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Neural Networks



High-Level Overview

* A Neural Network is (generally) comprised of:

— Neurons which pass input values through
functions and output the result

— Weights which carry values between neurons
 We group neurons into layers. There are 3

main types of layers:

— Input Layer

— Hidden Layer(s)

— Output Layer



High-Level Overview
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Figure: A 3-layer neural net with 3 input units, 4 hidden units in the first and second
hidden layer and 1 output unit

@ Naming conventions; a N-layer neural network:

» N — 1 layers of hidden units
» One output layer

[http://cs231n.github.io/neural-networks-1/]



Neuron Breakdown
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Figure: A mathematical model of the neuron in a neural network

[Pic credit: http://cs231n.github.io/neural-networks-1/]



Activation Functions

Most commonly used activation functions:

@ Sigmoid: o(z) = 1+ex;1>(—z)

o Tanh: tanh(z) = S2E)-ewl-2

@ RelLU (Rectified Linear Unit): ReLU(z) = max(0, z)

Most popular recently
for deep learning

Sigmoid: Kz) = 1/(1+exp(-2)) Tanh: (z) = [exp(z)-exp(-2)] { [exp(z)+exp(-2)] ) | RelU: f(z)=max(0, z)
T 1= T (> v v v
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Representation Power

With nonlinear activation functions

@ Neural network with at least one hidden Muniversal approximator
(can represent any function).
Proof in: Approximation by Superpositions of Sigmoidal Function, Cybenko, paper

3 hidden neurons 6 hidden neurons 20 hidden neurons

@ The capacity of the network increases with more hidden units and more
hidden layers


Ehsan
With nonlinear activation functions
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What does this mean?

Neural Networks are POWERFUL, it’s exactly
why with recent computing power there was a
renewed interest in them.

BUT

“With great power comes great overfitting.”
— Boris Ivanovic, 2016

Last slide, “20 hidden neurons” is an example.



How to mitigate this?

e Stay Tuned!

* First, how do we even use or train neural
networks?



Training Neural Networks (Key Idea)

@ Find weights:

N
w* = argmin Z loss(o(™, t(M)

n=1

where o = f(x;w) is the output of a neural network

@ Define a loss function, eg:

» Squared loss: >, %(o,((") — tk"))2 (Regression)
> Cross-entropy loss: — ", t” log 0\”) (classification)
@ Gradient descent: -
t+1 t
witt =wl —p——
L owt

where 7 is the learning rate (and E is error/loss)



Training Compared to Other Models

* Training Neural Networks is a NON-CONVEX
OPTIMIZATION PROBLEM.

* This means we can run into many local optima
during training.
TError
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Local minima
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Training Neural Networks
(Implementation)

 We need to first perform a forward pass

* Then, we update weights with a backward
pass



Forward Pass (AKA “Inference”)

input layer
hidden layer

@ Output of the network can be written as:

D
hi(x) = f(\/j0+ZXiVji)
i=1

J
ok(x) = g(WkO+Zhj(x)ka)

(j indexing hidden units, k indexing the output units, D number of inputs)
@ Activation functions f, g: sigmoid/logistic, tanh, or rectified linear (ReLU)

1 exp(z) — exp(—2)

1+ exp(—z)’ tanh(z) = exp(2) + exp(—z)’ ReLU(z) = max(0, z)

o(z) =



Backward Pass (AKA “Backprop.”)

@ Compute error derivatives in each hidden layer from error derivatives in layer
above. [assign blame for error at k to each unit j according to its influence
on k (depends on wyj;)]
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@ Use error derivatives w.r.t. activities to get error derivatives w.r.t. the
weights.



Learning Weights during Backprop

* Do exactly what we’ve been doing!

e Take the derivative of the error/cost/loss
function w.r.t. the weights and minimize via
gradient descent!

Gradient descent: ‘
t+1 _ t dE

W — W' —7
}(‘)wt

where 7 is the learning rate (and E is error/loss)




Useful Derivatives

name function derivative
Sigmoid o(z) = 1+exp( ) o(z)-(1—0(2))
Tanh tanh(z) = SRS 1/ cosh?(z)
ReLU ReLU(z) = max(0, 2) {1’ tz>0

0, ifz<0



Gradient Descent With

Momentum



Basic Idea

Compute an exponentially weighted average of your gradients,
and then use that gradient to update your weights

Almost always works faster than the standard gradient descent




Gradient Decent

o Gradient descents takes a lot of steps. Slowly oscillate toward
the minimum

e QOscillation slows down gradient descent and prevents you from
using a much larger learning rate

e What if:
e On the vertical axis a bit slower learning

e On the horizontal axis a bit faster learning




Implementation details

Momentum Gradient Decent
On iteration t;: On iteration t;:
oF oF
compute — compute —
ow! ow!
V= PVt (1= )t
wt — wt aWt Wl‘+1 _ Wt _ ;/] OE
Wt+1 — W — 77VWt ow?

e Extra hyper parameter £, most common value for Beta is 0.9
(average last ten iteration's gradients)



Momentum

e Smooth out the steps of gradient descent:

e Vertical direction: average out positive and negative
numbers, so the average will be close to zero

e Horizontal direction: all the derivatives are pointing to the
right of the horizontal direction, the average will still be
pretty big

=



Overfitting

e The training data contains information about the regularities
in the mapping from input to output. But it also contains noise

— The target values may be unreliable.

— There is sampling error. There will be accidental
regularities just because of the particular training cases
that were chosen

« When we fit the model, it cannot tell which regularities are
real and which are caused by sampling error.

— So it fits both kinds of regularity.

- If the model is very flexible it can model the sampling error
really well. This is a disaster.
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Overfitting
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Picture credit: Chris Bishop. Pattern Recognition and Machine Learning. Ch.1.1.




Preventing Overfitting

Standard ways to limit the capacity of a neural net:
— Limit the number of hidden units.
— Limit the size of the weights.
- Stop the learning before it has time to overfit.



Limiting the Size of the Weights

Weight-decay involves adding

an extra term to the cost C=E+7 E W
function that penalizes the
squared weights. aC oE
- Keeps weights small PR ;\,W
ow; aw-

unless they have big
error derivatives.
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The Effects of Weight-Decay

e [tprevents the network from using weights that it does not
need

- This can often improve generalization a lot.
— It helps to stop it from fitting the sampling error.

- It makes a smoother model in which the output changes
more slowly as the input changes.

e But, if the network has two very similar inputs it prefers to

put half the weight on each rather than all the weight on
one > other form of weight decay?

O O
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Early Stopping

e [fwe have lots of data and a big model, its very
expensive to keep re-training it with different
amounts of weight decay

e [tis much cheaper to start with very small weights
and let them grow until the performance on the
validation set starts getting worse

e The capacity of the model is limited because the
weights have not had time to grow big.



Why Early Stopping Works

e When the weights are very
small, every hidden unit is in

its linear range. outputs

- So a net with a large layer
of hidden units is linear.

:>Q
O

— It has no more capacity

than a linear net in which O O O O Q Q

the inputs are directly
connected to the outputs!

O =

e As the weights grow, the O
hidden units start using their inputs
non-linear ranges so the
capacity grows.



Questions



