
CSC 311: Introduction to Machine Learning
Lecture 5 - Multiclass Classification & Neural Networks I

Murat A. Erdogdu & Richard Zemel

University of Toronto

Intro ML (UofT) CSC311-Lec5 1 / 46

Overview

Classification: predicting a discrete-valued target
I Binary classification: predicting a binary-valued target
I Multiclass classification: predicting a discrete(> 2)-valued target

Examples of multi-class classification
I predict the value of a handwritten digit
I classify e-mails as spam, travel, work, personal

Intro ML (UofT) CSC311-Lec5 2 / 46

Multiclass Classification

Classification tasks with more than two categories:
It is very hard to say what makes a 2 Some examples from an earlier version of the net

Intro ML (UofT) CSC311-Lec5 3 / 46

Multiclass Classification

Targets form a discrete set {1, . . . ,K}.
It’s often more convenient to represent them as one-hot vectors, or
a one-of-K encoding:

t = (0, . . . , 0, 1, 0, . . . , 0)︸ ︷︷ ︸
entry k is 1

∈ RK

Intro ML (UofT) CSC311-Lec5 4 / 46

Multiclass Classification

Now there are D input dimensions and K output dimensions, so
we need K ×D weights, which we arrange as a weight matrix W.

Also, we have a K-dimensional vector b of biases.

Linear predictions:

zk =

D∑
j=1

wkjxj + bk for k = 1, 2, ...,K

Vectorized:
z = Wx + b

Intro ML (UofT) CSC311-Lec5 5 / 46

Multiclass Classification

Predictions are like probabilities: want 1 ≥ yk ≥ 0 and
∑

k yk = 1

A natural activation function to use is the softmax function, a
multivariable generalization of the logistic function:

yk = softmax(z1, . . . , zK)k =
ezk∑
k′ e

zk′

The inputs zk are called the logits.

Properties:
I Outputs are positive and sum to 1 (so they can be interpreted as

probabilities)
I If one of the zk is much larger than the others, softmax(z)k ≈ 1

(behaves like argmax).
I Exercise: how does the case of K = 2 relate to the logistic

function?

Note: sometimes σ(z) is used to denote the softmax function; in
this class, it will denote the logistic function applied elementwise.

Intro ML (UofT) CSC311-Lec5 6 / 46

Multiclass Classification

If a model outputs a vector of class probabilities, we can use
cross-entropy as the loss function:

LCE(y, t) = −
K∑
k=1

tk log yk

= −t>(log y),

where the log is applied elementwise.

Just like with logistic regression, we typically combine the softmax
and cross-entropy into a softmax-cross-entropy function.

Intro ML (UofT) CSC311-Lec5 7 / 46

Multiclass Classification

Softmax regression:

z = Wx + b

y = softmax(z)

LCE = −t>(log y)

Gradient descent updates can be derived for each row of W:

∂LCE

∂wk
=
∂LCE

∂zk
· ∂zk

wk
= (yk − tk) · x

wk ← wk − α
1

N

N∑
i=1

(y
(i)
k − t

(i)
k)x(i)

Similar to linear/logistic reg (no coincidence) (verify the update)

Intro ML (UofT) CSC311-Lec5 8 / 46

Limits of Linear Classification

Visually, it’s obvious that XOR is not linearly separable. But how
to show this?

Intro ML (UofT) CSC311-Lec5 9 / 46

Limits of Linear Classification

Showing that XOR is not linearly separable (proof by
contradiction)

If two points lie in a half-space, line segment connecting them also lie in
the same halfspace.

Suppose there were some feasible weights (hypothesis). If the positive
examples are in the positive half-space, then the green line segment must
be as well.

Similarly, the red line segment must line within the negative half-space.

But the intersection can’t lie in both half-spaces. Contradiction!

Intro ML (UofT) CSC311-Lec5 10 / 46

Limits of Linear Classification

Sometimes we can overcome this limitation using feature maps,
just like for linear regression. E.g., for XOR:

ψ(x) =

 x1
x2
x1x2

x1 x2 ψ1(x) ψ2(x) ψ3(x) t

0 0 0 0 0 0
0 1 0 1 0 1
1 0 1 0 0 1
1 1 1 1 1 0

This is linearly separable. (Try it!)

Not a general solution: it can be hard to pick good basis functions.
Instead, we’ll use neural nets to learn nonlinear hypotheses
directly.

Intro ML (UofT) CSC311-Lec5 11 / 46

Neural Networks

Intro ML (UofT) CSC311-Lec5 12 / 46

Inspiration: The Brain

Neurons receive input signals and accumulate voltage. After some
threshold they will fire spiking responses.

[Pic credit: www.moleculardevices.com]

Intro ML (UofT) CSC311-Lec5 13 / 46

Inspiration: The Brain

For neural nets, we use a much simpler model neuron, or unit:

Compare with logistic regression: y = σ(w>x + b)

By throwing together lots of these incredibly simplistic neuron-like
processing units, we can do some powerful computations!
Intro ML (UofT) CSC311-Lec5 14 / 46

Multilayer Perceptrons

We can connect lots of
units together into a
directed acyclic
graph.

Typically, units are
grouped together into
layers.

This gives a
feed-forward neural
network. That’s in
contrast to recurrent
neural networks,
which can have cycles.

Intro ML (UofT) CSC311-Lec5 15 / 46

Multilayer Perceptrons

Each hidden layer i connects Ni−1 input units to Ni output units.

In the simplest case, all input units are connected to all output units. We call
this a fully connected layer. We’ll consider other layer types later.

Note: the inputs and outputs for a layer are distinct from the inputs and
outputs to the network.
If we need to compute M outputs from N
inputs, we can do so in parallel using matrix
multiplication. This means we’ll be using a
M ×N matrix

The output units are a function of the input
units:

y = f(x) = φ (Wx+ b)

A multilayer network consisting of fully
connected layers is called a multilayer
perceptron. Despite the name, it has
nothing to do with perceptrons!

Intro ML (UofT) CSC311-Lec5 16 / 46

Multilayer Perceptrons

Some activation functions:

Identity

y = z

Rectified Linear
Unit

(ReLU)

y = max(0, z)

Soft ReLU

y = log 1 + ez

Intro ML (UofT) CSC311-Lec5 17 / 46

Multilayer Perceptrons

Some activation functions:

Hard Threshold

y =

{
1 if z > 0
0 if z ≤ 0

Logistic

y =
1

1 + e−z

Hyperbolic Tangent
(tanh)

y =
ez − e−z

ez + e−z

Intro ML (UofT) CSC311-Lec5 18 / 46

Multilayer Perceptrons

Each layer computes a function, so the network
computes a composition of functions:

h(1) = f (1)(x) = φ(W(1)x + b(1))

h(2) = f (2)(h(1)) = φ(W(2)h(1) + b(2))

...

y = f (L)(h(L−1))

Or more simply:

y = f (L) ◦ · · · ◦ f (1)(x).

Neural nets provide modularity: we can
implement each layer’s computations as a black
box.

Intro ML (UofT) CSC311-Lec5 19 / 46

Feature Learning

Last layer:

If task is regression: choose
y = f (L)(h(L−1)) = (w(L))Th(L−1) + b(L)

If task is binary classification: choose
y = f (L)(h(L−1)) = σ((w(L))Th(L−1) + b(L))
Neural nets can be viewed as a way of learning features:

The goal:

Intro ML (UofT) CSC311-Lec5 20 / 46

Feature Learning

Suppose we’re trying to classify images of handwritten digits.
Each image is represented as a vector of 28× 28 = 784 pixel values.

Each first-layer hidden unit computes φ(wT
i x). It acts as a

feature detector.

We can visualize w by reshaping it into an image. Here’s an
example that responds to a diagonal stroke.

Intro ML (UofT) CSC311-Lec5 21 / 46

Feature Learning

Here are some of the features learned by the first hidden layer of a
handwritten digit classifier:

Intro ML (UofT) CSC311-Lec5 22 / 46

Expressive Power

We’ve seen that there are some functions that linear classifiers
can’t represent. Are deep networks any better?

Suppose a layer’s activation function was the identity, so the layer
just computes a affine transformation of the input

I We call this a linear layer

Any sequence of linear layers can be equivalently represented with
a single linear layer.

y = W(3)W(2)W(1)︸ ︷︷ ︸
,W′

x

I Deep linear networks are no more expressive than linear regression.

Intro ML (UofT) CSC311-Lec5 23 / 46

Expressive Power

Multilayer feed-forward neural nets with nonlinear activation
functions are universal function approximators: they can
approximate any function arbitrarily well.

This has been shown for various activation functions (thresholds,
logistic, ReLU, etc.)

I Even though ReLU is “almost” linear, it’s nonlinear enough.

Intro ML (UofT) CSC311-Lec5 24 / 46

Multilayer Perceptrons

Designing a network to classify XOR:

Assume hard threshold activation function

Intro ML (UofT) CSC311-Lec5 25 / 46

Multilayer Perceptrons

h1 computes I[x1 + x2 − 0.5 > 0]
I i.e. x1 OR x2

h2 computes I[x1 + x2 − 1.5 > 0]
I i.e. x1 AND x2

y computes I[h1 − h2 − 0.5 > 0] ≡ I[h1 + (1− h2)− 1.5 > 0]
I i.e. h1 AND (NOT h2) = x1 XOR x2

Intro ML (UofT) CSC311-Lec5 26 / 46

Expressive Power

Universality for binary inputs and targets:

Hard threshold hidden units, linear output

Strategy: 2D hidden units, each of which responds to one
particular input configuration

Only requires one hidden layer, though it needs to be extremely
wide.
Intro ML (UofT) CSC311-Lec5 27 / 46

Expressive Power

What about the logistic activation function?

You can approximate a hard threshold by scaling up the weights
and biases:

y = σ(x) y = σ(5x)

This is good: logistic units are differentiable, so we can train them
with gradient descent.

Intro ML (UofT) CSC311-Lec5 28 / 46

Expressive Power

Limits of universality

I You may need to represent an exponentially large network.

I How can you find the appropriate weights to represent a given
function?

I If you can learn any function, you’ll just overfit.

I Really, we desire a compact representation.

Intro ML (UofT) CSC311-Lec5 29 / 46

Training neural networks with backpropagation

Intro ML (UofT) CSC311-Lec5 30 / 46

Recap: Gradient Descent

Recall: gradient descent moves opposite the gradient (the direction of
steepest descent)

Weight space for a multilayer neural net: one coordinate for each weight
or bias of the network, in all the layers

Conceptually, not any different from what we’ve seen so far — just
higher dimensional and harder to visualize!

We want to define a loss L and compute the gradient of the cost dJ /dw,
which is the vector of partial derivatives.

I This is the average of dL/dw over all the training examples, so in
this lecture we focus on computing dL/dw.

Intro ML (UofT) CSC311-Lec5 31 / 46

Univariate Chain Rule

We’ve already been using the univariate Chain Rule.

Recall: if f(x) and x(t) are univariate functions, then

d

dt
f(x(t)) =

df

dx

dx

dt
.

Intro ML (UofT) CSC311-Lec5 32 / 46

Univariate Chain Rule

Recall: Univariate logistic least squares model

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Let’s compute the loss derivatives ∂L
∂w ,

∂L
∂b

Intro ML (UofT) CSC311-Lec5 33 / 46

Univariate Chain Rule

How you would have done it in calculus class

L =
1

2
(σ(wx+ b)− t)2

∂L
∂w

=
∂

∂w

[
1

2
(σ(wx+ b)− t)2

]
=

1

2

∂

∂w
(σ(wx+ b)− t)2

= (σ(wx+ b)− t)
∂

∂w
(σ(wx+ b)− t)

= (σ(wx+ b)− t)σ′(wx+ b)
∂

∂w
(wx+ b)

= (σ(wx+ b)− t)σ′(wx+ b)x

∂L
∂b

=
∂

∂b

[
1

2
(σ(wx+ b)− t)2

]
=

1

2

∂

∂b
(σ(wx+ b)− t)2

= (σ(wx+ b)− t)
∂

∂b
(σ(wx+ b)− t)

= (σ(wx+ b)− t)σ′(wx+ b)
∂

∂b
(wx+ b)

= (σ(wx+ b)− t)σ′(wx+ b)

What are the disadvantages of this approach?

Intro ML (UofT) CSC311-Lec5 34 / 46

Univariate Chain Rule

A more structured way to do it

Computing the loss:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Computing the derivatives:

dL
dy

= y − t

dL
dz

=
dL
dy

dy

dz
=

dL
dy

σ′(z)

∂L
∂w

=
dL
dz

dz

dw
=

dL
dz

x

∂L
∂b

=
dL
dz

dz

db
=

dL
dz

Remember, the goal isn’t to obtain closed-form solutions, but to be
able to write a program that efficiently computes the derivatives.

Intro ML (UofT) CSC311-Lec5 35 / 46

Univariate Chain Rule

We can diagram out the computations using a computation
graph.
The nodes represent all the inputs and computed quantities, and
the edges represent which nodes are computed directly as a
function of which other nodes.

Computing the loss:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Intro ML (UofT) CSC311-Lec5 36 / 46

Univariate Chain Rule

A slightly more convenient notation:

Use y to denote the derivative dL/dy, sometimes called the error signal.

This emphasizes that the error signals are just values our program is
computing (rather than a mathematical operation).

Computing the loss:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Computing the derivatives:

y = y − t
z = y σ′(z)

w = z x

b = z

Intro ML (UofT) CSC311-Lec5 37 / 46

Multivariate Chain Rule

Problem: what if the computation graph has fan-out > 1?
This requires the multivariate Chain Rule!

L2-Regularized regression

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

R =
1

2
w2

Lreg = L+ λR

Softmax regression

z` =
∑
j

w`jxj + b`

yk =
ezk∑
` e

z`

L = −
∑
k

tk log yk

Intro ML (UofT) CSC311-Lec5 38 / 46

Multivariate Chain Rule

Suppose we have a function f(x, y) and functions x(t) and y(t).
(All the variables here are scalar-valued.) Then

d

dt
f(x(t), y(t)) =

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

Example:

f(x, y) = y + exy

x(t) = cos t

y(t) = t2

Plug in to Chain Rule:

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

= (yexy) · (− sin t) + (1 + xexy) · 2t

Intro ML (UofT) CSC311-Lec5 39 / 46

Multivariable Chain Rule

In the context of backpropagation:

In our notation:

t = x
dx

dt
+ y

dy

dt

Intro ML (UofT) CSC311-Lec5 40 / 46

Backpropagation

Full backpropagation algorithm:
Let v1, . . . , vN be a topological ordering of the computation graph
(i.e. parents come before children.)

vN denotes the variable we’re trying to compute derivatives of (e.g. loss).

Intro ML (UofT) CSC311-Lec5 41 / 46

Backpropagation

Example: univariate logistic least squares regression

Forward pass:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

R =
1

2
w2

Lreg = L+ λR

Backward pass:

Lreg = 1

R = Lreg
dLreg

dR
= Lreg λ

L = Lreg
dLreg

dL
= Lreg

y = L dL
dy

= L (y − t)

z = y
dy

dz

= y σ′(z)

w= z
∂z

∂w
+RdR

dw

= z x+Rw

b = z
∂z

∂b

= z

Intro ML (UofT) CSC311-Lec5 42 / 46

Backpropagation

Multilayer Perceptron (multiple outputs):

Forward pass:

zi =
∑
j

w
(1)
ij xj + b

(1)
i

hi = σ(zi)

yk =
∑
i

w
(2)
ki hi + b

(2)
k

L =
1

2

∑
k

(yk − tk)2

Backward pass:

L = 1

yk = L (yk − tk)

w
(2)
ki = yk hi

b
(2)
k = yk

hi =
∑
k

ykw
(2)
ki

zi = hi σ
′(zi)

w
(1)
ij = zi xj

b
(1)
i = zi

Intro ML (UofT) CSC311-Lec5 43 / 46

Backpropagation

In vectorized form:

Forward pass:

z = W(1)x + b(1)

h = σ(z)

y = W(2)h + b(2)

L =
1

2
‖t− y‖2

Backward pass:

L = 1

y = L (y − t)

W(2) = yh>

b(2) = y

h = W(2)>y

z = h ◦ σ′(z)

W(1) = zx>

b(1) = z

Intro ML (UofT) CSC311-Lec5 44 / 46

Computational Cost

Computational cost of forward pass: one add-multiply
operation per weight

zi =
∑
j

w
(1)
ij xj + b

(1)
i

Computational cost of backward pass: two add-multiply
operations per weight

w
(2)
ki = yk hi

hi =
∑
k

ykw
(2)
ki

Rule of thumb: the backward pass is about as expensive as two
forward passes.

For a multilayer perceptron, this means the cost is linear in the
number of layers, quadratic in the number of units per layer.

Intro ML (UofT) CSC311-Lec5 45 / 46

Backpropagation

Backprop is used to train the overwhelming majority of neural nets
today.

I Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the gradients.

Despite its practical success, backprop is believed to be neurally
implausible.

Intro ML (UofT) CSC311-Lec5 46 / 46

