CSC 412/2506: Probabilistic Machine Learning

Week 3: Markov Random Fields/Exact Inference

Murat A. Erdogdu
University of Toronto

Today's lecture

Summary of the content:

- Markov Random Fields (MRFs).
- Exact inference on graphical models
- Variable elimination

Some announcements:

- Assignment 1 is released this week.
- TA office hours next week.

Are DAGMs always useful?

- Each node is conditionally independent of its non-descendants given its parents

$$
\left\{X_{i} \perp \operatorname{non-desc}\left(X_{i}\right) \mid \operatorname{parents}\left(X_{i}\right)\right\} \quad \forall i
$$

- For some problems, it is not clear how to choose the edge directions in DAGMs.
Figure : Causal MRF or a Markov mesh
Markov blanket (mb): the set of nodes that makes X_{i} conditionally independent of all the other nodes.

In our example: $\operatorname{mb}\left(X_{8}\right)=\left\{X_{3}, X_{4}, X_{7}, X_{9}, X_{12}, X_{13}\right\}$.
One would expect X_{4} and X_{12} not to be in the Markov blanket $\mathrm{mb}\left(X_{8}\right)$, especially given X_{2} and X_{14} are not.

Markov Random Fields

- Undirected graphical models (aka Markov random fields (MRFs)) are models with dependencies described by an undirected graph.
- The nodes in the graph represent random variables. However, in contrast to DAGMs, edges represent probabilistic interactions between neighbors (as opposed to conditional dependence).

Cliques

A clique is a subset of nodes such that every two vertices in the subset are connected by an edge.

A maximal clique is a clique that cannot be extended by including one more adjacent vertex.

Distributions Induced by MRFs

Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right)$ be the set of all random variables in our graph G.
Let \mathcal{C} be the set of all maximal cliques of G.
The distribution p of X factorizes with respect to G if

$$
p(\boldsymbol{x}) \propto \prod_{C \in \mathcal{C}} \psi_{C}\left(x_{C}\right)
$$

for some nonnegative potential functions ψ_{C}, where $x_{C}=\left(x_{i}\right)_{i \in C}$.
The MRF on G represents the distributions that factorize wrt G.
The factored structure of the distribution makes it possible to more efficiently do the sums/integrals and is a form of dimension reduction.

Hammersley-Clifford Theorem

If $p(\boldsymbol{x})>0$ for all \boldsymbol{x}, the following statements are equivalent:

- p factorizes according to G, that is,

$$
p(\boldsymbol{x}) \propto \prod_{C \in \mathcal{C}} \psi_{C}\left(x_{C}\right)
$$

for some nonnegative potential functions ψ_{C}.

- Global Markov Properties: $X_{A} \perp X_{B} \mid X_{S}$ if the sets A and B are separated by S in G (every path from A to B crosses S).

In particular,

- If i, j are not connected by an edge then $X_{i} \perp X_{j} \mid X_{\text {rest }}$.
- The Markov blanket of X_{i} is given by its neighbors in G.

Example:

- How many maximal cliques are there?
- What is the underlying factorization?
- What are the induced conditional independence statements?

Example:

Lets see how to factorize the undirected graph of our running example:

$$
\begin{aligned}
p(\boldsymbol{x}) \propto & \psi_{1,2,3}\left(x_{1}, x_{2}, x_{3}\right) \psi_{2,3,5}\left(x_{2}, x_{3}, x_{5}\right) \psi_{2,4,5}\left(x_{2}, x_{4}, x_{5}\right) \\
& \times \psi_{3,5,6}\left(x_{3}, x_{5}, x_{6}\right) \psi_{4,5,6,7}\left(x_{4}, x_{5}, x_{6}, x_{7}\right)
\end{aligned}
$$

Example:

Image MRF

Not all MRFs can be represented as DAGMs

Take the following MRF for example (a) and our attempts at encoding this as a DAGM (b, c).

- Two conditional independencies in (a):
- 1. $A \perp C \mid D, B$

2. $B \perp D \mid A, C$

- In (b), we have the first independence, but not the second.
- In (c), we have the first independency, but not the second. Also, B and D are marginally independent.

Not all DAGMs can be represented as MRFs

Not all DAGMs can be represented as MRFs.
E.g. explaining away:

An undirected model is unable to capture the marginal independence, $X \perp Y$ that holds at the same time as $X \not \not Y \mid Z$.

MRFs as Exponential Families

- Consider a parametric family of factorized distributions

$$
p(\boldsymbol{x} \mid \theta)=\frac{1}{Z(\theta)} \prod_{C \in \mathcal{C}} \psi_{C}\left(x_{C} \mid \theta_{C}\right), \quad \theta=\left(\theta_{C}\right)_{C \in \mathcal{C}}
$$

- We can write this in an exponential form:

$$
p(\boldsymbol{x} \mid \theta)=\exp \{\sum_{C \in \mathcal{C}} \log \psi_{C}\left(x_{C} \mid \theta_{C}\right)-\underbrace{\log Z(\theta)}_{=A(\theta)}\}
$$

- Suppose the potentials have a log-linear form

$$
\log \psi_{C}\left(x_{C} \mid \theta_{C}\right)=\theta_{C}^{\top} \phi_{C}\left(x_{C}\right)
$$

we get the exponential family

$$
p(\boldsymbol{x} \mid \theta)=\exp \{\sum_{C \in \mathcal{C}} \theta_{C}^{\top} \phi_{C}\left(x_{C}\right)-\underbrace{\log Z(\theta)}_{=A(\theta)}\}
$$

MRFs as Exponential Families

Question: When $\log \psi_{C}\left(x_{C} \mid \theta_{C}\right)=\theta_{C}^{\top} \phi_{C}\left(x_{C}\right)$?
Finite discrete case:

- If X is finite discrete then x_{C} takes a finite number of values and so $\log \psi_{C}$ takes a finite number of values.
- Take θ_{C} as all these possible values, and let $\phi_{C}\left(x_{C}\right)$ is a vector 1 on the entry correspond to x_{C} and zeros otherwise.
- Then $\log \psi_{C}\left(x_{C} \mid \theta_{C}\right)=\theta_{C}^{\top} \phi_{C}\left(x_{C}\right)$ as required.

Multivariate Gaussian case will be covered later in the lecture.

We can find the expectation of the C-th feature

$$
\frac{\partial \log Z(\theta)}{\partial \theta_{C}}=\mathbb{E}\left[\phi_{C}\left(X_{C}\right)\right]
$$

Representing potentials

If the variables are finite discrete, we can represent the potential functions as tables of (non-negative) numbers.
e.f. consider a 4 -cycle and binary random variables

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{1}{Z} \psi_{1,2}\left(x_{1}, x_{2}\right) \psi_{2,3}\left(x_{2}, x_{3}\right) \psi_{3,4}\left(x_{3}, x_{4}\right) \psi_{1,4}\left(x_{1}, x_{4}\right)
$$

$\psi_{1,2}\left(x_{1}, x_{2}\right)$				$\psi_{2,3}\left(x_{2}, x_{3}\right)$		$\psi_{3,4}\left(x_{3}, x_{4}\right)$			$\psi_{1,4}\left(x_{1}, x_{4}\right)$		
x_{1}	x_{2}		x_{2}	x_{3}		x_{3}	x_{4}		x_{1}	x_{4}	
0	0	30	0	0	100	0	0	1	0	0	100
0	1	5	0	1	1	0	1	100	0	1	1
1	0	1	1	0	1	1	0	100	1	0	1
1	1	10	1	1	100	1	1	1	1	1	100

These potentials are not probabilities since we ignored the normalization constant!

Example: Ising model

- The Ising model is an MRF that is used to model magnets.
- The nodes variables are spins, i.e., we use $x_{s} \in\{-1,+1\}$.
- Define the pairwise clique potentials as

$$
\psi_{s t}\left(x_{s}, x_{t}\right)=e^{J_{s t} x_{s} x_{t}}
$$

where $J_{s t}$ is the coupling strength between nodes s and t.

- $\psi_{s t}(-1,-1)=\psi_{s t}(1,1)=e^{J_{s t}} ; \quad \psi_{s t}(-1,1)=\psi_{s t}(1,-1)=e^{-J_{s t}}$
- If two nodes are not connected set $J_{s t}=0$.

Ising model

- We might want to add node potentials as well

$$
\psi_{s}\left(x_{s}\right)=e^{b_{s} x_{s}}
$$

- The overall distribution becomes

$$
p(\boldsymbol{x}) \propto \prod_{s \sim t} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{s} \psi_{s}\left(x_{s}\right)=\exp \left\{\sum_{s \sim t} J_{s t} x_{s} x_{t}+\sum_{s} b_{s} x_{s}\right\} .
$$

- If $J_{s t}>0$ the model promotes same spins on neighboring spins.
- Hammersley-Clifford theorem: $J_{i j}=0$ then $X_{i} \perp X_{j} \mid X_{\text {rest }}$.

Multivariate Gaussian distribution

Univariate Gaussian: $f\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)$.
Recall: Multivariate normal distribution, $X=\left(X_{1}, \ldots, X_{m}\right)$:
Let $\mu \in \mathbb{R}^{m}$ and Σ symmetric positive definite $m \times m$ matrix. We write $X \sim N_{m}(\mu, \Sigma)$ if the density of the vector X is

$$
f(\boldsymbol{x} ; \mu, \Sigma)=\frac{1}{(2 \pi)^{m / 2}}(\operatorname{det} \Sigma)^{-1 / 2} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\mu)^{T} \Sigma^{-1}(\boldsymbol{x}-\mu)\right) .
$$

Positive definite: $\forall \boldsymbol{u} \neq \mathbf{0} \quad \boldsymbol{u}^{\top} \Sigma \boldsymbol{u}>0$.

Moments:

- mean vector: $\mathbb{E} X=\mu$,
- covariance: $\operatorname{var}(X)=\Sigma$.

Recall: Marginal and conditional distributions

Split X into two blocks $X=\left(X_{A}, X_{B}\right)$. Denote

$$
\mu=\left(\mu_{A}, \mu_{B}\right) \quad \text { and } \quad \Sigma=\left[\begin{array}{ll}
\Sigma_{A A} & \Sigma_{A B} \\
\Sigma_{B A} & \Sigma_{B B}
\end{array}\right]
$$

Marginal distribution

$X_{A} \sim N\left(\mu_{A}, \Sigma_{A A}\right)$

Conditional distribution

$X_{A} \mid X_{B}=x_{B} \sim N\left(\mu_{A}+\Sigma_{A B} \Sigma_{B B}^{-1}\left(x_{B}-\mu_{B}\right), \Sigma_{A A}-\Sigma_{A B} \Sigma_{B B}^{-1} \Sigma_{B A}\right)$

- Note that the conditional covariance is constant.

Some other properties

Linear transformations:
$A \in \mathbb{R}^{m \times p}$ for $m \leq p$ and $X \sim N_{p}(\mu, \Sigma)$ then $A X \sim N_{m}\left(A \mu, A \Sigma A^{T}\right)$.
Conditional independence:

- $X_{i} \perp X_{j}$ if and only if $\Sigma_{i j}=0$.
- $X_{i} \perp X_{j} \mid X_{C} \quad$ if and only if $\quad \Sigma_{i j}-\Sigma_{i, C} \Sigma_{C, C}^{-1} \Sigma_{C, j}=0$
- Let $R=V \backslash\{i, j\}$. The following are equivalent:
- $X_{i} \perp X_{j} \mid X_{R}$
- $\Sigma_{i j}-\Sigma_{i, R} \Sigma_{R, R}^{-1} \Sigma_{R, j}=0$
- $\left(\Sigma^{-1}\right)_{i j}=0$

Gaussian Graphical models

Denote $K=\Sigma^{-1}$ then

$$
p(\boldsymbol{x} \mid \mu, \Sigma) \propto \prod_{s} e^{-\frac{1}{2} K_{s s}\left(x_{s}-\mu_{s}\right)^{2}} \prod_{s<t} e^{-K_{s t}\left(x_{s}-\mu_{s}\right)\left(x_{t}-\mu_{t}\right)}
$$

Important interpretation: $K_{i j}=0$ if and only if $X_{i} \perp X_{j} \mid X_{\text {rest }}$.

Show that this is an exponential family.

Inference as Conditional Distribution

- We explore inference in probabilistic graphical models (PGMs).
$-x_{E}=$ The observed evidence
$-x_{F}=$ The unobserved variable we want to infer
$-x_{R}=\boldsymbol{x}-\left\{x_{F}, x_{E}\right\}=$ Remaining variables, extraneous to query.
- Focus on computing the conditional probability distribution

$$
p\left(x_{F} \mid x_{E}\right)=\frac{p\left(x_{F}, x_{E}\right)}{p\left(x_{E}\right)}=\frac{p\left(x_{F}, x_{E}\right)}{\sum_{x_{F}} p\left(x_{F}, x_{E}\right)}
$$

- for which, we marginalize out these extraneous variables, focussing on the joint distribution over evidence and subject of inference:

$$
p\left(x_{F}, x_{E}\right)=\sum_{x_{R}} p\left(x_{F}, x_{E}, x_{R}\right)
$$

Variable elimination

Order in which we marginalize affects the computational cost!
Our main tool is variable elimination:

- A simple and general exact inference algorithm in any probabilistic graphical model (DAGMs or MRFs).
- Computational complexity depends on the graph structure.
- Dynamic programming avoids enumerating all variable assignments.

Example: Simple chain

- Lets start with the example of a simple chain

$$
A \rightarrow B \rightarrow C \rightarrow D
$$

where we want to compute $p(D)$, with no evidence variables.

- We have

$$
x_{F}=\{D\}, x_{E}=\{ \}, x_{R}=\{A, B, C\}
$$

- We saw last lecture that this graphical model describes the factorization of the joint distribution as:

$$
p(A, B, C, D)=p(A) p(B \mid A) p(C \mid B) p(D \mid C)
$$

- Assume each variable can take on k different values.

Example: Simple chain

- The goal is to compute the marginal $p(D)$:

$$
p(D)=\sum_{A, B, C} p(A, B, C, D)
$$

- However, if we do this sum naively, cost is exponential $O\left(k^{n=4}\right)$:

$$
\begin{aligned}
p(D) & =\sum_{A, B, C} p(A, B, C, D) \\
& =\sum_{C} \sum_{B} \sum_{A} p(A) p(B \mid A) p(C \mid B) p(D \mid C)
\end{aligned}
$$

- Instead, choose an elimination ordering:

$$
\begin{aligned}
p(D) & =\sum_{C, B, A} p(A, B, C, D) \\
& =\sum_{C} p(D \mid C)\left(\sum_{B} p(C \mid B)\left(\sum_{A} p(A) p(B \mid A)\right)\right) .
\end{aligned}
$$

Example: Simple chain

- This reduces the complexity by first computing terms that appear across the other sums.

$$
\begin{aligned}
p(D) & =\sum_{C} p(D \mid C) \sum_{B} p(C \mid B) \sum_{A} p(A) p(B \mid A) \\
p(D) & =\sum_{C} p(D \mid C) \sum_{B} p(C \mid B) \sum_{A} p(A) p(B \mid A) \\
& =\sum_{C} p(D \mid C) \sum_{B} p(C \mid B) p(B) \\
& =\sum_{C} p(D \mid C) p(C)
\end{aligned}
$$

- The cost of performing inference on the chain in this manner is $\mathcal{O}\left(n k^{2}\right)$. In comparison, generating the full joint distribution and marginalizing over it has complexity $\mathcal{O}\left(k^{n}\right)$!

Best Elimination Ordering

- The complexity of variable elimination depends on the elimination ordering!
- Unfortunately, finding the best elimination ordering is NP-hard.

Intermediate Factors

The same algorithm both for DAGMs and MRFs:

- Introduce nonnegative factors ϕ (like for MRFs).
- e.g. in a simple DAG model:

- Marginalizing over X we introduce a new factor, denoted by τ.

Sum-Product Inference

- Abstractly, computing $p\left(x_{F} \mid x_{E}\right)$ is given by the sum-product algorithm:

$$
p\left(x_{F} \mid x_{E}\right) \propto \tau\left(x_{F}, x_{E}\right)=\sum_{x_{R}} \prod_{C \in \mathcal{F}} \psi_{C}\left(x_{C}\right)
$$

where \mathcal{F} is a set of potentials or factors.

- For DAGMs, \mathcal{F} is given by the the sets of the form

$$
\{i\} \cup \operatorname{parents}(i) \quad \text { for all nodes } i .
$$

- For MRFs, \mathcal{F} is given by the set of maximal cliques.

Example

We have
$\mathcal{F}=\{\{C\},\{C, D\},\{I\},\{G, D, I\},\{L, G\},\{S, I\},\{J, S, L\},\{H, J, G)\}\}$
We are interested in the probability of getting a job, $p(J)$.
We perform exact inference as follows.

Example $(\mathcal{F}=\{\{C\},\{C, D\},\{I\},\{G, D, I\},\{L, G\},\{S, I\},\{J, S, L\},\{H, J, G)\}\})$

Elimination Ordering $\prec\{C, D, I, H, G, S, L\}$

$$
\begin{aligned}
& p(J)=\sum_{L} \sum_{S} \psi(J, L, S) \sum_{G} \psi(L, G) \sum_{H} \psi(H, G, J) \sum_{I} \psi(S, I) \psi(I) \sum_{D} \psi(G, D, I) \underbrace{\sum_{C} \psi(C) \psi(C, D)}_{\tau(D)} \\
& =\sum_{L} \sum_{S} \psi(J, L, S) \sum_{G} \psi(L, G) \sum_{H} \psi(H, G, J) \sum_{I} \psi(S, I) \psi(I) \underbrace{\sum_{D} \psi(G, D, I) \tau(D)}_{\tau(G, I)} \\
& =\sum_{L} \sum_{S} \psi(J, L, S) \sum_{G} \psi(L, G) \sum_{H} \psi(H, G, J) \underbrace{\sum_{I} \psi(S, I) \psi(I) \tau(G, I)}_{\tau(S, G)} \\
& =\sum_{L} \sum_{S} \psi(J, L, S) \sum_{G} \psi(L, G) \tau(S, G) \underbrace{\sum_{H} \psi(H, G, J)}_{\tau(G, J)} \\
& =\sum_{L} \sum_{S} \psi(J, L, S) \underbrace{\sum_{G} \psi(L, G) \tau(S, G) \tau(G, J)}_{\tau(J, L, S)} \\
& =\sum_{L} \underbrace{\sum_{S} \psi(J, L, S) \tau(J, L, S)}_{\tau(J, L)} \\
& =\underbrace{\sum_{L} \tau(J, L)}_{\tau(J)} \\
& =\tau(J) \quad \text { Do we need to normalize the final } \tau \text { ? }
\end{aligned}
$$

Complexity of Variable Elimination Ordering

- We discussed previously that variable elimination ordering determines the computational complexity. This is due to how many variables appear inside each sum.
- Different elimination orderings will involve different number of variables appearing inside each sum.
- The complexity of the VE algorithm is

$$
O\left(m k^{N_{\max }}\right)
$$

where

- m is the number of initial factors.
- k is the number of states each random variable takes (assumed to be equal here).
- N_{i} is the number of random variables inside each sum \sum_{i}.
- $N_{\max }=\max _{i} N_{i}$ is the number of variables inside the largest sum.

Example

Elimination Ordering $\prec\{C, D, I, H, G, S, L\}$

- Here are all the initial factors:

$$
\begin{aligned}
\mathcal{F}= & \{\{C\},\{C, D\},\{I\},\{G, D, I\},\{L, G\},\{S, I\},\{J, S, L\},\{H, J, G)\}\} \\
& \Longrightarrow m=|\Phi|=8
\end{aligned}
$$

- Here are the sums, and the number of variables that appear in them

$$
\begin{aligned}
& \underbrace{\sum_{C} \psi(C) \psi(C, D)}_{N_{C}=2} \underbrace{\sum_{D} \psi(G, D, I) \tau(D)}_{N_{D}=3} \underbrace{\sum_{I} \psi(S, I) \psi(I) \tau(G, I)}_{N_{I}=3} \\
& \underbrace{\sum_{H} \psi(H, G, J)}_{N_{H}=3} \underbrace{\sum_{G} \psi(L, G) \tau(S, G) \tau(G, J)}_{N_{G}=4} \underbrace{\sum_{S} \psi(J, L, S) \tau(J, L, S)}_{N_{S}=3} \\
& \underbrace{\sum_{L} \tau(J, L) \Longrightarrow}_{N_{L}=2} \Longrightarrow \text { the largest sum is } N_{G}=4 .
\end{aligned}
$$

- For simplicity, assume all variables take on k states. So the complexity of the variable elimination under this ordering is $O\left(8 \cdot k^{4}\right)$.

Summary

Undirected graphical models:

- MRFs are useful if there is no topological ordering in the graph.
- Cliques are key to parametrizing distributions induced by MRFs.
- Ising model and Gaussian graphical models are important example.

Variable elimination:

- Variable elimination can be used for exact inference in PGMs.
- The ordering in variable elimination can significantly reduce the computational complexity.
- The overall complexity of the variable elimination algorithm can be computed.

