
PRACTICE MIDTERM EXAM

CSC 412/2506 - Winter 2024

University of Toronto

Exam duration: 100 minutes

Note: The midterm will have 7 questions and so it will be shorter than this midterm
practice. No calculators will be allowed during the midterm exam.

Read the following instructions carefully:

1. Exam is closed book and internet. You can use an optional handwritten aid sheet - A4
double-sided.

2. If a question asks you to do some calculations, you must show your work for full credit.
3. Conceptual questions do not require long answers.
4. You will write your answers to each question in the space provided on the exam sheet. If

you require additional paper, simply raise your hand.
5. After solving each question, you should write your answers immediately. Do not wait last

minute to write them all at once.
6. Do not share the exam with anyone or in any platform!
7. Lastly, enjoy the problems!!!
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1. Exponential families - 8pts. Probability mass function of a random variable X dis-
tributed as geometric distribution with parameter γ, with 0 < γ < 1, is given as

P(X = k) = γ(1− γ)k−1 for k = 1, 2, ...

(a) Show that this is a probability mass function. Hint: for 0 < p < 1,
∑∞

k=0 p
k = 1/(1− p).

(b) Write the above distribution as an exponential family, and identify its sufficient statistics,
natural parameter, and log-partition function.

(c) Assume that we observed X1, X2, ..., Xn i.i.d. random variables from geometric distribution
with an unknown parameter γ. Find the MLE for γ.
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2. Maximum likelihood estimation and unnormalised models - 10 pts. Consider a
model for three binary random variables (x1, x2, x3),

pθ(x1, x2, x3) ∝ exp{θx1x2 + θx2x3}, xi ∈ {0, 1}.

1. What is the sufficient statistics of this exponential family?
2. Compute the partition function Z(θ) and the derivative of A(θ) = logZ(θ).
3. Verify that for the sample {(1, 1, 1), (1, 1, 1), (1, 1, 0), (0, 1, 1), (0, 1, 0)} the maximum likeli-

hood is θ̂ = ln(3). You will not need a calculator for this computation.
4. Compute the joint distribution pθ̂(x1, x2, x3) corresponding to this MLE.
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3. Graphical models - 16 pts. No explanation needed, just your answers.

(a) (4 pts) Draw the DAG corresponding to the following factorization of a joint distribution:

p(A,B,C,D,E) = P (A)P (B|A)P (C|A)P (D|B,C)P (E|B)

(b) (4 pts) Draw the Markov Random Field that corresponds to the following factorization.

p(A,B,C,D,E, F ) ∝ ϕA,B,F (A,B, F )ϕB,C,D(B,C,D)ϕD,E,F (D,E, F )ϕB,D,F (B,D,F )

(c) (4 pts) Write the variables that belong to the Markov blanket of node 3 in the Figure 1.
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Fig 1: Simple MRF

(d) (4 pts) Belief propagation algorithm is run on a tree graph to compute the marginal of a
node x.

• How many passes in which direction is sufficient to compute the marginal of x, given
that we choose x to be the root?

• How many passes in which direction is sufficient to compute the marginal of x, given
that we choose a root that is not the node x?

Here, the direction is either from leaves to root or from root to leaves, and a single pass
refers to passing all messages pointing to one direction (either from root to leaves or from
leaves to root).
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4. Decision Theory - 5 pts. Imagine we are running a nuclear power plant that is under-
going a malfunction. We have two options: A) Vent the core, and B) do nothing.

Our current beliefs are that the amount of radiation in the core is uniform between 10 and 20
units, i.e.

variant 1: R|vent ∼ U(10, 20)

If we do nothing, there is a X% chance that no radiation will be released, and a (1 −X)% that
100 units of radiation will be released.

For what range of probabilities X would venting the core release less radiation in expectation?
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5. Simple Monte Carlo - 12 pts. Imagine we have a rain prediction model that outputs
samples of

P (R1, R2, . . . , RT |measurements)

where each Ri is the predicted probability of rain i days ahead.
Given a set of N i.i.d. samples from this joint predictive distribution:

r
(1)
1 , r

(1)
2 , . . . , r

(1)
T ∼ P (R1, R2, . . . , RT |measurements)(5.1)

r
(2)
1 , r

(2)
2 , . . . , r

(2)
T ∼ P (R1, R2, . . . , RT |measurements)

...

r
(N)
1 , r

(N)
2 , . . . , r

(N)
T ∼ P (R1, R2, . . . , RT |measurements)

1. [3 points] Write an unbiased estimator for the probability that it rains every day for the
next T days. You might want to use the notation I(statement) which takes value 1 if the
statement is true, and 0 if it is false.

2. [3 points] What is the variance of this estimator as a function of N?
3. [3 points] Write an unbiased estimator for the probability that it rains on day 3.
4. [3 points] Write a consistent estimator for the probability that it rains on day 3 given that

it rained on day 4.
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6. HMM Question - 12 pts. Given the following DAG:

a1 a2 a3 a4 a5 . . .

b1 b2 b3 b4 b5 . . .

x1 x2 x3 x4 x5 . . .

1. [2 points] Write the factorized joint distribution implied by this DAG. Don’t be afraid to
add extra brackets or parentheses to avoid ambiguity.

p(a1, a2, . . . , aT , b1, b2, . . . , bT , x1, x2, . . . , xT ) =

2. If each variable ai can take one of Ka states, each variable bi can take one of Kb states, and
each variable xi can take one of Ka states:

• [2 points] How many states can this set of variables take on?

• [2 points] How many parameters are required to parameterize the joint distribution
p(a1, a2, . . . , aT , b1, b2, . . . , bT , x1, x2, . . . , xT ), again assuming the factorization given by
the DAG above? Note that this factorization does not imply that the factors at each
time share any parameters. Also recall that for a categorical variable with K settings,
only K − 1 parameters are required.

3. [1 point] Is x1 ⊥ x2?
4. [1 point] Is x1 ⊥ x2|b1?
5. [1 point] Is x1 ⊥ x2|b2?
6. [1 point] Is a1 ⊥ a3|a2?
7. [1 point] Is b1 ⊥ b3|b2?
8. [1 point] Is b1 ⊥ b3|a2, b2?
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7. Markov chains and their stationary distributions - 15 pts. Consider a simple two-
state Markov chain x0, x1, x2, . . . with xt ∈ {1, 2} given by transition matrix

A =

[
2/3 1/3
1/2 1/2

]
.

1. Find the stationary distribution π = (π1, 1 − π1) of this Markov chain. The stationary
distribution is given as the solution to the vector equation A⊤π = π.

2. Denote pt = P(xt = 1). Find the expression for pt+1 in terms of pt.
3. Show that pt converges to π1 as t → ∞. You may want to use the fact that for |q| < 1 it

holds that
∑t−1

i=0 q
i = 1−qt

1−q .
4. Find the exact expression for the distance |π1−pt| in terms of t and p0 to get a quantification

of how quickly the Markov chain will converge to its stationary distribution.
5. Use the Metropolis-Hastings algorithm that uses this Markov chain to generate draws from

the uniform distribution on {1, 2}.
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8. Belief propagation - 20 pts. Given the following graph of binary variables:

x1 x2 x3 x4 x5

x6

With x4 being selected as root, having observed x̄6 = 1, and given the following potentials:

ψeven(xi) =

(
1
3

)
the node potential for all xi where i is even

ψodd(xi) =

(
4
2

)
The node potential for all xi where i is odd

ψi,j(xi, xj) =

[
5 1
1 5

]
for all i, j

1. (7 points) Calculate the message from 6 to 4: m6→4(x4)

2. (7 points) Given the normalized message m3→4(x3) =

(
0.55
0.45

)
calculate m4→5(x5)

3. (6 points) Calculate p(x5|x̄6)

Note: In the midterm exam the numbers will be nicer and so no calculator will be needed.
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9. Miscellaneous - 10 pts.

(a) (2 pts) Describe the Markov blanket of a set of variables A. Write the variables that belong
to the Markov blanket of node 2 in the Figure 2.

Fig 2: Simple MRF

(b) (2 pts) Identify all maximal and maximum cliques in the Figure 2.

(c) (2 pts) Describe the connection between belief propagation and variable elimination on trees.

(d) (2 pts) Compare the methods Metropolis-Hasting algorithm vs rejection sampling in terms
of i) the proposal densities used ii) dependencies among the samples produced.

(e) (2 pts) In a classification problem over two classes C1 and C2, we are minimizing the mis-
classification error. Figure 3 shows the joint distributions. What is the decision rule that
minimizes misclassification error (no derivation needed).

Fig 3: Decision theory
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