
Week 1: Tutorial
Distribution over discrete random variables

Let's take a toy example of discrete random variables.

This particular example is adapted from Section 2.3.1 of the book ``Probabilistic Machine

Learning: An Introduction''.

Suppose you think you may have contracted COVID-19. You decide to take a diagnostic test,

and you want to use its result to determine if you are infected or not.

Let  be the event that you are infected, and  the event that you are not infected.

We have  if the test is positive and  that it is negative. We want to compute 

.

The quantity obviously depends on how reliable the test is. There are two key parameters.

The sensitivity (aka true positive rate) is defined as . The specificity (aka

true negative rate) is defined as . Following Health Canada it seems

reasonable for a PCR test to assume sensitivity 87.5% and specificity 97.5%.

Next we need to specify the prior. The quantity  represents the prelevance of the

disease in the area in which you live. We set this to .

Now we can easily compute the joint distribution of . We have

Note that all four numbers are nonnegative and they sum to 1. The following table contains

both the joint distribution of  as well as both marginal distributions.

Y \ H 0 1

0 0.8775 0.0125 0.89

1 0.0225 0.0875 0.11

0.9 0.1

Now suppose you test positive. We have

H = 1 H = 0

Y = 1 Y = 0

p(H = h|Y = y)

p(Y = 1|H = 1)

p(Y = 0|H = 0)

p(H = 1)

p(H = 1) = 0.1

(Y ,H)

p(Y = 0,H = 0) = 0.975 ⋅ (1 − 0.1) = 0.8775
p(Y = 0,H = 1) = (1 − 0.875) ⋅ 0.1 = 0.0125
p(Y = 1,H = 0) = (1 − 0.975) ⋅ (1 − 0.1) = 0.0225
p(Y = 1,H = 1) = 0.875 ⋅ 0.1 = 0.0875

(Y ,H)

https://en.wikipedia.org/wiki/Random_variable#Discrete_random_variable
https://www.canada.ca/en/public-health/services/diseases/coronavirus-disease-covid-19/testing-screening-contact-tracing/testing-vaccinated-populations.html


and so there is a 79.5% chance you are infected.

Now suppose you test negative. The probability you are infected is given by

and so there is just 1.4% chance you are infected.

Nowadays COVID-19 prevalence is much lower. Suppose we repeat these calculations using a

base rate of 1%; now the posteriors reduce to 26% and 0.13% respectively.

The fact that you only have a 26% chance of being infected with COVID-19, even after a

positive test is very counter-intuitive. The reason is that a single positive test is more likely to

be false positive than due to the disease, since the disease is rare.

Note that we can think about the distribution of  as a parametric model parametrized

by three numbers: prevalence, sensitivity, and specificity.

Summary

Given a joint distribution, we can compute both marginal and conditional distributions

We'll consider distributions as equivalent to their parameters

We can represent distributions by arrays of their parameters

Operations like marginalizing and conditioning variables can be interpreted as operations

on arrays of parameters.

MLE and Exponential Families
-sample example: Multinomial distribution

A random variable  where , which takes on  discrete

states each with probability . That is , where  and .

E.g. K-bit pixels, classes, unfair dice.

We observe  i.i.d. Multinomial( ), i.e.  for  observations.

In the example from class, we had a single Bernoulli observation which we wrote as an

exponential family. This time, we write the joint density of  as an exponential family.

p(H = 1|Y = 1) =
p(Y = 1,H = 1)

p(Y = 1)
=

0.0875

0.11
= 0.795

p(H = 1|Y = 0) =
p(Y = 0,H = 1)

p(Y = 0)
=

0.0125

0.89
= 0.014

(Y ,H)

N

X ∼ Multinomial(q) q ∈ RK i ∈ [1, … ,K]

qi p(X = i) = qi qi ≥ 0 ∑i qi = 1

N q D = {1, 3,K, 2, …} N

D



Recall the natural form:

The model is  with the constraint . If  for all  then

Therefore, the sufficient statistics for the multinomial distribution are the counts 

.

Aside (optional)

Note that in this form, we have that , and if we use the formulas given in class for

exponential families (the ones that link the derivative of  to the mean of the sufficient

statistic), we get that the distribution has mean vector zero and variance matrix zero, which

are not the mean and variance of the multinomial distribution. Note however that we are not

allowed to use the formulas given in class here because the components of  that we have

defined are not separately variable. Due to the constraint that , we have the

constraint that , which complicates things.

There is an easy fix. Let's instead try to write the exponential family form to directly

incorporate the constraint over . First, note that .

Substituting this in the formula above gives,

p(x|η) = h(x) exp{η⊤T (x) − A(η)}

p(x(n) = i|q) = qi ∑i qi = 1 qi > 0 i

p(D; q) =
N

∏
n=1

q
1[x(n)=1]
1 ⋯ q

1[x(n)=K]
K

= exp log
N

∏
n=1

K

∏
i=1

q
1[x(n)=i]
i

= exp
N

∑
n=1

K

∑
i=1

1[x(n) = i] log qi

= exp
K

∑
i=1

log qi
N

∑
n=1

1[x(n) = i]

= exp
K

∑
i=1

log qiNi

Ni = ∑N
n=1 1[x(n) = i]

ηi = log qi

A(η)

η

∑i qi = 1

∑i e
ηi = 1

q qK = 1 − ∑K−1
i=1 qi



We can read off the new parameterization now. For :

We would like to write  explicitly in terms of  instead of . First note that 

 and .

Then,

We can now use the formulas from class for exponential families to get the MLE. Alternatively

we can use the initial likelihood we derived and solve for the MLE directly, as we show next.

For the MLE for this distribution, we consider the log-likelihood:

We can't simply take its derivative and set it equal to zero as it requires enforcing the

constraint that . We write the Lagrangian

and take its derivative with respect to each , set it equal to zero and solve for them.

p(D; q) = exp
K

∑
i

Ni log qi

= exp(
K−1

∑
i

Ni log qi + NK log qK)

= exp(
K−1

∑
i

Ni log qi + (N −
K−1

∑
i

Ni) log(1 −
K−1

∑
i

qi))

= exp(
K−1

∑
i

Ni log
qi

1 − ∑K−1
i qi

+ N log(1 −
K−1

∑
i

qi))

i = 1, … ,K − 1

T (x)i = Ni

ηi = log
qi

1 − ∑K−1
i qi

h(x) = 1

A(η) = −N log(1 −
K−1

∑
i

qi)

A(η) η q

ηi = log qi
qK
⟹ eηi = qi/qK ∑K

i=1 qi/qK = 1/qK = 1 + ∑K−1
i=1 eηi

A(η) = N log
1

(1 − ∑K−1
i=1 qi)

= N log
1

qK

= N log(1 +
K−1

∑
i=1

eηi)

ℓ(q;D) =∑
i

log qiNi

∑k qk = 1

L(q,λ) =∑
i

log qiNi + λ(1 −∑
i

qi)

qi



Since , we have . Substituting into expression above, 

.

Therefore, the maximum likelihood estimate for the class parameters in a multivariate

distribution are the normalized counts for each class.

Example: Sufficient Statistics and MLE for Univariate Normal

We assume that the data is  i.i.d. samples  from the Gaussian distribution, i.e.

Gaussian distribution is a member of the exponential family, so we can put it into a natural

form

from here, it is clear that the natural parameters and the sufficient statistics are

and so , , .

Note that given the sufficient statistics as defined, we could not determine anything more

about  if we had access to any other information about the dataset. In this way the sufficient

statistics are the minimum required statistics of the data. The normalization factor is read off

once , and  are determined.

Re-writing the likelihood in terms of 

dL

dqi
=

Ni

qi
− λ = 0 ⟹ Ni/λ = qi

∑iNi/λ = ∑i qi = 1 λ = ∑iNi = N

qi = Ni

N

N {x(i)}N
1 ∈ R

x(i) ∼ p(x|θ) = N (x|μ,σ2)

=
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√2πσ
exp{−
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2σ2
(x − μ)2}
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2σ2 μ
2 = − 1
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1

η2

η

η,T (x) h(x)

η

p(x|η) = √ η2

2π
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η2
1

2η2
} ⋅ exp{ηTT (x)}



noting that

At this point we can use the general result from the exponential family, or take the derivatives

in this form to find the MLE for those natural statistics .

However, we often prefer to work with the parameterization by , so let's see this

instead. We write the log-likelihood:

Solving for the derivatives of :

So the MLE for the mean of a Gaussian is the mean of the data, intuitive!

Also the MLE for the variance looks like the variance of the data.

h(x) = (2π)− 1
2

A(η) = − 1
2 log(η2) +

η2
1

2η2

η

θ = [μ,σ2]

ℓ(θ;D) = log p(D|θ) = log∏
n

p(x(n)|θ)
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n

1

√2πσ2
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2
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1
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θ
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