CSC311 Tutorial #5 Neural Networks

Fall 2019 Ehsan Mehralian*

University of Toronto

*Based on the lectures given by Professor Sanja Fidler, Andrew Ng and the prev. tutorials by Yujia Li and Boris Ivanovic.

Outline

- Neural Networks Intro.
- Backpropagation
- Momentom
- Preventing Overfitting
- Questions

Neural Networks

High-Level Overview

- A Neural Network is (generally) comprised of:
 - Neurons which pass input values through functions and output the result
 - Weights which carry values between neurons
- We group neurons into **layers**. There are 3 main types of layers:
 - Input Layer
 - Hidden Layer(s)
 - Output Layer

High-Level Overview

Figure: A 3-layer neural net with 3 input units, 4 hidden units in the first and second hidden layer and 1 output unit

- Naming conventions; a N-layer neural network:
 - N-1 layers of hidden units
 - One output layer

[http://cs231n.github.io/neural-networks-1/]

Neuron Breakdown

Figure: A mathematical model of the neuron in a neural network

[Pic credit: http://cs231n.github.io/neural-networks-1/]

Activation Functions

Most commonly used activation functions:

- Sigmoid: $\sigma(z) = \frac{1}{1 + \exp(-z)}$
- Tanh: $tanh(z) = \frac{exp(z) exp(-z)}{exp(z) + exp(-z)}$
- ReLU (Rectified Linear Unit): $\operatorname{ReLU}(z) = \max(0, z)$

Most popular recently for deep learning

Representation Power

With nonlinear activation functions

 Neural network with at least one hidden layer is a universal approximator (can represent any function).

Proof in: Approximation by Superpositions of Sigmoidal Function, Cybenko, paper

 The capacity of the network increases with more hidden units and more hidden layers

What does this mean?

 Neural Networks are POWERFUL, it's exactly why with recent computing power there was a renewed interest in them.

BUT

"With great power comes great overfitting." — Boris Ivanovic, 2016

• Last slide, "20 hidden neurons" is an example.

How to mitigate this?

• Stay Tuned!

• First, how do we even use or train neural networks?

Training Neural Networks (Key Idea)

• Find weights:

$$\mathbf{w}^* = \operatorname*{argmin}_{\mathbf{w}} \sum_{n=1}^N \operatorname{loss}(\mathbf{o}^{(n)}, \mathbf{t}^{(n)})$$

where $\mathbf{o} = f(\mathbf{x}; \mathbf{w})$ is the output of a neural network

- Define a loss function, eg:
 - Squared loss: $\sum_{k} \frac{1}{2} (o_k^{(n)} t_k^{(n)})^2$ (Regression)
 - Cross-entropy loss: $-\sum_k t_k^{(n)} \log o_k^{(n)}$

(Classification)

• Gradient descent:

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \frac{\partial E}{\partial \mathbf{w}^t}$$

where η is the learning rate (and E is error/loss)

Training Compared to Other Models

- Training Neural Networks is a **NON-CONVEX OPTIMIZATION PROBLEM**.
- This means we can run into many local optima during training.

Training Neural Networks (Implementation)

- We need to first perform a **forward pass**
- Then, we update weights with a backward pass

Forward Pass (AKA "Inference")

Output of the network can be written as:

$$egin{array}{rll} h_{j}({f x}) &=& f(v_{j0}+\sum_{i=1}^{D}x_{i}v_{ji}) \ o_{k}({f x}) &=& g(w_{k0}+\sum_{j=1}^{J}h_{j}({f x})w_{kj}) \end{array}$$

(j indexing hidden units, k indexing the output units, D number of inputs)

• Activation functions f, g: sigmoid/logistic, tanh, or rectified linear (ReLU)

$$\sigma(z) = \frac{1}{1 + \exp(-z)}, \quad \tanh(z) = \frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)}, \quad \operatorname{ReLU}(z) = \max(0, z)$$

Backward Pass (AKA "Backprop.")

 Compute error derivatives in each hidden layer from error derivatives in layer above. [assign blame for error at k to each unit j according to its influence on k (depends on w_{kj})]

 Use error derivatives w.r.t. activities to get error derivatives w.r.t. the weights.

Learning Weights during Backprop

- Do exactly what we've been doing!
- Take the derivative of the error/cost/loss function w.r.t. the weights and minimize via gradient descent!

Gradient descent:

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \frac{\partial E}{\partial \mathbf{w}^t}$$

where η is the learning rate (and E is error/loss)

Useful Derivatives

name	function	derivative
Sigmoid	$\sigma(z) = rac{1}{1 + \exp(-z)}$	$\sigma(z) \cdot (1 - \sigma(z))$
Tanh	$ anh(z) = \frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)}$	$1/\cosh^2(z)$
ReLU	$\operatorname{ReLU}(z) = \max(0, z)$	$egin{cases} 1, & ext{if } z > 0 \ 0, & ext{if } z \leq 0 \end{cases}$

Gradient Descent With Momentum

Basic Idea

- Compute an exponentially weighted average of your gradients, and then use that gradient to update your weights
- Almost always works faster than the standard gradient descent

Gradient Decent

- Gradient descents takes a lot of steps. Slowly oscillate toward the minimum
- Oscillation slows down gradient descent and prevents you from using a much larger learning rate
- What if:
 - On the vertical axis a bit slower learning
 - On the horizontal axis a bit faster learning

Implementation details

MomentumGradient DecentOn iteration t:On iteration t:compute $\frac{\partial E}{\partial w^t}$ $compute \frac{\partial E}{\partial w^t}$ $V_{w^t} = \beta V_{w^t} + (1 - \beta) \frac{\partial E}{\partial w^t}$ $W^{t+1} = W^t - \eta \frac{\partial E}{\partial w^t}$ $W^{t+1} = W^t - \eta V_{W^t}$

Extra hyper parameter β, most common value for Beta is 0.9 (average last ten iteration's gradients)

Momentum

- Smooth out the steps of gradient descent:
 - Vertical direction: average out positive and negative numbers, so the average will be close to zero
 - Horizontal direction: all the derivatives are pointing to the right of the horizontal direction, the average will still be pretty big

Overfitting

- The training data contains information about the regularities in the mapping from input to output. But it also contains noise
 - The target values may be unreliable.
 - There is sampling error. There will be accidental regularities just because of the particular training cases that were chosen
- When we fit the model, it cannot tell which regularities are real and which are caused by sampling error.
 - So it fits both kinds of regularity.
 - If the model is very flexible it can model the sampling error really well. This is a disaster.

Overfitting

Picture credit: Chris Bishop. Pattern Recognition and Machine Learning. Ch.1.1.

Preventing Overfitting

Standard ways to limit the capacity of a neural net:

- Limit the number of hidden units.
- Limit the size of the weights.
- Stop the learning before it has time to overfit.

Limiting the Size of the Weights

- Weight-decay involves adding an extra term to the cost function that penalizes the squared weights.
 - Keeps weights small unless they have big error derivatives.

when
$$\frac{\partial C}{\partial w_i} = 0$$
, $w_i = -\frac{1}{\lambda} \frac{\partial E}{\partial w_i}$

The Effects of Weight-Decay

- It prevents the network from using weights that it does not need
 - This can often improve generalization a lot.
 - It helps to stop it from fitting the sampling error.
 - It makes a smoother model in which the output changes more slowly as the input changes.
- But, if the network has two very similar inputs it prefers to put half the weight on each rather than all the weight on one → other form of weight decay?

Early Stopping

- If we have lots of data and a big model, its very expensive to keep re-training it with different amounts of weight decay
- It is much cheaper to start with very small weights and let them grow until the performance on the validation set starts getting worse
- The capacity of the model is limited because the weights have not had time to grow big.

Why Early Stopping Works

- When the weights are very small, every hidden unit is in its linear range.
 - So a net with a large layer of hidden units is linear.
 - It has no more capacity than a linear net in which the inputs are directly connected to the outputs!
- As the weights grow, the hidden units start using their non-linear ranges so the capacity grows.

Questions