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Motivation

●Most data in the world is unlabelled
●It can still contain a significant amount of 
structure
●Learning this structure can tell us A LOT about 
our data
–Labels often only reinforce what the data 
already says!



Applications

●Clustering
–Does our data separate into natural groups?
●Dimensionality Reduction
–We can compress our data while still preserving 
important information
●Feature Learning
–We can extract structure from our data that may 
help us with tasks like regression/classification



In this tutorial...

●We will focus on two examples of clustering
●We will look at the most popular method for 
dimensionality reduction
●I will try to limit the math and focus on building 
intuition



Clustering

●In classification, we are given data with 
associated labels
●What if we aren't given any labels? Our data 
might still have structure
●We basically want to simultaneously label points 
and build a classifier



Tomato sauce

●A major tomato sauce company wants to tailor 
their brands to sauces to suit their customers
●They run a market survey where the test subject 
rates different sauces
●After some processing they get the following 
data
●Each point represents the preferred sauce 
characteristics of a specific person



Tomato sauce data

More Sweet

More Garlic

This tells us how much different customers like different flavors



Some natural questions

●How many different sauces should the company 
make?
●How sweet/garlicy should these sauces be?
●Idea: We will segment the consumers into 
groups (in this case 3), we will then find the best 
sauce for each group



Approaching k-means

●Say I give you 3 sauces whose garlicy-ness and 
sweetness are marked by X

More Sweet

More Garlic



Approaching k-means

●We will group each customer by the sauce that 
most closely matches their taste

More Sweet

More Garlic



Approaching k-means

●Given this grouping, can we choose sauces that would 
make each group happier on average?

More Sweet

More Garlic



Approaching k-means

●Given this grouping, can we choose sauces that would 
make each group happier on average?

More Sweet

More Garlic

●Given this grouping, can we choose sauces that would 
make each group happier on average?

Yes!



Approaching k-means

●Given these new sauces, we can regroup the 
customers

More Sweet

More Garlic



Approaching k-means

●Given these new sauces, we can regroup the 
customers

More Sweet

More Garlic



The k-means algorithm

●Initialization: Choose k random points to act as cluster 
centers
●Iterate until convergence:
–Step 1: Assign points to closest center (forming k 
groups)
–Step 2: Reset the centers to be the mean of the points 
in their respective groups



Viewing k-means in action

●Demo...

●Note: K-Means only finds a local optimum!

●Questions:
–How do we choose k?
●Couldn't we just let each person have their own sauce? (Probably not 
feasible...)

–Can we change the distance measure?
●Right now we're using Euclidean

–What will happen to a center point if no data gets assigned to it?
–Why even bother with this when we can “see” the groups? (Can 
we plot high-dimensional data?)



A “simple” extension

●Let's look at the data again, notice how the groups 
aren't necessarily circular?

More Sweet

More Garlic



A “simple” extension

●Also, does it make sense to say that points in this 
region belong to one group or the other?

More Sweet

More Garlic



Flaws of k-means

●It can be shown that k-means assumes the data 
belong to spherical groups, moreover it doesn't 
take into account the variance of the groups (size 
of the circles)
●It also makes hard assignments, which may not 
be ideal for ambiguous points
–This is especially a problem if groups overlap
●We will look at one way to correct these issues



Isotropic Gaussian mixture models

●K-means implicitly assumes each cluster is an 
isotropic (spherical) Gaussian, it simply tries to 
find the optimal mean for each Gaussian
●However, it makes an additional assumption that 
each point belongs to a single group
●We will correct this problem first by allowing 
each point to “belong to multiple groups”
–More accurately, that it belongs to each group 
with probability    , where



Isotropic Gaussian mixture models

●Demo isotropic GMM...



Gaussian mixture models

●Given a data point x with dimension D:
●A multivariate isotropic Gaussian PDF is given 
by:

●A multivariate Gaussian in general is given by:

●We can try to model the covariance as well to 
account for elliptical clusters



Gaussian mixture models

●Demo GMM with full covariance...
●Notice that now it takes much longer to 
converge
●In the assignment you should see that you get 
much faster convergence by first initializing with 
k-means



The EM algorithm

●What we have just seen is an instance of the 
EM algorithm
●The EM algorithm is actually a meta-algorithm, it 
tells you the steps needed in order to derive an 
algorithm to learn a model
●The “E” stands for expectation, the “M” stands 
for maximization
●We will look more closely at what this algorithm 
does, but won't go into extreme detail



EM for the Gaussian Mixture Model

●Recall that we are trying to put the data into 
groups, while simultaneously learning the 
parameters of that group
●If we knew the groupings in advance, the 
problem would be easy
–With k groups, we are just fitting k separate 
Gaussians
–With soft assignments, the data is simply 
weighted (i.e. we calculate weighted means and 
covariances)



EM for the Gaussian Mixture Model

●Given initial parameters
●Iterate until convergence:
–E-step:
●Partition the data into different groups (soft 
assignments)
–M-step:
●For each group, fit a Gaussian to the weighted 
data belonging to that group



EM in general

●We specify a model that has variables (x,z) with parameters  
, denote this by

●We want to optimize the log-likelihood of our data
–

●x is our data, z is some variable with extra information
–Cluster assignments in the GMM, for example

●We don't know z, it is a “latent variable”

●E-step: infer the expected value for z given x

●M-step: maximize the “complete data log-likelihood”                               
with respect to



A pictorial view of EM

●The E-step constructs a lower bound on the log-
probability of the data

Bishop, 
2006



A pictorial view of EM

●The M-step maximizes this lower bound

Bishop, 
2006



A pictorial view of EM

●We are guaranteed to converge to a local 
optimum, but it can be very slow!

Bishop, 
2006


