
CSC311 Tutorial #5

Neural Networks

Fall 2019
Ehsan Mehralian*

University of Toronto

 *Based on the lectures given by Professor Sanja Fidler, Andrew Ng and the prev. tutorials by Yujia Li and Boris Ivanovic.

Outline
• Neural Networks Intro.

• Backpropagation

• Momentom

• Preventing Overfitting

• Questions

Neural Networks

High-Level Overview

• A Neural Network is (generally) comprised of:
– Neurons which pass input values through

functions and output the result
– Weights which carry values between neurons

• We group neurons into layers. There are 3
main types of layers:
– Input Layer
– Hidden Layer(s)
– Output Layer

High-Level Overview

Neuron Breakdown

b

Activation Functions

Most popular recently
for deep learning

Representation Power

Ehsan
With nonlinear activation functions

Ehsan

Ehsan

What does this mean?

• Neural Networks are POWERFUL, it’s exactly
why with recent computing power there was a
renewed interest in them.

 BUT
• “With great power comes great overfitting.”

– Boris Ivanovic, 2016

• Last slide, “20 hidden neurons” is an example.

How to mitigate this?

• Stay Tuned!

• First, how do we even use or train neural

networks?

Training Neural Networks (Key Idea)

(Regression)

(Classification)

Training Compared to Other Models

• Training Neural Networks is a NON-CONVEX
OPTIMIZATION PROBLEM.

• This means we can run into many local optima
during training.

Weight

Training Neural Networks
(Implementation)

• We need to first perform a forward pass
• Then, we update weights with a backward

pass

Forward Pass (AKA “Inference”)

Backward Pass (AKA “Backprop.”)

Learning Weights during Backprop

• Do exactly what we’ve been doing!
• Take the derivative of the error/cost/loss

function w.r.t. the weights and minimize via
gradient descent!

Useful Derivatives

Gradient Descent With
Momentum

Basic Idea
• Compute an exponentially weighted average of your gradients,

and then use that gradient to update your weights

• Almost always works faster than the standard gradient descent

Gradient Decent

• Gradient descents takes a lot of steps. Slowly oscillate toward
the minimum

• Oscillation slows down gradient descent and prevents you from
using a much larger learning rate

• What if:

• On the vertical axis a bit slower learning

• On the horizontal axis a bit faster learning

Implementation details

• Extra hyper parameter , most common value for Beta is 0.9
(average last ten iteration's gradients)

Momentum Gradient Decent
On iteration t:

compute
∂E
∂wt

Wt+ 1 = Wt − η
∂E
∂wt

On iteration t:

compute
∂E
∂wt

Vwt = βVwt + (1 − β) ∂E
∂wt

Wt+ 1 = Wt − ηVWt

β

Momentum

• Smooth out the steps of gradient descent:

• Vertical direction: average out positive and negative
numbers, so the average will be close to zero

• Horizontal direction: all the derivatives are pointing to the
right of the horizontal direction, the average will still be
pretty big

Overfitting

• The	training	data	contains	information	about	the	regularities	
in	the	mapping	from	input	to	output.	But	it	also	contains	noise	
– The	target	values	may	be	unreliable.	
– There	is	sampling	error.	There	will	be	accidental	
regularities	just	because	of	the	particular	training	cases	
that	were	chosen	

• When	we	fit	the	model,	it	cannot	tell	which	regularities	are	
real	and	which	are	caused	by	sampling	error.		
– So	it	fits	both	kinds	of	regularity.	
– If	the	model	is	very	flexible	it	can	model	the	sampling	error	
really	well.	This	is	a	disaster.

2

Ehsan

Overfitting

Picture credit: Chris Bishop. Pattern Recognition and Machine Learning. Ch.1.1.

Preventing Overfitting

Limiting the Size of the Weights

The Effects of Weight-Decay

Early Stopping

Why Early Stopping Works

Questions

