PCA Tutorial

Dimensionality Reduction

- We have some data $X \in \mathbb{R}^{N \times D}$
- D may be huge, etc.
- We would like to find a new representation $Z \in \mathbb{R}^{N \times K}$ where $\mathrm{K} \ll \mathrm{D}$.
- For computational reasons.
- To better understand (e.g., visualize) the data.
- For compression.
- We will restrict ourselves to linear transformations for the time being.

Example

- In this dataset, there are only 3 degrees of freedom: horizontal and vertical translations, and rotations.
- Yet each image contains 784 pixels, so X will be 784 elements wide.

Abstract Visualization

What is a Good Transformation?

- Goal is to find good directions u that preserves "important" aspects of the data.
- In a linear setting: $z=x^{T} u$
- This will turn out to be the top- K eigenvalues of the data covariance.
- Two ways to view this:

1. Find directions of maximum variation
2. Find projections that
minimize reconstruction error

Principal Component Analysis (Maximum Variance)

$$
\begin{array}{cl}
\operatorname{maximize} \frac{1}{2 N} \sum_{n=1}^{N}\left(u_{1}^{T} x_{n}-u_{1}^{T} \bar{x}_{n}\right)^{2} & \begin{array}{l}
\text { i.e., } \\
\text { variance of } \\
\text { the projected } \\
\text { data }
\end{array} \\
=u_{1}^{T} S u_{1} &
\end{array}
$$

where the sample mean and covariance are given by:

$$
\begin{aligned}
\bar{x} & =\frac{1}{N} \sum_{n=1}^{N} x_{n} \\
S & =\frac{1}{N} \sum_{n=1}\left(x_{n}-\bar{x}\right)\left(x_{n}-\bar{x}\right)^{T}
\end{aligned}
$$

Finding u1

- We want to maximize $u_{1}^{T} S u_{1}$
subject to

$$
\left\|u_{1}\right\|=1
$$

(since we are finding a direction)

- Use Lagrange multiplier α_{1} to express this as

$$
u_{1}^{T} S u_{1}+\alpha_{1}\left(1-u_{1}^{T} u_{1}\right)
$$

Finding u1

- Take derivative and set to 0

$$
\begin{aligned}
S u_{1}-\alpha_{1} u_{1} & =0 \\
S u_{1} & =\alpha_{1} u_{1}
\end{aligned}
$$

- So u_{1} is an eigenvector of S with eigenvalue α_{1}
- In fact it must be the eigenvector with maximum eigenvalue, since this minimizes the objective.

Finding u2

$$
\begin{aligned}
\operatorname{maximize} & u_{2}^{T} S u_{2} \\
\text { subject to } & \left\|u_{2}\right\|=1 \\
& u_{2}^{T} u_{1}=0
\end{aligned}
$$

Lagrange form:

$$
u_{2}^{T} S u_{2}+\alpha_{2}\left(1-u_{2}^{T} u_{2}\right)-\beta u_{2}^{T} u_{1}
$$

Finding β :

$$
\begin{aligned}
& \frac{\partial}{\partial u_{2}}=S u_{2}-\alpha_{2} u_{2}-\beta u_{1}=0 \\
& \quad \Longrightarrow u_{1}^{T} S u_{2}-\alpha_{2} u_{1}^{T} u_{2}-\beta u_{1}^{T} u_{1}=0 \\
& \quad \Longrightarrow \alpha_{1} u_{1}^{T} u_{2}-\alpha_{2} u_{1}^{T} u_{2}-\beta u_{1}^{T} u_{1}=0 \\
& \quad \Longrightarrow \alpha_{1} \cdot 0-\alpha_{2} \cdot 0-\beta \cdot 1=0 \\
& \quad \Longrightarrow \beta=0
\end{aligned}
$$

Finding u2

$$
\begin{aligned}
& \operatorname{maximize} \quad u_{2}^{T} S u_{2} \\
& \text { subject to } \quad\left\|u_{2}\right\|=1 \\
& u_{2}^{T} u_{1}=0 \\
& \text { Lagrange form: } \\
& u_{2}^{T} S u_{2}+\alpha_{2}\left(1-u_{2}^{T} u_{2}\right)-\beta u_{2}^{T} u_{1}^{\nearrow} \\
& \frac{\partial}{\partial u_{2}}=S u_{2}-\alpha_{2} u_{2}=0 \\
& \Longrightarrow S u_{2}=\alpha_{2} u_{2}
\end{aligned}
$$

So α_{2} must be the second largest eigevalue of S.

PCA in General

- We can compute the entire PCA solution by just computing the eigenvectors with the top-k eigenvalues.
- These can be found using the singular value decomposition of S.
- How do we choose the number of components?

- Look at the spectrum of covariance, pick K to capture most of the variation.
- More principled: Bayesian treatment (beyond this course).

Demo

- Eigenfaces

Principal Component Analysis (Minimum Reconstruction Error)

- We can also think of PCA as minimizing the reconstruction error of the compressed data.

$$
\operatorname{minimize}=\frac{1}{2 N} \sum_{n=1}^{N}\left\|x_{n}-\hat{x}_{n}\right\|^{2}
$$

- We will omit the details for now, but the key is that we define some K-dimensional basis such that:

$$
\hat{x}=W x+\text { const }
$$

- The solution will turn out to be the same as the minimum variance formulation.

Reconstruction

- PCA learns to represent vectors in terms of sums of basis vectors.
- For images, e.g.,

+...+ a100 $+\ldots$

PCA for Compression

$$
D=1 \quad D=5 \quad D=10
$$

321×481 image, D is the number of basis vectors used
D in this slide is the same as K in the previous slides

Summary

Thank You ;-)

