
the same halfspace.

@ Suppose there were some feasible weights (hypothesis). If the positive
examples are in the positive half-space, then the green line segment must
be as well.

@ Similarly, the red line segment must line within the negative half-space.

@ But the intersection can’t lie in both half-spaces. Contradiction!

Intro ML (UofT) CSC311-Lech 10 / 46

Limits of Linear Classification

@ Sometimes we can overcome this limitation using feature maps,
just like for linear regression. E.g., for XOR.:

T

P(x) = | 22

T179
1 @ | Yi(x) Ya(x) Ys(x) |t
0 0 0 0 0 0
0 1 0 1 0 1
1 0 1 0 0 1
1 1 1 1 1 0

e This is linearly separable. (Try it!)

e Not a general solution: it can be hard to pick good basis functions.
Instead, we’ll use neural nets to learn nonlinear hypotheses
directly.

Intro ML (UofT) CSC311-Lech 11 / 46

Neural Networks

Inspiration: The Brain

e Neurons receive input signals and accumulate voltage. After some
threshold they will fire spiking responses.

Action potential
+40
Na® ions in
Sl 13 ©
& 1=
s o ;5 |z
= 2 B K ions out
@ & =3
(o)) Q o
i 2
g)
Threshold / Failed
-55[—————initiations
Resting state
iy 0 —

Hyperpolarization
2 3 4
Time (ms)

[Pic credit: www.moleculardevices.com]
Intro ML (U

CSC311-Lech 13 / 46

Inspiration: The Brain

e For neural nets, we use a much simpler model neuron, or unit:

Y _ _
output output weights bias

e yiqu(XlVTx%—Il))
inputs T

1 T2 xs
activation function inputs

o Compare with logistic regression: y = o(w'x + b)

e By throwing together lots of these incredibly simplistic neuron-like

processing units, we can do some powerful computations!
Intro ML (UofT) CSC311-Lech 14 / 46

Multilayer Perceptrons

@ We can connect lots of
units together into a
directed acyclic
graph.

an output
unit
b1

output layer

e Typically, units are
grouped together into

second hidden layer

layers. first hidden layer
e This gives a a hidden
nit
feed-forward neural an .
) input layer
network. That’s in | aconnection
contrast to recurrent depth an input

neural networks, unit

which can have cycles.

Intro ML (UofT) CSC311-Lecb 15 / 46

Multilayer Perceptrons

@ Each hidden layer i connects N;_1 input units to N; output units.

@ In the simplest case, all input units are connected to all output units. We call
this a fully connected layer. We’ll consider other layer types later.

@ Note: the inputs and outputs for a layer are distinct from the inputs and
outputs to the network.

@ If we need to compute M outputs from N
inputs, we can do so in parallel using matrix
multiplication. This means we’ll be using a S, 4 A 4 A A
M x N matrix \ ‘ ‘

@ The output units are a function of the input
units:

y=[f(x) =¢(Wx+Db)

@ A multilayer network consisting of fully
connected layers is called a multilayer
perceptron. Despite the name, it has
nothing to do with perceptrons!

Intro ML (UofT) CSC311-Lecb 16 / 46

Multilayer Perceptrons

Some activation functions:

Rectified Linear

Identity Unit Soft ReLU
(ReLU)
Y=z y=logl+e?
y = max(0, z)

Intro ML (UofT) CSC311-Lecb 17 / 46

Multilayer Perceptrons

Some activation functions:

Hard Threshold Logistic Hyperbolic Tangent

(tanh)
1 ifz>0 _ 1 . .
Y10 ifz<o0 Y= T3> yo oo

e*+e”~

Intro ML (UofT) CSC311-Lecb 18 / 46

Multilayer Perceptrons

e Each layer computes a function, so the network
computes a composition of functions:

y [O O]
hM = fD(x) = g(WHx + b)) F

h® = f@OnM) = p(WEnM® 4 p?)

: f(3)m
' A[O OO
_ FD)(pE-D h E:i:j

e Or more simply: O O O

y=fBo... o fDix). o

@ Neural nets provide modularity: we can
implement each layer’s computations as a black
box.

Intro ML (UofT) CSC311-Lech 19 / 46

Feature Learning

Last layer:
o If task is regression: choose
y = fO (D) = (wNTh(E=1) 4 pL)
o If task is binary classification: choose
y = f(L)(h(Lfl)) = U((W(L))Th(Lfl) + b(L))
e Neural nets can be viewed as a way of learning features:

linear regressor.

/ clasifier
=1 (x)
@ The goal:

-, T+

S weot t ':_+
—— -
—+ - +
+t4 -2

Intro ML (UofT) CSC311-Lecb 20 / 46

Feature Learning

@ Suppose we’re trying to classify images of handwritten digits.
Each image is represented as a vector of 28 x 28 = 784 pixel values.

o Each first-layer hidden unit computes ¢(w!x). It acts as a
feature detector.

e We can visualize w by reshaping it into an image. Here’s an
example that responds to a diagonal stroke.

Intro ML (UofT) CSC311-Lech 21 / 46

Feature Learning

Here are some of the features learned by the first hidden layer of a
handwritten digit classifier:

Intro ML (UofT) CSC311-Lech 22 / 46

Expressive Power

o We've seen that there are some functions that linear classifiers
can’t represent. Are deep networks any better?

@ Suppose a layer’s activation function was the identity, so the layer
just computes a affine transformation of the input

» We call this a linear layer

@ Any sequence of linear layers can be equivalently represented with
a single linear layer.

y = WOWAWW x
~— —
LW/

» Deep linear networks are no more expressive than linear regression.

Intro ML (UofT) CSC311-Lech 23 / 46

Expressive Power

e Multilayer feed-forward neural nets with nonlinear activation
functions are universal function approximators: they can
approximate any function arbitrarily well.

e This has been shown for various activation functions (thresholds,
logistic, ReLU, etc.)
» Even though ReLU is “almost” linear, it’s nonlinear enough.

Intro ML (UofT) CSC311-Lech 24 / 46

Multilayer Perceptrons

Designing a network to classify XOR:

Assume hard threshold activation function

1

1 ‘@ 1

Intro ML (UofT) CSC311-Lech 25 / 46

Multilayer Perceptrons

e hj computes I[z] + z3 — 0.5 > 0]
> ie. Iy OR ZTo

@ ho computes [[z] + x5 — 1.5 > 0]
> ie. Ty AND To

e y computes I[hy —hg — 0.5 > 0] =I[h1 + (1 — hg) — 1.5 > 0]
> ie. hl AND (NOT hg) =X XOR X2

Intro ML (UofT) CSC311-Lecb 26 / 46

Expressive Power

Universality for binary inputs and targets:
e Hard threshold hidden units, linear output
o Strategy: 2” hidden units, each of which responds to one

particular input configuration

X X9 X3 t

@ Only requires one hidden layer, though it needs to be extremely

wide.
CSC311-Lecb

Intro ML (UofT)

27 / 46

Expressive Power

e What about the logistic activation function?

@ You can approximate a hard threshold by scaling up the weights
and biases:

1

0.8;

06

0.4:

0.2

o.

=4 -3 -2 -1 o0 1 2 3 w4 -3 2 -

y=o(x) y = o(bx)

e This is good: logistic units are differentiable, so we can train them
with gradient descent.

Intro ML (UofT) CSC311-Lecb 28 / 46

Expressive Power

o Limits of universality

» You may need to represent an exponentially large network.

» How can you find the appropriate weights to represent a given
function?

» If you can learn any function, you'll just overfit.

» Really, we desire a compact representation.

Intro ML (UofT) CSC311-Lech

29 / 46

Training neural networks with backpropagation

Intro ML (T CSC311-Lech 30 / 46

Recap: Gradient Descent

© Recall: gradient descent moves opposite the gradient (the direction of
steepest descent)

0.5 AN >
-i000 -500 0 500 1000 1500 2000
0o

@ Weight space for a multilayer neural net: one coordinate for each weight
or bias of the network, in all the layers

@ Conceptually, not any different from what we’ve seen so far — just
higher dimensional and harder to visualize!

@ We want to define a loss £ and compute the gradient of the cost d.7/dw,
which is the vector of partial derivatives.

» This is the average of d£/dw over all the training examples, so in
this lecture we focus on computing dL/dw.

Intro ML (UofT) CSC311-Lech 31 / 46

Univariate Chain Rule

e We've already been using the univariate Chain Rule.

e Recall: if f(z) and x(t) are univariate functions, then

d dfde
i@ (z(t) = Qe dt

Intro ML (UofT) CSC311-Lech 32 / 46

Univariate Chain Rule

Recall: Univariate logistic least squares model

z=wx+b
y=o0(2)

1 2
L=5-1)

Let’s compute the loss derivatives g—f}, %—’g

Intro ML (UofT) CSC311-Lech 33 / 46

Univariate Chain Rule

How you would have done it in calculus class

1
ﬁ:i(a(warb)*t)Q aL o1 2
oL a1 o ~ap [T
= = | Z(o(wz +b) —t)?
0 7w |2 10 2
o :5%(0(w1+b)*t)
= 5 50 (o(we +b) - t)? b
) :(U(wx_:,_b)_t)%(a(wx-‘rb)—t)
= (o(wz + b) — t)—aw (o(wz +b) —1t)

= (o(wz +b) — t)o’ (wx + b)%(w:c +b)

= (o(wz +b) —)0’ (wa + b>a%<wx T (o(wn 4 b) —)0’ (wr 4 b)

— (J(wx —+ b) — t)a’(wm + b)l’

What are the disadvantages of this approach?

Intro ML (UofT) CSC311-Lech 34 / 46

Univariate Chain Rule

A more structured way to do it

Computing the derivatives:
Computing the loss:

z=wx+b dy
AL _dtdy _de
1 dz dy dz dy
L= 30— oL _dtd: _dt
ow dz dw dz
oL dLdz dL
9 dzdb dz

y=o0(2)

Remember, the goal isn’t to obtain closed-form solutions, but to be
able to write a program that efficiently computes the derivatives.

Intro ML (UofT) CSC311-Lech 35 / 46

Univariate Chain Rule

e We can diagram out the computations using a computation
graph.

@ The nodes represent all the inputs and computed quantities, and
the edges represent which nodes are computed directly as a
function of which other nodes.

Compute Loss
E ——_—

t

Computing the loss:

=wxr—+b X
= o(z)—i— \

1 2
L= 5(y—t) b/

Compute Derivatives
—

Intro ML (UofT) CSC311-Lech 36 / 46

l\z

@

Univariate Chain Rule

A slightly more convenient notation:

@ Use 7 to denote the derivative d£/dy, sometimes called the error signal.

@ This emphasizes that the error signals are just values our program is
computing (rather than a mathematical operation).

Computing the loss: Computing the derivatives:

z=wx+b T=y—t

y=o0(z2) z:gg’(z)
1 .
£:§(y—t)2 UW=Zx
b=%

Intro ML (UofT) CSC311-Lech 37 / 46

Multivariate Chain Rule

Problem: what if the computation graph has fan-out > 17
This requires the multivariate Chain Rule!

Lo-Regularized regression

.17\ t
b72_’y_’£_’£rog
w :R/

z=wxr+b

y=o0(z)

£=ty—o

R = %w2

Lreg =L+ AR

Intro ML (UofT)

Softmax regression

CSC311-Lech 38 / 46

Multivariate Chain Rule

e Suppose we have a function f(z,y) and functions x(¢) and y(¢).
(All the variables here are scalar-valued.) Then

d ofdz 0fdy / \
Gl =505+ 5 K, /,

o Example:

fla,y) =y +e
x(t) = cost
y(t) =¢*
@ Plug in to Chain Rule:
df 9fdx 0Ofdy

at " ordt oy
= (ye™) - (—sint) + (1 4+ ze™) - 2t

Intro ML (UofT) CSC311-Lecb 39 / 46

Multivariable Chain Rule

o In the context of backpropagation:

Mathematical expressions
to be evaluated

df

dt

8f dz
" Ox dt

(9f dy
8y dt

Values already computed
by our program

@ In our notation:

~+ \

Intro ML (UofT)

N/
/ N\

gl b
dt Yy

CSC311-Lech

A
\/

&l&

40 / 46

Backpropagation

Full backpropagation algorithm:
Let v1,...,vn be a topological ordering of the computation graph
(i.e. parents come before children.)

vy denotes the variable we're trying to compute derivatives of (e.g. loss).
Fori=1,...,N

forward pass .
Compute v; as a function of Pa(v;)

Fori=N-1,...,1

backward pass

— — Ovj
Vi = ZjeCh(vi) U Bo;

Intro ML (UofT) CSC311-Lech 41 / 46

Backpropagation

Example: univariate logistic least squares regression

" t Backward pass:
Qz—’y_’ﬁ_’['rcg _
/ i s Lieg =1 . _dy
Uu >R m_T ALreg =V,
F d = AR =50'(2)
orward pass: _ Ereg A . % ﬁ@
z=wr+b L ="Cres dLreg - T ow dw
y=o(z) dc =zZr+Ru
= ['rcg _ o
L=t(y—1)’ d b=z%
2 y=L— b
— 2" =Ly-1)
Lrecg =L+ AR

Intro ML (UofT) CSC311-Lech 42 / 46

Backpropagation

Z<;)\”“\11) bm\“‘\j Backward pass:
01 1 t B
3 N \ L=1

T1——>21—>hi—Y1.

>< >f£ Uk =L (yr — ti)

.I'Q—»ZQ—»I’LQ—.:I/Q W
m//uT {“)/T to Wy =7k hi
ey

“'ﬂlf 2 (2) b<2) o

u'.(>1>) w'? 21 k — Yk
Forward pass: o = Zy?wff;)
¢)) (1) K
2 = w; x; +b; v
R == ()
hi = o(z) w)) =z
= w2 h 47 rog.

1 2
L= 5;(%*%)

Intro ML (UofT) CSC311-Lech 43 / 46

Backpropagation

In vectorized form:

w Wij) t Backward pass:
L£L=1
XY L=1
y=~L(y—t)
b(l) b(2) W(Q) _ yhT
Forward pass: b — v
z = Wx + b h=w®@Ty
h =o(z) Z=hoo(z)
y =W®h 4+ b® WO =zx"
1 T
L=yl bl =z

Intro ML (UofT) CSC311-Lech

44 / 46

Computational Cost

e Computational cost of forward pass: one add-multiply
operation per weight

z; = Zw(l)x] +b

o Computational cost of backward pass: two add-multiply
operations per weight

=Y g
k

@ Rule of thumb: the backward pass is about as expensive as two
forward passes.

o For a multilayer perceptron, this means the cost is linear in the
number of layers, quadratic in the number of units per layer.

Intro ML (UofT) CSC311-Lech 45 / 46

Backpropagation

@ Backprop is used to train the overwhelming majority of neural nets
today.

» Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the gradients.

@ Despite its practical success, backprop is believed to be neurally
implausible.

Intro ML (UofT) CSC311-Lech 46 / 46

