
Week 2 Tutorial: Examples of Directed
Graphical Models

Goal of this tutorial:

1. (Re)familiarize you with representing probability distribution as directed-graphical

models (DGM).

2. Go through examples of DGMs: definition, learning, and inference.

Examples = on Bayes Ball (PRML 8.2.2)

Recall the Bayes ball algorithm for verifying A ⊥ B | C:

(a) the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the

node is in the set C, or

(b) the arrows meet head-to-head at the node, and neither the node, nor any of its

descendants, is in the set C.

1. What is the joint distribution factorization implied by the graph above (ignore the

observed node for now)?

2. Is a independent from b when:

a) conditioned on c ?

b) conditioned on f?



Naive Bayes

Consider the inference problem of text classification into spam/not spam:

Let R.V.  denote whether a text is ( ) or isn't spam ( ).

Problem Setting

We'll use a "bag of words" representation for text:

Suppose we have dictionary of  words  as an indexable set, a text  is a set

of words in the dictionary, i.e. , which can be equivalently be represented

as a set of indices .

Fancy way of saying "apperance of word matters, repetition and order doesn't matter".

Example: ,

"hello world" 

"this is a test" 

"hello hello hello world"  "hello world" = "world hello".

Let ,  be a binary random vector denoting the appearance of 'th word

in the text. (e.g. ).

Our goal is to compute the posterior . Similar to lectures, we'll use  to mean

probability mass function when its argument is discrete, and density function when its

argument is continuous.

A general model

Using bayes theorem, we can write the posterior as:

Since the denominator  does not depend on specific outcome of , we have 

.

In general, we can further factorize  into its components with baye's rule:

How would this factorization appear as a DGM? Since we have ordered the terms above such

that each term is only conditioned on variables that have appeareed to its left, we can draw

the graphical model accordingly:
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i=2p(Xi|X1, . . . ,Xi−1,C).



Few observations:

This graph has  nodes (  to , and ).

The degree of each node is the same and equal to  - thus, this graph is fully connected!

Every node is a neighbour of every other node.

For node , # of input edges = .

Size of conditional probability table of each node , which requires 

 parameters.

Total # of parameters:  parameters, which is equal

to the number of parameters needed to specify the joint tensor over  binary random

variables - this factorization is indeed general

Reducing complexity with Naive Bayes model

Learning  parameters is very expensive (computationally and learning-theoretically).

Goal: Reduce parameter through simplifying the graphical model.

Method: Remove all edges between , only keep edges originating from .

What factorization does this model imply?
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i.e. :  is independent from  for all  given . We can

manipulate the joint distribution through manipulating the DGM!

Number of parameters: ; complexity scale linearly instead of exponentially.

Learning the Naive Bayes model with MLE

Parameterize the model as follow: , .

Suppose we have  texts  with labels , and wish to learn the parameters. We will use

maximum likelihood estimation as done in CSC311.

1. Factorize the log likelihood function:

2. Derive the first term:

3. Factorize and derive the second term:

p(Xi|X1, . . .Xi−1,C) = p(Xi|C) Xi Xj j ≠ i C

1 + 2d

p(C = 1) = π p(Xj = 1|C) = θj,c
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4. Set derivative to zero and solve:

Markov chains

In lecture, you have seen a first order Markov chain. The "order" of Markov chain refers to the

number of previous states that the current state could depend on.

Second order Markov chain:

The earlier images depicts a first-order Markov chain, this is a second-order Markov chain.

Hidden Markov Models (HMMs)

p(X1:T ) = p(X1)p(X2|X1)p(X3|X2). . . = p(X1)ΠT
t=2p(Xt|Xt−1)



Hidden Markov Model (HMM) is a statistical Markov model in which the system being

modeled is assumed to be a Markov process with unobserved (i.e. hidden) states. It is a very

popular type of latent variable model

where

 are hidden states taking on one of  discrete values

 are observed variables taking on values in any space

the joint probability represented by the graph factorizes according to

Medical diagnosis

In the models above, we designed generic DGMs based on (usually wrong, but useful)

assumptions. Next, we will see examples where the models are designed based on domain

knowledge (PPML 10.2.3).

Quick Medical Reference has a bipartite structure, with diseases as hidden nodes, and

symptom and other observables as visible nodes. All nodes are binary
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https://en.wikipedia.org/wiki/Hidden_Markov_model
https://en.wikipedia.org/wiki/Markov_process


Let  denote the hidden nodes, and  denote the visible variables. Their

joint distribution is can be factorized as:

The conditional probability of the symptoms  follow a noisy OR model - if any

parent of  is positive, then  is also likely to be positive.

More precisely:

Where . One way to visualize this is to take a coin flip with head

probability of  for each disease that is positive, and if all of the coins are heads, then the

symptom will be negative. If any coin flipped tails, then the symptom will be positive.

A "dummy" node  is added to represent all "unknown diseases" and is always set to 1. This

allows the model to give non-zero probability to patients who have symptoms but no included
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diseases.

The Alarm Network, with 37 random variables relating to vital signs, conditions, and

symptoms, was designed to monitor ICU patients. Each random variable is discrete, with up

to 4 states. Since the graph is sparsely connected, the total number of parameters in the

graph is only 504 (much less than 2^37-1). It is small enough to allow inference of marginal

distributions of unobserved nodes when conditioned on sufficient observed nodes.

*You wil see algorithms that perform this inference later in the course.

The connections in this graph are made based on domain knowledge - causal relations that

are known in medicine. For instance, Hypovolemia is a low level of extracellular fluid. The

extracellular fluid is fluid thats drained from the blood into body tissue in the capillaries. They

traverse the lymphatic system, which carries these fluid back into the blood stream through

the superior vena cava. Reduction in this fluid volume can reduce volume of blood reaching

the heart, which decreases stroke volume. The stroke volume, multiplied with the heart rate,

determines cardia output, which in turn determines blood pressure.




