# Linear Algebra 

Lecture slides for Chapter 2 of Deep Learning Ian Goodfellow 2016-06-24

## About this chapter

- Not a comprehensive survey of all of linear algebra
- Focused on the subset most relevant to deep learning
- Larger subset: e.g., Linear Algebra by Georgi Shilov


## Scalars

- A scalar is a single number
- Integers, real numbers, rational numbers, etc.
- We denote it with italic font:

$$
a, n, x
$$

## Vectors

- A vector is a 1-D array of numbers:

$$
\boldsymbol{x}=\left[\begin{array}{c}
x_{1}  \tag{2.1}\\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

- Can be real, binary, integer, etc.
- Example notation for type and size:
$\mathbb{R}^{n}$


## Matrices

- A matrix is a 2-D array of numbers:

- Example notation for type and shape:

$$
\boldsymbol{A} \in \mathbb{R}^{m \times n}
$$

## Tensors

- A tensor is an array of numbers, that may have
- zero dimensions, and be a scalar
- one dimension, and be a vector
- two dimensions, and be a matrix
- or more dimensions.


## Matrix Transpose

$$
\begin{equation*}
\left(\boldsymbol{A}^{\top}\right)_{i, j}=A_{j, i} . \tag{2.3}
\end{equation*}
$$



Figure 2.1: The transpose of the matrix can be thought of as a mirror image across the main diagonal.

$$
\begin{equation*}
(\boldsymbol{A B})^{\top}=\boldsymbol{B}^{\top} \boldsymbol{A}^{\top} . \tag{2.9}
\end{equation*}
$$

## Matrix (Dot) Product

$$
\begin{align*}
\boldsymbol{C} & =\boldsymbol{A} \boldsymbol{B} .  \tag{2.4}\\
C_{i, j} & =\sum_{k} A_{i, k} B_{k, j} . \tag{2.5}
\end{align*}
$$



## Identity Matrix

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Figure 2.2: Example identity matrix: This is $\boldsymbol{I}_{3}$.
$\forall \boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{I}_{n} \boldsymbol{x}=\boldsymbol{x}$.

# Systems of Equations <br> $$
\begin{equation*} A \boldsymbol{x}=\boldsymbol{b} \tag{2.11} \end{equation*}
$$ 

expands to

$$
\begin{gather*}
\boldsymbol{A}_{1,:} \boldsymbol{x}=b_{1}  \tag{2.12}\\
\boldsymbol{A}_{2,:} \boldsymbol{x}=b_{2}  \tag{2.13}\\
\ldots  \tag{2.14}\\
\boldsymbol{A}_{m,:} \boldsymbol{x}=b_{m} \tag{2.15}
\end{gather*}
$$

## Solving Systems of Equations

- A linear system of equations can have:
- No solution
- Many solutions
- Exactly one solution: this means multiplication by the matrix is an invertible function


## Matrix Inversion

- Matrix inyerse:

$$
\begin{equation*}
\boldsymbol{A}^{-1} \boldsymbol{A}=\boldsymbol{I}_{n} . \tag{2.21}
\end{equation*}
$$

- Solving a system using an inverse:

$$
\begin{gather*}
\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}  \tag{2.22}\\
\boldsymbol{A}^{-1} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{-1} \boldsymbol{b}  \tag{2.23}\\
\boldsymbol{I}_{n} \boldsymbol{x}=\boldsymbol{A}^{-1} \boldsymbol{b} \tag{2.24}
\end{gather*}
$$

- Numerically unstable, but useful for abstract analysis


## Invertibility

- Matrix can't be inverted if...
- More rows than columns
- More columns than rows
- Redundant rows/columns ("linearly dependent", "low rank")


## Norms

- Functions that measure how "large" a vector is
- Similar to a distance between zero and the point represented by the vector
- $f(\boldsymbol{x})=0 \Rightarrow \boldsymbol{x}=\mathbf{0}$
- $f(\boldsymbol{x}+\boldsymbol{y}) \leq f(\boldsymbol{x})+f(\boldsymbol{y})$ (the triangle inequality)
- $\forall \alpha \in \mathbb{R}, f(\alpha \boldsymbol{x})=|\alpha| f(\boldsymbol{x})$


## Norms

- Lp norm

$$
\|\boldsymbol{x}\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

- Most popular norm: L2 norm, p=2
- L1 norm, $p=1:\|x\|_{1}=\sum_{i}\left|x_{i}\right|$.
- Max norm, infinite $p:\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$.


## Special Matrices and Vectors

- Unit vector:

$$
\begin{equation*}
\|x\|_{2}=1 \tag{2.36}
\end{equation*}
$$

- Symmetric Matrix:

$$
\begin{equation*}
\boldsymbol{A}=\boldsymbol{A}^{\top} . \tag{2.35}
\end{equation*}
$$

- Orthogonal matrix:

$$
\begin{align*}
& \boldsymbol{A}^{\top} \boldsymbol{A}=\boldsymbol{A} \boldsymbol{A}^{\top}=\boldsymbol{I} .  \tag{2.37}\\
& \boldsymbol{A}^{-1}=\boldsymbol{A}^{\top}
\end{align*}
$$

## Trace

$$
\begin{equation*}
\operatorname{Tr}(\boldsymbol{A})=\sum_{i} \boldsymbol{A}_{i, i} . \tag{2.48}
\end{equation*}
$$

$\operatorname{Tr}(\boldsymbol{A B C})=\operatorname{Tr}(\boldsymbol{C A B})=\operatorname{Tr}(\boldsymbol{B C A})$
(2.51)

## Learning linear algebra

- Do a lot of practice problems
- Start out with lots of summation signs and indexing into individual entries
- Eventually you will be able to mostly use matrix and vector product notation quickly and easily


# Linear Algebra - Part II Projection, Eigendecomposition, SVD 

Punit Shah

(Adapted from Sargur Srihari's slides)

## Brief Review from Part 1

- Symmetric Matrix:

$$
\mathbf{A}=\mathbf{A}^{T}
$$

- Orthogonal Matrix:

$$
\mathbf{A}^{T} \mathbf{A}=\mathbf{A} \mathbf{A}^{T}=\mathbf{I} \quad \text { and } \quad \mathbf{A}^{-1}=\mathbf{A}^{T}
$$

- L2 Norm:

$$
\|\mathbf{x}\|_{2}=\sqrt{\sum_{i} x_{i}^{2}}
$$

## Angle Between Vectors

- Dot product of two vectors can be written in terms of their L2 norms and the angle $\theta$ between them.

$$
\mathbf{a}^{T} \mathbf{b}=\|\mathbf{a}\|_{2}\|\mathbf{b}\|_{2} \cos (\theta)
$$



## Cosine Similarity

- Cosine between two vectors is a measure of their similarity:

$$
\cos (\theta)=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|\|\mathbf{b}\|}
$$

- Orthogonal Vectors: Two vectors $\mathbf{a}$ and $\mathbf{b}$ are orthogonal to each other if $\mathbf{a} \cdot \mathbf{b}=0$.


## Vector Projection

- Given two vectors $\mathbf{a}$ and $\mathbf{b}$, let $\hat{\mathbf{b}}=\frac{\mathbf{b}}{\|\mathbf{b}\|}$ be the unit vector in the direction of $\mathbf{b}$.
- Then $\mathbf{a}_{1}=a_{1} \hat{\mathbf{b}}$ is the orthogonal projection of a onto a straight line parallel to $\mathbf{b}$, where

$$
a_{1}=\|\mathbf{a}\| \cos (\theta)=\mathbf{a} \cdot \hat{\mathbf{b}}=\mathbf{a} \cdot \frac{\mathbf{b}}{\|\mathbf{b}\|}
$$



Image taken from wikipedia.

## Diagonal Matrix

- Diagonal matrix has mostly zeros with non-zero entries only in the diagonal, e.g. identity matrix.
- A square diagonal matrix with diagonal elements given by entries of vector $\mathbf{v}$ is denoted:

$$
\operatorname{diag}(\mathbf{v})
$$

- Multiplying vector x by a diagonal matrix is efficient:

$$
\operatorname{diag}(\mathbf{v}) \mathbf{x}=\mathbf{v} \odot \mathbf{x}
$$

- Inverting a square diagonal matrix is efficient:

$$
\operatorname{diag}(\mathbf{v})^{-1}=\operatorname{diag}\left(\left[\frac{1}{v_{1}}, \ldots, \frac{1}{v_{n}}\right]^{T}\right)
$$

## Zero Determinant

If $\operatorname{det}(\mathbf{A})=0$, then:

- $A$ is linearly dependent.
- $\mathbf{A x}=\mathbf{b}$ has no solution or infinitely many solutions.
- $A x=0$ has a non-zero solution.


## Matrix Decomposition

- We can decompose an integer into its prime factors, e.g. $12=2 \times 2 \times 3$.
- Similarly, matrices can be decomposed into factors to learn universal properties:

$$
\mathbf{A}=\mathbf{V} \operatorname{diag}(\boldsymbol{\lambda}) \mathbf{V}^{-1}
$$

## Eigenvectors

- An eigenvector of a square matrix $\mathbf{A}$ is a nonzero vector $\mathbf{v}$ such that multiplication by $\mathbf{A}$ only changes the scale of $\mathbf{v}$.

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{v}
$$

- The scalar $\lambda$ is known as the eigenvalue.
- If $\mathbf{v}$ is an eigenvector of $\mathbf{A}$, so is any rescaled vector $s \mathbf{v}$. Moreover, sv still has the same eigenvalue. Thus, we constrain the eigenvector to be of unit length:

$$
\|\mathbf{v}\|=1
$$

