CSC311: Linear Algebra + Midterm Review

Anastasia Razdaibiedina October 10, 2019

Linear Algebra basics

Symmetric matrix: $A^{T}=A$
Diagonal matrix: all elements are 0 , except for diagonal elements. If diagonal elements are ones, matrix is called identity matrix.

Inverse matrix: $A A^{-1}=A^{-1} A=I$
L2 norm: $\|x\|_{2}=\sqrt{\sum_{i} x_{i}^{2}}$

Diagonal matrix

Symmetric matrix

Eigenvalues and eigenvectors

- What can happen to a vector if you multiply it by matrix?

$$
\vec{v}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad A \vec{v}=?
$$

- If A is identity matrix, then

$$
A \vec{v}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \vec{v}=\vec{v}
$$

- Let's plug in more matrices:

$$
\left[\begin{array}{cc}
1 & 2 \\
0 & 0.5
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
5 \\
1
\end{array}\right]\left[\begin{array}{ll}
1 & 0.5 \\
6 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right]
$$

When multiplied by a matrix, vector
A. can be stretched
B. can be rotated

Eigenvalues and eigenvectors

- Definition: vector \vec{v} is called eigenvector of matrix A and scalar λ is called eigenvalue of matrix A if

$$
A \vec{v}=\lambda \vec{v}
$$

- So matrix A only performs rescaling of the vector, but not rotation!
- Why is this important?
- From all unit eigenvectors of matrix A, consider the eigenvector that corresponds to the maximum eigenvalue.
- This eigenvector specifies the direction along which the action of matrix is maximal.
- No other vector when acted by matrix A will get stretched as much as this eigenvector.

- Shortly, we can get directions along which matrix has the biggest effect.

Eigendecomposition

- Let A be square $\mathrm{n} \times \mathrm{n}$ matrix with n linearly independent eigenvectors q_{i}
- Then we have a system of equations:

$$
\left\{\begin{array}{l}
A q_{1}=\lambda_{1} q_{1} \\
\cdots \\
A q_{n}=\lambda_{n} q_{n}
\end{array}\right.
$$

- In matrix form:

$$
\begin{gathered}
A\left[\begin{array}{ccc}
\mid & & \mid \\
q_{1} & \ldots & q_{n} \\
\mid & & \mid
\end{array}\right]=\left[\begin{array}{ccc}
\mid & & \mid \\
q_{1} & \ldots & q_{n} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right] \\
A Q=Q \Lambda
\end{gathered}
$$

eigendecomposition $\longrightarrow A=Q \Lambda Q^{-1}$

SVD

- SVD = singular value decomposition
- What if matrix A is not square? Then eigendecomposition cannot be applied.
- SVD is a matrix factorization technique that can be applied to non-square matrices:

$$
A=U \Sigma V^{T}
$$

Intuition behind SVD

- Intuition from physics: any force vector can be decomposed into its components along x and y axis.
- SVD is about decomposing vectors onto orthogonal axes.

Intuition behind SVD

- Any vector can be expressed in terms of:

1. projection direction unit vectors ($\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$)
2. the lengths of projections onto them $\left(s_{1}, s_{2}\right)$
$s_{1}=a^{T} v_{1} \quad s_{2}=a^{T} v_{2}$
$\left[\begin{array}{ll}a_{1} & a_{2}\end{array}\right]\left[\begin{array}{cc}\mid & \mid \\ v_{1} & v_{2} \\ \mid & \mid\end{array}\right]=\left[\begin{array}{ll}a^{T} v_{1} & a^{T} v_{2}\end{array}\right]=\left[\begin{array}{ll}s_{1} & s_{2}\end{array}\right]$
$a^{T}\left[\begin{array}{ll}v_{1} & v_{2}\end{array}\right]=\left[\begin{array}{ll}s_{1} & s_{2}\end{array}\right]$

Intuition behind SVD

- Case of more vectors:

$$
\left.\begin{array}{rl}
{\left[\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right]\left[\begin{array}{cc}
1 & \mid \\
v_{1} & v_{2} \\
1 & \mid
\end{array}\right]} & =\left[\begin{array}{ll}
a^{T} v_{1} & a^{T} v_{2} \\
b^{T} v_{1} & b^{T} v_{2}
\end{array}\right]
\end{array}\right]=\left[\begin{array}{ll}
s_{a 1} & s_{a 2} \\
s_{b 1} & s_{b 2}
\end{array}\right] .
$$

$$
A=S V^{-1}=S V^{T}
$$

- In original SVD we had: $A=U \Sigma V^{T}$
- We're just left to get $S=U \Sigma$

Intuition behind SVD

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right]\left[\begin{array}{cc}
\mid & \mid \\
v_{1} & v_{2} \\
\mid & \mid
\end{array}\right]=\left[\begin{array}{ll}
a^{T} v_{1} & a^{T} v_{2} \\
b^{T} v_{1} & b^{T} v_{2}
\end{array}\right]=\left[\begin{array}{ll}
s_{a 1} & s_{a 2} \\
s_{b 1} & s_{b 2}
\end{array}\right]} \\
& A V=S \\
& \text { - Look more closely at } \\
& \text { columns of S } \\
& \text { - It turns out that it's best to } \\
& \text { normalize column vectors of } \\
& \text { A column vector } \\
& \text { containing the lengths } \\
& \text { of projections of each } \\
& \text { point on the 1st axis } v 1 \\
& S= \\
& S \text { (make them of unit length). }
\end{aligned}
$$

- This is done by dividing each column vector by its magnitude.

Intuition behind SVD

How can we "divide" matrix to get normalized columns?
Numerical example: $M=\left[\begin{array}{ll}2 & 3 \\ 2 & 3\end{array}\right]$
If we just divide first column by 2 , then we surely have to multiply by another matrix to preserve the equality:

$$
M=\left[\begin{array}{ll}
1 & 3 \\
1 & 3
\end{array}\right]\left[\begin{array}{ll}
? & ? \\
? & ?
\end{array}\right]=\left[\begin{array}{ll}
2 & 3 \\
2 & 3
\end{array}\right]
$$

The unknown matrix is just the identity matrix with the first element replaced by the divisor 2:
$M=\left[\begin{array}{ll}1 & 3 \\ 1 & 3\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}2 & 3 \\ 2 & 3\end{array}\right]$
For the second column: $M=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]=\left[\begin{array}{ll}2 & 3 \\ 2 & 3\end{array}\right]$
General idea: divide columns of M by their magnitude and then multiply by a diagonal matrix of magnitudes. We can do the same to S matrix!

Intuition behind SVD

$$
S=\left(\begin{array}{ll}
s_{a 1} & s_{a 2} \\
s_{b 1} & s_{b 2}
\end{array}\right)
$$

Magnitude of 1st column $=\sigma_{1}=\sqrt{\left(s_{a 1}\right)^{2}+\left(s_{b 1}\right)^{2}}$
Magnitude of 2nd column $=\sigma_{2}=\sqrt{\left(s_{a 2}\right)^{2}+\left(s_{b 2}\right)^{2}}$

$$
S=\left(\begin{array}{cc}
\frac{s_{a 1}}{\sigma_{1}} & \frac{s_{a 2}}{\sigma_{2}} \\
\frac{s_{b 1}}{\sigma_{1}} & \frac{s_{b 2}}{\sigma_{2}}
\end{array}\right)\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right)=\left(\begin{array}{cc}
u_{a 1} & u_{a 2} \\
u_{b 1} & u_{b 2}
\end{array}\right)\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right)
$$

$$
A=S V^{T}=U \Sigma V^{T}
$$

Midterm review

For midterm review we'll go through:

1. Important ML concepts
2. Exercises

ML concepts 1

- What is supervised learning?

Answer: ML setting when our training set consists of inputs and their corresponding labels.

- Difference between regression / classification?

Answer: in classification we are predicting a discrete target (like cat or dog class), while in regression we are predicting a continuous-valued target (like temperature).

- What does kNN do?

Answer: k Nearest Neighbors is an algorithm that predicts value of a new example based on its k nearest labeled neighbors.

ML concepts 2

- How does decision tree work?

Answer: decision trees make predictions by sequentially splitting data on different attributes.

- Name 2 advantages of kNN vs decision tree and vice versa.
kNN: can incorporate interesting distance measures; few hyperparameters decision trees: fast at test time; more interpretable; better deals with missing values (pass through both branches)
- What is overfitting?

Answer: it's a case when the model gets good performance on a particular dataset by "memorizing" it, but fails to generalize to new data.

Underfitted

Good Fit/Robust

Overfitted

- Why do we need a validation set?

Answer: to prevent overfitting.

ML concepts 3

- Based on which measure we can choose a good decision tree split?

Answer: entropy (measures how chaotic / disorganized is our label distribution in a split).

50 lemons 0 oranges

- What does this picture tells us about our data (bias / variance)?
Answer: high bias \& low variance.
- Are decision trees and kNN supervised / unsupervised
 algorithms?
Answer: supervised (we need labels).

ML concepts 4

- Write a model for binary linear classification ...

$$
\begin{aligned}
& z=\mathbf{w}^{T} \mathbf{x}+b \\
& y= \begin{cases}1 & \text { if } z \geq r \\
0 & \text { if } z<r\end{cases}
\end{aligned}
$$

- What are the two ways of finding good values for model's parameters (w, b)?
A. direct solution
B. iterative solution - gradient descent
- What is loss function?

Answer: it's a function that evaluates how well specific algorithm models the given data; loss function takes predicted values and target values as inputs.

- Write 0-1 loss function. Why is it bad?

Answer: 0-1 loss is bad because it's not informative - its derivative is 0 everywhere it's defined.

$$
\mathcal{L}_{0-1}(y, t)= \begin{cases}0 & \text { if } y=t \\ 1 & \text { if } y \neq t\end{cases}
$$

ML concepts 5

- What are the problems with squared error loss function? How to solve it?
Answer: squared error loss gives a big penalty for correct predictions that are made with high confidence.

Solution is to predict values only in [0,1] interval. For that we use sigmoid function to squash y into $[0,1]$:

$$
\begin{aligned}
\sigma(z) & =\frac{1}{1+e^{-z}} \\
z & =\mathbf{w}^{\top} \mathbf{x}+b \\
y & =\sigma(z) \\
\mathcal{L}_{\mathrm{SE}}(y, t) & =\frac{1}{2}(y-t)^{2} .
\end{aligned}
$$

distance between targets and predictions

ML concepts 6

- What is the difference between parameters / hyper parameters of the model?

Answer: parameters are learned through training (by iteratively performing gradient descent updates) - weights and biases, hyperparameters are "manually" adjusted and set before training number of hidden layers of a neural network, k for kNN , learning rate etc.

- What is learning rate?

Answer: learning rate is a hyper parameter that controls how much the weights are updated at each iteration.

$$
w_{j} \leftarrow w_{j}-\alpha \frac{\partial \mathcal{J}}{\partial w_{j}}
$$

- What if learning rate is too small / too large? (draw a picture)

α too small:
slow progress

α too large:
oscillations

α much too large: instability

ML concepts 7

- What is regularization? Why do we need it?

Answer: regularization is a technique of adding an extra term to the loss function. It reduces overfitting by keeping the weights of the model smaller.

- What is softmax? Calculate softmax $\left(\begin{array}{l}2 \\ 1 \\ 0.1\end{array}\right]$)

Answer: softmax is an activation function for multiclass classification that maps input logits to $\left.\operatorname{probabilities.}\left[\begin{array}{c}e^{2} /\left(e^{2}+e^{1}+e^{0.1}\right) \\ \operatorname{softmax}(\\ 1 \\ 0.1\end{array}\right]\right)=\left[\begin{array}{c}0.7 \\ e^{1}\left(e^{2}+e^{1}+e^{0.1}\right) \\ e^{0.1} /\left(e^{2}+e^{1}+e^{0.1}\right)\end{array}\right]=\left[\begin{array}{c}0.2 \\ 0.1\end{array}\right]$
$y_{k}=\operatorname{softmax}\left(z_{1}, \ldots, z_{K}\right)_{k}=\frac{e^{z_{k}}}{\sum_{k^{\prime}} z^{z_{k^{\prime}}}}$

Example 1

Find a linear classifier with weights w 1 , $\mathrm{w} 2, \mathrm{w} 3$, and b which correctly classifies all of these training examples:

x_{1}	x_{2}	x_{3}	t	
0	0	0	1	
0	1	0	0	$w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}+b \gtrless 0$
0	1	1	1	
1	1	1	0	

Answer: write a system of inequalities and find one solution (there would be manv possible answers).

$$
\begin{array}{rlrl}
b & >0 & b & =1 \\
w_{2}+b & <0 & w_{1} & =-2 \\
w_{2}+w_{3}+b & >0 & w_{2} & =-2 \\
w_{1}+w_{2}+w_{3}+b & <0 & w_{3} & =2
\end{array}
$$

