
Week 11-1: Amortized Inference and
Variational Auto Encoders
Using HMC to infer transmission + death rates for COVID: paper

External Resources

Keras Blog on autoencoders.
Blog on VAEs.
Blog on the intuitive understanding of VAEs.
The original VAE paper (which assignment 3 is based on) and a video explanation.
Blog on the reparameterization trick.
Paper on lower-variance gradients

Recap: latent variable models
Writing down a generative model  is a simple, interpretable and powerful way
to specify a complicated joint distribution .

Examples
Trueskill gives a joint distribution over game outcomes. Can interpret posterior over
latent quantities as a belief state about skills given games.
Personality models (e.g. Big 5 traits) (z = personality, x is behavior), aka factor
analysis.
Item Response Theory,
Latent Growth models.

What's easy?
Sampling  and , and , 
Evaluating  and , and 

What's hard?
Sampling  or 
Evaluating  or , 

 (and simple MC will have high variance)

pθ(x|z), pθ(z)

p(x)

z ∼ p(z) x ∼ p(x|z) x, z ∼ p(x, z) x ∼ p(x)

p(z) p(x|z) p(x|z)

z ∼ p(z|x) x1,x2 ∼ p(x1,x2|x3,x4)

p(z|x) p(x1,x2|x3,x4) p(x)

p(x) = ∫ p(x|z)p(z)dz

https://www.medrxiv.org/content/10.1101/2020.03.04.20031104v1.full.pdf
https://blog.keras.io/building-autoencoders-in-keras.html
https://mohitjain.me/2018/10/26/variational-autoencoder/
https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
https://arxiv.org/abs/1312.6114
https://www.youtube.com/watch?time_continue=2&v=9zKuYvjFFS8
https://medium.com/@llionj/the-reparameterization-trick-4ff30fe92954
http://papers.nips.cc/paper/7268-sticking-the-landing-simple-lower-variance-gradient-estimators-for-variational-inference
https://en.wikipedia.org/wiki/Latent_variable_model


 (need posterior)

Recap: Stochastic variational inference
To approximate :

1. Introduce a variational family  with parameters .
2. Minimize KL divergence between  and .

Big distinction between model  and approximate inference strategy. Can use
different approx. inference for same model (such as MCMC or loopy belief propagation),
even ones that weren't invented when you wrote down the model!

This is equivalent to maximizing a lower bound on the log marginal likelihood :

We'll want to optimize using stochastic unbiased gradients from simple Monte Carlo. We
can use the reparameterization trick to bring the gradient inside the expectation:

p(x1,x2|x3,x4) = ∫ p(x1,x2|z)p(z|x3,x4)dz

p(z|x) = p(x,z)
∫ p(x,z)dz

p(z|x)

qϕ(z|x) ϕ

p(z|x) qϕ(z|x)

p(x, z)

log p(x)

log p(x) ≥ ∇ϕL(ϕ) = ∇ϕEz∼qϕ(z|x)[ log p(x, z) − log qϕ(z|x)]

∇ϕL(ϕ) = ∇ϕEz∼qϕ(z|x)[ log p(x, z) − log qϕ(z|x)]

= ∇ϕEϵ∼p(ϵ)[ log p(x,T (ϕ, ϵ)) − log qϕ(T (ϕ, ϵ)|x)]

= Eϵ∼p(ϵ)∇ϕ[ log p(x,T (ϕ, ϵ)) − log qϕ(T (ϕ, ϵ)|x)]

https://medium.com/@llionj/the-reparameterization-trick-4ff30fe92954


Per-example latent variable models (LVM)
In the Trueskill model, there is one big vector of s, and one big list of game outcomes .

The graphical model for Trueskill is just one big z to one big x.

The graphical model for the approximate posterior is just z.

What about our personality quiz example? E.g. there are N people each of whom takes a
quiz with D questions. And we assume each person has an a priori indepedently
distributed, Q-dimensional vector that specifies their personality.

Then there is a separate  vector for each  vector.

The true posterior in this model factorizes over people.

But now we have N true posteriors to approximate.

How could we do efficient approximate inference in this setting?

Motivation #1: SVI on a per-example LVM doesn't scale to large
data

We could simply do SVI on everyone's  vectors all at once on each iteration of gradient
descent.

Each person would have a .

The graphical model would also have a plate.

This is a good strategy for a small N.

However, if N is large, we want to be able to subsample the data.


z x

z x

z

ϕi



However, in this case, we would have one global  and a separate approximate posterior 
 for each person.


If we subsampled one out of a thousand people each time we updated , then each 
 would be a thousand steps out of date.


Keep in mind that the true posterior will change shape as the model parameters  change.

So the gradients that  would get will be for a very poor approximate posterior.

We could stop and optimze each  for a while before we get the gradient for , but
this would also be slow.

We want to be able to somehow keep all the approximate posteriors in sync, without
optimizing all of them whenever we update .

Motivation #2: People can learn to recognize what's going on
from partial evidence

For example, with enough experience, doctors, plumbers, detectives, etc. can very quickly
tell what is going on and what they still need more information about, if they've seen
enough similar situations.

Perhaps we could somehow train a neural network to look at the data for a person , and
then output an approximate posterior ?

Amortized Inference
"Amortize" just means "spread out a cost over time". Instead of doing SVI from scratch
every time we see a new datapoint, we're going to try to gradually learn a function that
can look at the data for a person , and then output an approximate posterior .

We'll call this a "recognition model"

Instead of a separate  for each data example, we'll just have a single global  that
specifies the parameters of the recognition model.

Because the relationship between data and posteriors is complex and hard to specify by
hand, we'll do this with a neural network!

We've already seen one way to specify a probability distribution given an input with neural
networks. We can simply have a network take in , and output the mean and variance
vector for a Gaussian:

The graphical model for this recognition model has the same  acting on each latent
variable and data point.

The algorithm for amortized inference looks like:

θ

qϕi
(zi|xi)

θ

qϕi
(zi|xi)

θ

θ

qϕi
(zi|xi) θ

θ
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qϕi
(zi|xi)

xi qϕ(zi|xi)

ϕi ϕ

xi

qϕ(zi|xi) = N (zi|μϕ(xi), Σϕ(xi))

ϕ



1. Sample a datapoint
2. Compute params of approximate posterior (recognition model)
3. Compute gradient of Monte Carlo estimate of ELBO wrt phi.
4. Update phi

Then, when we want to make predictions about a new datapoint, we can use our fast
recognition model if we want!

Of course, we might also want to stop and do something slower but more accurate, like
per-example SVI, or MCMC.

Also optimizing model parameters.

If  depends on parameters , then the ELBO is a function of both, and we can
optimize them together:

In the trueskill example, this would let us learn the shape of the likelihood function, for
example:

Thus we can jointly fit the model parameters and the recognition network, by subsampling
training examples and using simple Monte Carlo with stochastic gradient descent.

This is called a variational autoencoder (VAE).

we'll explain the name next.

Sometimes people draw the recognition graphical model on top of the generative model,
giving this confusing diagram:

log pθ(x) θ

∇θ,ϕL(ϕ) = ∇θ,ϕEz∼qϕ(z|x)[ log pθ(x, z) − log qϕ(z|x)] = Eϵ∼p(ϵ)∇θ,ϕ[ log pθ(x,T (ϕ, ϵ)) − log qϕ(T (ϕ, ϵ)|x)]

p(i beats j|zi, zj) =
1

1 + exp(−θ(zi, zj)

https://en.wikipedia.org/wiki/Autoencoder#Variational_autoencoder_(VAE)


!!! cite

Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint
arXiv:1312.6114 (2013).

Example: MNIST

Let's give an explicit model for MNIST images of handwritten digits.

We will choose our prior on  to be the standard Gaussian with zero mean and unit
variance

our likelihood function to be

and our approximate posterior to be

Finally, we use neural networks as our encoder and decoder

Encoder: 

Decoder: 

Where  are the Bernoulli means for each pixel in the input. To see a "reconstructed"
input, we can plot .

The entire model looks like:

Variational Autoencoder Explained.

z

N (0, I)

pθ(xi|zi) =
D

∏
d=1

Ber(xid|μθ(zi))

qϕ(z|x) = N (μ(x),σ(x)I)

gϕ(xi) = ϕi = [μi, logσi]

fθ(zi) = θi

μi

μi

https://arxiv.org/abs/1312.6114
https://mohitjain.me/2018/10/26/variational-autoencoder/


Where inputs  are encoded to vectors  and , which parameterize . Before
decoding, we draw a sample  and evaluate its likelihood under
the model with . We compute the loss function  and propagate its
derivative with respect to  and , , , through the network during training.

Show Autograd VAE demo

Consequences of using amortized inference
Gradient updates of theta is like M-step . recognition network gives approximate E-
step.  Gradient updates of phi_r improves E-step
Don’t need to re-optimize phi_i each time theta changes - much faster
Recognition net won’t necessary give optimal phi_i
Can have fast test-time inference (vision)

Semi-amortized inference:
There's no reason why we can't use a recognition network to initialize q, then take a few
steps of SVI.

Alternate forms of the ELBO:
We also talked about two other alternative forms or "intuitions" of the ELBO:

The second of which (intuition 3) is the loss function we use for training VAEs. Notice now
that the first term corresponds to the likelihood of our input under the distribution
decoded from  and the second term the divergence of the approximate distribution
posterior from the prior of the true distribution.

!!! note

The second terms acts a regularization, by enforcing the idea that our parameterization
shouldn't move us too far from the prio distribution. Also note that this term as a simple,
closed form if the posterior and prior are Gaussians.

Automatically choosing latent dimension
Standard autoencoders require choosing latent dimension

What happens if a VAE has more than it needs?

If q(z|x) is factorized, then KL term factorizes over dimensions, wants to make each
q(z_i|x) look like p(z_i).


xi μ logσi qϕ(z|x)

z ∼ qϕ(z|x) = N (μ(x),σ(x)I)

pθ(x|z) L(θ,ϕ;x)

θ ϕ ∇θL ∇ϕL

L(θ,ϕ;x) = Ezϕ∼qϕ[ log pθ(x|z) + log pθ(z) − log qϕ(z|x)] = Ezϕ∼qϕ[ log pθ(x|z)] − DKL(qϕ(z|x)||pθ(z))

z

https://github.com/HIPS/autograd/blob/master/examples/variational_autoencoder.py


If a dimension doesn’t help likelihood enough, it will ‘turn off’ and set q(z_i|x) = p(z_i),
ignoring x. Then decoder can ignore too.


