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Recommender systems: Why?

400 hours of video are uploaded to YouTube every
minute

353 million products and 310 million users

83 million paying subscribers and streams about
35 million songs

Who cares about all these videos, products and songs? People may
care only about a few → Personalization: Connect users with content
they may use/enjoy.

Recommender systems suggest items of interest and enjoyment to
people based on their preferences
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Some recommender systems in action

Ideally recommendations should combine global and seasonal interests, look at
your history if available, should adapt with time, be coherent and diverse, etc.
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Some recommender systems in action
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The Netflix problem

Movie recommendation: Users watch movies and rate them out of 5⭑.

User Movie Rating

Thor ⭑⭐⭐⭐⭐
Chained ⭑⭑⭐⭐⭐
Frozen ⭑⭑⭑⭐⭐
Chained ⭑⭑⭑⭑⭐
Bambi ⭑⭑⭑⭑⭑
Titanic ⭑⭑⭑⭐⭐
Goodfellas ⭑⭑⭑⭑⭑
Dumbo ⭑⭑⭑⭑⭑
Twilight ⭑⭑⭐⭐⭐
Frozen ⭑⭑⭑⭑⭑
Tangled ⭑⭐⭐⭐⭐

Because users only rate a few items, one would like to infer their
preference for unrated items
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Netflix Prize
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PCA as a Matrix Factorization

Recall PCA: project data onto a low-dimensional subspace defined
by the top eigenvalues of the data covariance

We saw that PCA could be viewed as a linear autoencoder, which
lets us generalize to nonlinear autoencoders

Today we consider another generalization, matrix factorizations

▶ view PCA as a matrix factorization problem

▶ extend to matrix completion, where the data matrix is only
partially observed

▶ extend to other matrix factorization models, which place different
kinds of structure on the factors
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PCA as Matrix Factorization

Recall PCA: each input vector x
(i)
∈ RD

is approximated as

µ̂ +Uz
(i)

,

x
(i)
≈ x̃

(i)
= µ̂ +Uz

(i)

where µ̂ =
1
n
∑i x

(i)
is the data mean, U ∈ RD×K

is the orthogonal

basis for the principal subspace, and z
(i)
∈ RK

is the code vector,

and x̃
(i)
∈ RD

is x
(i)

’s reconstruction or approximation.

Assume that the data is centered: µ̂ = 0. Then, the approximation
looks like

x
(i)
≈ x̃

(i)
= Uz

(i)
.
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PCA as Matrix Factorization

PCA(on centered data): input vector x
(i)

is approximated as Uz
(i)

x
(i)
≈ Uz

(i)

Write this in matrix form, we have X ≈ ZU
⊤

where X and Z are
matrices with one row per data point

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[x(1)]⊤

[x(2)]⊤
⋮

[x(N)]⊤

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ RN×D
and Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[z(1)]⊤

[z(2)]⊤
⋮

[z(N)]⊤

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ RN×K

How to enforce X ≈ ZU
⊤

or measure difference between them?
Recall that the Frobenius norm of a matrix Y is defined as

∥Y∥2
F = ∥Y

⊤∥2
F =∑

i,j

y
2
ij =∑

i

∥y
(i)∥2

.

Writing the squared error in matrix form

N

∑
i=1

∥x
(i)
−Uz

(i)∥2
= ∥X − ZU

⊤∥2
F = ∥X

⊤
−UZ

⊤∥2
F
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PCA as Matrix Factorization

So PCA is approximating X ≈ ZU
⊤

, or equivalently X
⊤
≈ UZ

⊤
.

Based on the sizes of the matrices, this is a rank-K approximation.

Since U was chosen to minimize reconstruction error, this is the
optimal rank-K approximation, in terms of error ∥X

⊤ −UZ
⊤∥2

F .
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Singular-Value Decomposition (SVD)

This has a close relationship to the Singular Value Decomposition
(SVD) of X which is a matrix factorization technique. Consider an

N ×D matrix X ∈ RN×D
with SVD

X = QSU
⊤

Properties:

Q, S, and U
⊤

provide a real-valued matrix factorization of X.

Q is a N ×D matrix with orthonormal columns, Q
⊤

Q = ID,
where ID is the D ×D identity matrix.

U is an orthonormal D ×D matrix, U
⊤
= U

−1
.

S is a D ×D diagonal matrix, with non-negative singular values,
s1, s2, . . . , sD, on the diagonal, where the singular values are
conventionally ordered from largest to smallest.

Note that standard SVD notation is X = UDV
⊤

. We are using X = QSU
⊤

for notational convenience.
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Singular-Value Decomposition (SVD) continued

Properties of covariance matrices:

Construct two positive semi-definite matrices XX
⊤

(N ×N) and

X
⊤

X (D ×D).

XX
⊤
= QSU

⊤(QSU
⊤)⊤ = QSU

⊤
USQ

⊤
= QS

2
Q
⊤

is an

eigendecomposition of XX
⊤

Similarly, X
⊤

X = US
2
U
⊤

is eigendecomposition of X
⊤

X.

Assuming N ≥ D, it can be shown that that XX
⊤

and X
⊤

X will
share D eigenvalues and the remaining N −D eigenvalues of XX

⊤

will be zero.
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Motivation for matrix factorization: recall PCA

Recall: The optimal PCA subspace is spanned by the top K
eigenvectors of the covariance matrix

Σ̂ =
1

N

N

∑
i=1

(x(i)
− µ̂)(x(i)

− µ̂)⊤.

When the data is centered (µ̂ = 0), this is equivalent to

Σ̂ =
1

N

N

∑
i=1

x
(i)[x(i)]⊤ = 1

N
X
⊤

X.

You can center the data by subtracting the mean from each input
vector:

x
(i)
← x

(i)
− µ̂ for i = 1, ..., N.
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Motivation for matrix factorization: recall PCA

Recall the spectral (or eigen-) decomposition of Σ̂

Σ̂ =
1

N
X
⊤

X = UΛU
⊤

SVD of the data matrix X = QSU
⊤
= ZU

⊤
, with Z = QS.

The eigendecomposition of Σ̂ follows directly from the
eigendecomposition of X

⊤
X:

1

N
X
⊤

X =
1

N
USQ

⊤
QSU

⊤
= U[S2/N]U⊤.

From X
⊤

X/N it follows that the eigenvales λi’s are related to the
singular values λi =

1
N
s

2
i .

The SVD gives U which is equivalent to the learned basis of PCA.
▶ First K principal components corresponds first K columns of U,

i.e., U[∶, ∶K] in python notation.
▶ PCA reduces the dimension of data D to K. Low-dimensional

representation is given by the first K columns of Z[∶, ∶K]. Rows of
this matrix are the K-dimensional code vectors.
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PCA as a matrix factorization

Ultimately, PCA with K principal components finds the optimal
rank-K approximation of X ∈ RN×D

, in terms of error ∥X
⊤−UZ

⊤∥2
F .

min∥X
⊤
−UZ

⊤∥2
F over Z ∈ RN×K

,U ∈ RD×K
.

Note that the case K = D corresponds to the entire SVD of X.

Can we do something similar for recommender systems?
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PCA as matrix factorization of X

We have established that SVD provided a matrix factorization which
we can interpret as a PCA. Recall

x̄ = µ + z1u1 + z2u2 + z3u3 + . . .
<latexit sha1_base64="9lhGS3jKMZleu5s+1CiQQk+qRao="></latexit><latexit sha1_base64="9lhGS3jKMZleu5s+1CiQQk+qRao=">AAACRnicbZBLS8NAFIVv6qvWV9Wlm8EiCEJJWkE3gujGZQX7gCaEyWSig5MHMxOxhvw6N67d+RPcuFDErZM2Sn1cGDjz3XOZO8dLOJPKNJ+Myszs3PxCdbG2tLyyulZf3+jJOBWEdknMYzHwsKScRbSrmOJ0kAiKQ4/Tvnd9WvT7N1RIFkcXapRQJ8SXEQsYwUojt+7YHhaZHWJ15QXZbZ4foa+LHaY52rtzrW+SupYm6M5tTaFWrj3tKdAuPDb3YyXdesNsmuNCf4VVigaU1XHrj7YfkzSkkSIcSzm0zEQ5GRaKEU7zmp1KmmByjS/pUMsIh1Q62TiGHO1o4qMgFvpECo3p9ESGQylHoaedxbLyd6+A//WGqQoOnYxFSapoRCYPBSlHKkZFpshnghLFR1pgIpjeFZErLDBROvmaDsH6/eW/otdqWmbTOt9vHJ+UcVRhC7ZhFyw4gGM4gw50gcA9PMMrvBkPxovxbnxMrBWjnNmEH1WBT6LxsSk=</latexit><latexit sha1_base64="9lhGS3jKMZleu5s+1CiQQk+qRao="></latexit><latexit sha1_base64="9lhGS3jKMZleu5s+1CiQQk+qRao="></latexit>

where the vectors ui are the principal components of the data matrix
X (the latent factors).
We can do the same for our ratings matrix R. Rating of movie

¯ = average user+z1comedy user+z2drama user+z3action user+. . .

These latent factors are idealized, the real latent factors do not
necessarily reveal these semantic concepts so clearly.
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Matrix Completion

We just saw that PCA gives the optimal low-rank matrix
factorization.

Two ways to generalize this:
▶ 1) Consider when X is only partially observed.

▶ A sparse 1000 × 1000 matrix with 50,000 observations (only 5%
observed).

▶ A rank 5 approximation requires only 10,000 parameters, so it’s
reasonable to fit this.

▶ Unfortunately, no closed form solution.

▶ 2) Impose structure on the factors. We can get lots of interesting
models this way.
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The Netflix problem

Movie recommendation: Users watch movies and rate them as good or
bad.

User Movie Rating

Thor ⭑⭐⭐⭐⭐
Chained ⭑⭑⭐⭐⭐
Frozen ⭑⭑⭑⭐⭐
Chained ⭑⭑⭑⭑⭐
Bambi ⭑⭑⭑⭑⭑
Titanic ⭑⭑⭑⭐⭐
Goodfellas ⭑⭑⭑⭑⭑
Dumbo ⭑⭑⭑⭑⭑
Twilight ⭑⭑⭐⭐⭐
Frozen ⭑⭑⭑⭑⭑
Tangled ⭑⭐⭐⭐⭐

Because users only rate a few items, one would like to infer their
preference for unrated items
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Matrix completion problem

Matrix completion problem: Transform the table into a N users by M movies
matrix R

Cha
in

ed

Fr
oz

en

Bam
bi

Ti
ta

ni
c

Goo
df

el
la
s

Dum
bo

Tw
ili
gh

t
Th

or

Ta
ng

le
d

Ninja

Cat

Angel

Nursey

Tongey

Neutral

2 3 ? ? ? ? ? 1 ?

4 ? 5 ? ? ? ? ? ?

? ? ? 3 5 5 ? ? ?

? ? ? ? ? ? 2 ? ?

? 5 ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? 1

Rating matrix 

Data: Users rate some movies.
Ruser,movie. Very sparse

Task: Finding missing data, e.g.
for recommending new movies
to users. Fill in the question
marks

Algorithms: Alternating Least
Square method, Gradient
Descent, Non-negative Matrix
Factorization, low rank matrix
Completion, etc.
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Latent factor models

In our current setting, latent factor models attempt to explain the
ratings by characterizing both movies and users on a number of
factors K inferred from the ratings patterns.

That is, we seek representations for movies and users as vectors in
RK

that can ultimately be translated to ratings.

For simplicity, we can associate these factors (i.e. the dimensions
of the vectors) with idealized concepts like

▶ comedy
▶ drama
▶ action
▶ But also uninterpretable dimensions

Can we use the sparse ratings matrix R to find these latent factors
automatically?
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Alternating least squares

Let the representation of user n in the K-dimensional space be un and
the representation of movie m be zm

Assume the rating user n gives to movie m is given by a dot product:
Rnm ≈ u

T
nzm

In matrix form, if:

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

— u
⊤
1 —
⋮

— u
⊤
N —

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and Z

⊤
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣ ∣
z1 . . . zM
∣ ∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

then: R ≈ UZ
⊤

This is a matrix factorization problem!
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Approach: Matrix factorization methods
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Cost for Matrix Factorization for Recommender Systems

Recall PCA: To enforce X
⊤
≈ UZ

⊤
, we minimized

min
U,Z

∥X
⊤
−UZ

⊤∥2
F =∑

i,j

(xji − u
⊤
i zj)2

where ui and zi are the i-th rows of matrices U and Z,
respectively.

How do we enforce R ≈ UZ
⊤

▶ Try

min
U,Z

∑
i,j

(Rij − u
⊤
i zj)2

▶ Most entries of R are missing!
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Alternating least squares

Let O = {(n,m) ∶ entry (n,m) of matrix R is observed}
Using the squared error loss, a matrix factorization corresponds to
solving

min
U,Z

1

2
∑

(n,m)∈O
(Rnm − u

⊤
nzm)2

The objective is non-convex in U and Z and in fact it’s generally
NP-hard to minimize the above cost function.

As a function of either U or Z individually, the problem is convex and
easy to optimize. We can use coordinate descent, just like with K-means
and mixture models!

Alternating Least Squares (ALS): fix Z and optimize U, followed by fix
U and optimize Z, and so on until convergence.

Intro ML (UofT) CSC311-Lec10 25 / 40



Alternating least squares

ALS for Matrix Completion algorithm

1. Initialize U and Z randomly

2. repeat until convergence

3. for n = 1, .., N do

4. un = (∑m∶(n,m)∈O zmz
⊤
m)−1 ∑m∶(n,m)∈O Rnmzm

5. for m = 1, ..,M do

6. zm = (∑n∶(n,m)∈O unu
⊤
n )

−1 ∑n∶(n,m)∈O Rnmun
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Gradient descent method

We can also do full gradient descent for matrix completion.

Minimize f(U,Z) with GD. Both U,Z are variables. Gradient descent
step:

[U
Z
]← [U

Z
] − α▽ f(U,Z) (1)

Computation of the gradient term per iteration is expensive if all the
index pairs in the ratings matrix are considered and R is large (e.g.
Netflix).

Intro ML (UofT) CSC311-Lec10 27 / 40



Stochastic gradient descent method

Stochastic gradient descent for matrix completion (recall SGD from lecture

8). Attempt to minimize f(U,Z) = 1
2
∑(n,m)∈O (Rnm − u

⊤
nzm)2. For a

randomly chosen observed pair (n,m) in R, the SGD update:

[un

zm
]← [un

zm
] − α [(Rnm − u

⊤
nzm) zm

(Rnm − u
⊤
nzm)un

] (2)

Algorithm:

1. Initialize U and Z

2. repeat until “convergence”

3. Randomly select a pair (n,m) ∈ O among observed elements of R

4. un ← un − α (Rnm − u
⊤
nzm) zm

5. zm ← zm − α (Rnm − u
⊤
nzm)un
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K-Means

It’s possible to view K-means as a matrix factorization.

Stack 1-of-K vectors ri for assignments into a N ×K matrix R,
and stack the cluster centers mk into a matrix K ×D matrix M.

“Reconstruction” of the data (replace each point with its cluster
center) is given by RM.

K-means distortion function in matrix form:

N

∑
n=1

K

∑
k=1

r
(n)
k ∣∣mk − x

(n)∣∣2 = ∥X −RM∥2
F
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K-Means

Can sort by cluster for visualization:
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Co-clustering

We can take this a step further.

Idea: feature dimensions can be redundant, and some feature
dimensions cluster together.

Co-clustering clusters both the rows and columns of a data matrix,
giving a block structure.

We can represent this as the indicator matrix for rows, times the
matrix of means for each block, times the indicator matrix for
columns
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Sparse Coding

Efficient coding hypothesis: the structure of our visual system is
adapted to represent the visual world in an efficient way

▶ E.g., be able to represent sensory signals with only a small fraction
of neurons having to fire (e.g. to save energy)

Olshausen and Field fit a sparse coding model to natural images to
try to determine what’s the most efficient representation.

They didn’t encode anything specific about the brain into their
model, but the learned representations bore a striking resemblance
to the representations in the primary visual cortex
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Sparse Coding

This algorithm works on small (e.g. 20 × 20) image patches, which
we reshape into vectors (i.e. ignore the spatial structure)

Suppose we have a dictionary of basis functions {ak}Kk=1 which can
be combined to model each patch

Each patch is approximated as a linear combination of a small
number of basis functions:

x =
K

∑
k=1

skak = As

This is an overcomplete representation, in that typically K > D
for sparse coding problems (e.g. more basis functions than pixels)

The requirement that s is sparse makes things interesting
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Sparse Coding

x ≈
K

∑
k=1

skak = As

Since we use only a few basis functions, s is a sparse vector.
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Sparse Coding

We’d like choose s to accurately reconstruct the image, x ≈ As
but encourage sparsity in s.

What cost function should we use?

Inference in the sparse coding model:

min
s

∥x −As∥2
+ β∥s∥1

Here, β is a hyperparameter that trades off reconstruction error
vs. sparsity.

There are efficient algorithms for minimizing this cost function
(beyond the scope of this class)
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Sparse Coding: Learning the Dictionary

We can learn a dictionary by optimizing both A and {si}Ni=1 to
trade off reconstruction error and sparsity

min
{si},A

N

∑
i=1

∥x
(i)
−Asi∥2

+ β∥si∥1

subject to ∥ak∥2
≤ 1 for all k

Why is the normalization constraint on ak needed?

Reconstruction term can be written in matrix form as
∥X −AS∥2

F , where S combines the si as columns

Can fit using an alternating minimization scheme over A and S,
just like K-means, EM, low-rank matrix completion, etc.
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Sparse Coding: Learning the Dictionary

Basis functions learned from natural images:
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Sparse Coding: Learning the Dictionary

The sparse components are oriented edges, similar to what a
neural networks learn

But the learned dictionary is much more diverse than the
first-layer neural net representations: tiles the space of location,
frequency, and orientation in an efficient way
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Sparse Coding

Applying sparse coding to speech signals:

(Grosse et al., 2007, “Shift-invariant sparse coding for audio classification”)
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Summary

PCA can be viewed as fitting the optimal low-rank approximation
to a data matrix.

Matrix completion is the setting where the data matrix is only
partially observed

▶ Solve using ALS, an alternating procedure analogous to EM

PCA, K-means, co-clustering, sparse coding, and lots of other
interesting models can be viewed as matrix factorizations, with
different kinds of structure imposed on the factors.
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