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Neural Networks 



High-Level Overview 

• A Neural Network is (generally) comprised of: 
– Neurons which pass input values through 

functions and output the result 
– Weights which carry values between neurons 

• We group neurons into layers. There are 3 
main types of layers: 
– Input Layer 
– Hidden Layer(s) 
– Output Layer 



High-Level Overview 

 



Neuron Breakdown 
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Activation Functions 

Most popular recently 
for deep learning 



Representation Power 
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What does this mean? 

• Neural Networks are POWERFUL, it’s exactly 
why with recent computing power there was a 
renewed interest in them. 

    BUT 
• “With great power comes great overfitting.” 

– Boris Ivanovic, 2016 
 

• Last slide, “20 hidden neurons” is an example. 



How to mitigate this? 

• Stay Tuned! 
 

 
• First, how do we even use or train neural 

networks? 



Training Neural Networks (Key Idea) 

(Regression) 

(Classification) 



Training Compared to Other Models 

• Training Neural Networks is a NON-CONVEX 
OPTIMIZATION PROBLEM. 

• This means we can run into many local optima 
during training. 

 

Weight 



Training Neural Networks 
(Implementation) 

 
 

• We need to first perform a forward pass 
• Then, we update weights with a backward 

pass 



Forward Pass (AKA “Inference”) 



Backward Pass (AKA “Backprop.”) 



Learning Weights during Backprop 

• Do exactly what we’ve been doing! 
• Take the derivative of the error/cost/loss 

function w.r.t. the weights and minimize via 
gradient descent! 

 



Useful Derivatives 



Gradient Descent With 
Momentum



Basic Idea
• Compute an exponentially weighted average of your gradients, 

and then use that gradient to update your weights

• Almost always works faster than the standard gradient descent



Gradient Decent

• Gradient descents takes a lot of steps. Slowly oscillate toward 
the minimum

• Oscillation slows down gradient descent and prevents you from 
using a much larger learning rate

• What if:

• On the vertical axis a bit slower learning

• On the horizontal axis a bit faster learning



Implementation details

• Extra hyper parameter , most common value for Beta is 0.9 
(average last ten iteration's gradients)

Momentum Gradient Decent
On iteration t:

compute 
∂E
∂wt

Wt+ 1 = Wt − η
∂E
∂wt

On iteration t:

compute 
∂E
∂wt

Vwt = βVwt + (1 − β) ∂E
∂wt

Wt+ 1 = Wt − ηVWt

β



Momentum

• Smooth out the steps of gradient descent:

• Vertical direction: average out positive and negative 
numbers, so the average will be close to zero

• Horizontal direction: all the derivatives are pointing to the 
right of the horizontal direction, the average will still be 
pretty big



Overfitting 

• The	training	data	contains	information	about	the	regularities	
in	the	mapping	from	input	to	output.	But	it	also	contains	noise	
– The	target	values	may	be	unreliable.	
– There	is	sampling	error.	There	will	be	accidental	
regularities	just	because	of	the	particular	training	cases	
that	were	chosen	

• When	we	fit	the	model,	it	cannot	tell	which	regularities	are	
real	and	which	are	caused	by	sampling	error.		
– So	it	fits	both	kinds	of	regularity.	
– If	the	model	is	very	flexible	it	can	model	the	sampling	error	
really	well.	This	is	a	disaster.
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Overfitting

Picture credit: Chris Bishop. Pattern Recognition and Machine Learning. Ch.1.1.



Preventing Overfitting 



Limiting the Size of the Weights 



The Effects of Weight-Decay 



Early Stopping 



Why Early Stopping Works 



Questions 


