CSC 412/2506:
 Probabilistic Learning and Reasoning

Week 4 : Message Passing and Monte Carlo

Murat A. Erdogdu
University of Toronto

Overview

- Trueskill latent variable model
- Message passing

Latent variables

- Latent variables are unobserved variables that govern certain properties in our probabilistic models.
- What to do when a variable z is unobserved but our model depends on it?
- If we never condition on z when in the inference problem, then we can just integrate it out.
- However, in certain cases, we are interested in the latent variables themselves, e.g. the clustering problems.
- More on latent variables when we cover Gaussian mixtures.

The TrueSkill latent variable model

- TrueSkill model is a player ranking system for competitive games.
- The goal is to infer the skill of a set of players in a competitive game, based on observing who beats who.
- In the TrueSkill model, each player has a fixed level of skill, denoted z_{i}.
- We initially don't know anything about anyone's skill, but we assume everyone's skill is independent (e.g. an independent Gaussian prior).
- We never get to observe the players' skills directly, which makes this a latent variable model.

TrueSkill model

- Instead, we observe the outcome of a series of matches between different players.
- For each game, the probability that player i beats player j is given by

$$
p\left(i \text { beats } j \mid z_{i}, z_{j}\right)=\sigma\left(z_{i}-z_{j}\right)
$$

where sigma is the logistic function: $\sigma(y)=\frac{1}{1+\exp (-y)}$.

- We can write the entire joint likelihood of a set of players and games as:

$$
\begin{aligned}
& p\left(z_{1}, z_{2}, \ldots z_{N}, \text { game } 1, \text { game } 2, . . \text { game } \mathrm{T}\right) \\
& =\left[\prod_{i=1}^{N} p\left(z_{i}\right)\right]\left[\prod_{\text {games }} p\left(i \text { beats } j \mid z_{i}, z_{j}\right)\right]
\end{aligned}
$$

Posterior

- Given the outcome of some matches, the players' skills are no longer independent, even if they've never played each other.
- Computing the exact posterior over even two players' skills requires integrating over all the other players' skills:

$$
\begin{array}{r}
p\left(z_{1}, z_{2} \mid \text { game } 1, \text { game } 2, \ldots \text { game } \mathrm{T}\right) \\
=\int \cdots \int p\left(z_{1}, z_{2}, z_{3} \ldots z_{N} \mid \text { games }\right) d z_{3} \ldots d z_{N}
\end{array}
$$

- Message passing can be used to compute approximate posteriors!
- More on this model in Assignment 2.

Variable Elimination Order and Trees

- Last week: we can do exact inference by variable elimination: I.e. to compute $p(A \mid C)$, we can marginalize $p(A, B \mid C)$ over every variable in B, one at a time.
- Computational cost is determined by the graph structure, and the elimination ordering.
- Determining the optimal elimination ordering is hard.
- Even if we do, the resulting marginalization might also be unreasonably costly.
- Fortunately, for trees, any elimination ordering that goes from the leaves inwards towards any root will be optimal.
- You can think of trees as just chains which sometimes branch.

Inference in Trees (MRF with no cycles)

- A graph is $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ where \mathcal{V} is the set of vertices (nodes) and \mathcal{E} the set of edges
- For $i, j \in \mathcal{V}$, we have $(i, j) \in \mathcal{E}$ if there is an edge between the nodes i and j.
- For a node in graph $i \in \mathcal{V}, N(i)$ denotes the neighbors of i, i.e. $N(i)=\{j:(i, j) \in \mathcal{E}\}$.
$X_{4} \quad X_{5} \quad$ Shaded nodes are observed, and denoted by $\bar{x}_{2}, \bar{x}_{4}, \bar{x}_{5}$.
The joint distribution in the general case is

$$
p\left(x_{1: n}\right)=\frac{1}{Z} \prod_{i \in \mathcal{V}} \psi\left(x_{i}\right) \prod_{(i, j) \in \mathcal{E}} \psi_{i j}\left(x_{i}, x_{j}\right)
$$

Inference in Trees

- Joint distribution is

$$
p\left(x_{1: n}\right)=\frac{1}{Z} \prod_{i \in \mathcal{V}} \psi\left(x_{i}\right) \prod_{(i, j) \in \mathcal{E}} \psi_{i j}\left(x_{i}, x_{j}\right)
$$

- Want to compute $p\left(x_{3} \mid \bar{x}_{2}, \bar{x}_{4}, \bar{x}_{5}\right)$.
- We have

$$
p\left(x_{3} \mid \bar{x}_{2}, \bar{x}_{4}, \bar{x}_{5}\right) \propto p\left(x_{3}, \bar{x}_{2}, \bar{x}_{4}, \bar{x}_{5}\right) .
$$

$p\left(x_{3} \mid \bar{x}_{2}, \bar{x}_{4}, \bar{x}_{5}\right)=\frac{1}{Z^{E}} \sum_{x_{1}} \psi_{1}\left(x_{1}\right) \psi_{3}\left(x_{3}\right) \psi_{2}\left(\bar{x}_{2}\right) \psi_{4}\left(\bar{x}_{4}\right) \psi_{5}\left(\bar{x}_{5}\right) \psi_{12}\left(\bar{x}_{2}, x_{1}\right) \psi_{34}\left(\bar{x}_{4}, x_{3}\right) \psi_{35}\left(\bar{x}_{5}, x_{3}\right) \psi_{13}\left(x_{1}, x_{3}\right)$

- Let's write the variable elimination algorithm.

Inference in Trees

$$
\begin{aligned}
p\left(x_{3} \mid \bar{x}_{2}, \bar{x}_{4}, \bar{x}_{5}\right) & =\frac{1}{Z^{E}} \sum_{x_{1}} \psi_{1}\left(x_{1}\right) \psi_{3}\left(x_{3}\right) \psi_{2}\left(\bar{x}_{2}\right) \psi_{4}\left(\bar{x}_{4}\right) \psi_{5}\left(\bar{x}_{5}\right) \psi_{12}\left(\bar{x}_{2}, x_{1}\right) \psi_{34}\left(\bar{x}_{4}, x_{3}\right) \psi_{35}\left(\bar{x}_{5}, x_{3}\right) \psi_{13}\left(x_{1}, x_{3}\right) \\
& =\frac{1}{Z^{E}} \underbrace{\psi_{4}\left(\bar{x}_{4}\right) \psi_{34}\left(\bar{x}_{4}, x_{3}\right)}_{m_{43}\left(x_{3}\right)} \underbrace{\psi_{5}\left(\bar{x}_{5}\right) \psi_{35}\left(\bar{x}_{5}, x_{3}\right)}_{m_{53}\left(x_{3}\right)} \psi_{3}\left(x_{3}\right) \sum_{x_{1}} \psi_{1}\left(x_{1}\right) \psi_{13}\left(x_{1}, x_{3}\right) \underbrace{\psi_{2}\left(\bar{x}_{2}\right) \psi_{12}\left(\bar{x}_{2}, x_{1}\right)}_{m_{21}\left(x_{1}\right)} \\
& =\frac{1}{Z^{E}} \psi_{3}\left(x_{3}\right) m_{43}\left(x_{3}\right) m_{53}\left(x_{3}\right) \underbrace{\sum_{x_{1}} \psi_{1}\left(x_{1}\right) \psi_{13}\left(x_{1}, x_{3}\right) m_{21}\left(x_{1}\right)}_{m_{13}\left(x_{3}\right)} \\
& =\frac{1}{Z^{E}} \psi_{3}\left(x_{3}\right) m_{43}\left(x_{3}\right) m_{53}\left(x_{3}\right) m_{13}\left(x_{3}\right)=\frac{\psi_{3}\left(x_{3}\right) m_{43}\left(x_{3}\right) m_{53}\left(x_{3}\right) m_{13}\left(x_{3}\right)}{\sum_{x_{3}} \psi_{3}\left(x_{3}\right) m_{43}\left(x_{3}\right) m_{53}\left(x_{3}\right) m_{13}\left(x_{3}\right)}
\end{aligned}
$$

Slide credit: S. Ermon

Message Passing on Trees

We perform variable elimination from leaves to root, which is the sum product algorithm to compute all marginals. Belief propagation is a message-passing between neighboring vertices of the graph.

- The message sent from variable j to $i \in N(j)$ is

$$
m_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j}} \psi_{j}\left(x_{j}\right) \psi_{i j}\left(x_{i}, x_{j}\right) \prod_{k \in N(j) / i} m_{k \rightarrow j}\left(x_{j}\right)
$$

- If x_{j} is observed, the message is

$$
m_{j \rightarrow i}\left(x_{i}\right)=\psi_{j}\left(\bar{x}_{j}\right) \psi_{i j}\left(x_{i}, \bar{x}_{j}\right) \prod_{k \in N(j) / i} m_{k \rightarrow j}\left(\bar{x}_{j}\right)
$$

- Once the message passing stage is complete, we can compute our beliefs as

$$
b\left(x_{i}\right) \propto \psi_{i}\left(x_{i}\right) \prod_{j \in N(i)} m_{j \rightarrow i}\left(x_{i}\right)
$$

- Once normalized, beliefs are the marginals we want to compute!

Message Passing on Trees

The message sent from variable j to $i \in N(j)$ is

$$
m_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j}} \psi_{j}\left(x_{j}\right) \psi_{i j}\left(x_{i}, x_{j}\right) \prod_{k \in N(j) / i} m_{k \rightarrow j}\left(x_{j}\right)
$$

Each message $m_{j \rightarrow i}\left(x_{i}\right)$ is a vector with one value for each state of x_{i}.

Inference in Trees: Compute $p\left(x_{3} \mid \bar{x}_{2}, \bar{x}_{4}, \bar{x}_{5}\right)$

$$
\begin{aligned}
m_{j \rightarrow i}\left(x_{i}\right) & =\sum_{x_{j}} \psi_{j}\left(x_{j}\right) \psi_{i j}\left(x_{i}, x_{j}\right) \prod_{k \in N(j) / i} m_{k \rightarrow j}\left(x_{j}\right) \\
b\left(x_{i}\right) & \propto \psi_{i}\left(x_{i}\right) \prod_{j \in N(i)} m_{j \rightarrow i}\left(x_{i}\right) .
\end{aligned}
$$

This is the same as variable elimination, so

$$
p\left(x_{3} \mid \bar{x}_{2}, \bar{x}_{4}, \bar{x}_{5}\right)=b\left(x_{3}\right)
$$

Belief Propagation on Trees

Belief Propagation Algorithm on Trees

- Choose root r arbitrarily
- Pass messages from leafs to r
- Pass messages from r to leafs
- These two passes are sufficient on trees!
- Compute beliefs (marginals)

$$
b\left(x_{i}\right) \propto \psi_{i}\left(x_{i}\right) \prod_{j \in \mathcal{N}(i)} m_{j \rightarrow i}\left(x_{i}\right), \forall_{i}
$$

One can compute them in two steps:

- Compute unnormalized beliefs $\tilde{b}\left(x_{i}\right) \propto \psi_{i}\left(x_{i}\right) \prod_{j \in \mathcal{N}(i)} m_{j \rightarrow i}\left(x_{i}\right)$
- Normalize them $b\left(x_{i}\right)=\tilde{b}\left(x_{i}\right) / \sum_{x_{i}} \tilde{b}\left(x_{i}\right)$.

Loopy Belief Propagation

- What if the graph (MRF) we have is not a tree and have cycles?
- Keep passing messages until convergence.
- This is called Loopy Belief Propagation.
- This is like when someone starts a rumour and then hears the same rumour from someone else, making them more certain it's true.
- We won't get the exact marginals, but an approximation.
- But turns out it is still very useful!

Loopy Belief Propagation

Loopy BP:

- Initialize all messages uniformly:

$$
m_{i \rightarrow j}\left(x_{j}\right)=[1 / k, \ldots, 1 / k]^{\top}
$$

where k is the number of states x_{j} can take.

- Keep running BP updates until it "converges":

$$
m_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j}} \psi_{j}\left(x_{j}\right) \psi_{i j}\left(x_{i}, x_{j}\right) \prod_{k \in N(j) / i} m_{k \rightarrow j}\left(x_{j}\right)
$$

and (sometimes) normalized for stability.

- It will generally not converge, but that's generally ok.
- Compute beliefs

$$
b\left(x_{i}\right) \propto \psi_{i}\left(x_{i}\right) \prod_{j \in \mathcal{N}(i)} m_{j \rightarrow i}\left(x_{i}\right)
$$

This algorithm is still very useful in practice, without any theoretical guarantee (other than trees).

Sum-product vs. Max-product

- The algorithm we learned is called sum-product BP and approximately computes the marginals at each node.
- For MAP inference, we maximize over x_{j} instead of summing over them. This is called max-product BP.
- BP updates take the form

$$
m_{j \rightarrow i}\left(x_{i}\right)=\max _{x_{j}} \psi_{j}\left(x_{j}\right) \psi_{i j}\left(x_{i}, x_{j}\right) \prod_{k \in N(j) \neq i} m_{k \rightarrow j}\left(x_{j}\right)
$$

- After BP algorithm converges, the beliefs are max-marginals

$$
b\left(x_{i}\right) \propto \psi_{i}\left(x_{i}\right) \prod_{j \in \mathcal{N}(i)} m_{j \rightarrow i}\left(x_{i}\right)
$$

- MAP inference:

$$
\hat{x}_{i}=\arg \max _{x_{i}} b\left(x_{i}\right) .
$$

Summary

- This algorithm is still very useful in practice, without much theoretical guarantee (other than trees).
- Loopy BP multiplies the same potentials multiple times. It is often over-confident.
- Loopy BP can oscillate, but this is generally ok.
- Loopy BP often works better if we normalize messages, and use momentum in the updates.
- The algorithm we learned is called sum-product BP. If we are interested in MAP inference, we can maximize over x_{j} instead of summing over them. This is called max-product BP.

Monte Carlo: Overview

- Ancestral Sampling
- Simple Monte Carlo
- Importance Sampling
- Rejection Sampling

Sampling

- A sample from a distribution $p(x)$ is a single realization x whose probability distribution is $p(x)$. Here, x can be high-dimensional or simply real valued.
- We assume the density from which we wish to draw samples, $p(x)$, can be evaluated to within a multiplicative constant. That is, we can evaluate a function $\tilde{p}(x)$ such that

$$
p(x)=\frac{\tilde{p}(x)}{Z}
$$

Warm up: Ancestral Sampling

- Given a DAGM, and the ability to sample from each of its factors given its parents, we can sample from the joint distribution over all the nodes by ancestral sampling, which simply means sampling in a topoplogical order.
- At each step, sample from any conditional distribution that you haven't visited yet, whose parents have all been sampled.

Ancestral Sampling Example

- Start by sampling from $p\left(x_{1}\right)$.
- Then sample from $p\left(x_{2} \mid x_{1}\right)$ and $p\left(x_{3} \mid x_{1}\right)$.
- Then sample from $p\left(x_{4} \mid x_{2}, x_{3}\right)$.
- Finally, sample from $p\left(x_{5} \mid x_{3}\right)$.

Main objectives of sampling

We will be using Monte Carlo methods to solve one or both of the following problems.

- Problem 1: To generate samples $\left\{x^{(r)}\right\}_{r=1}^{R}$ from a given probability distribution $p(x)$.
- Problem 2: To estimate expectations of functions, $\phi(x)$, under this distribution $p(x)$

$$
\Phi=\underset{x \sim p(x)}{\mathbb{E}}[\phi(x)]=\int \phi(x) p(x) d x
$$

ϕ is called a test function.

Example

Examples of test functions $\phi(x)$:

- the mean of a function f under $p(x)$ by finding the expectation of the function $\phi_{1}(x)=f(x)$.
- the variance of f under $p(x)$ by finding the expectations of the functions $\phi_{1}(x)=f(x)$ and $\phi_{2}(x)=f(x)^{2}$

$$
\begin{array}{r}
\phi_{1}(x)=f(x) \Rightarrow \Phi_{1}=\underset{x \sim p(x)}{\mathbb{E}}\left[\phi_{1}(x)\right] \\
\begin{array}{r}
\phi_{2}(x)=f(x)^{2} \Rightarrow \Phi_{2}=\underset{x \sim p(x)}{\mathbb{E}}\left[\phi_{2}(x)\right] \\
\Rightarrow \operatorname{var}(f(x))=\Phi_{2}-\left(\Phi_{1}\right)^{2}
\end{array}
\end{array}
$$

Estimation problem

We start with the estimation problem using simple Monte Carlo:

- Simple Monte Carlo: Given $\left\{x^{(r)}\right\}_{r=1}^{R} \sim p(x)$ we can estimate the expectation $\underset{x \sim p(x)}{\mathbb{E}}[\phi(x)]$ using the estimator $\hat{\Phi}$:

$$
\Phi:=\underset{x \sim p(x)}{\mathbb{E}}[\phi(x)] \approx \frac{1}{R} \sum_{r=1}^{R} \phi\left(x^{(r)}\right):=\hat{\Phi}
$$

- The fact that $\hat{\Phi}$ is a consistent estimator of Φ follows from the Law of Large Numbers (LLN).

Basic properties of Monte Carlo estimation

- Unbiasedness: If the vectors $\left\{x^{(r)}\right\}_{r=1}^{R}$ are generated independently from $p(x)$, then the expectation of $\hat{\Phi}$ is Φ.

$$
\begin{aligned}
\mathbb{E}[\hat{\Phi}] & =\mathbb{E}\left[\frac{1}{R} \sum_{r=1}^{R} \phi\left(x^{(r)}\right)\right]=\frac{1}{R} \sum_{r=1}^{R} \mathbb{E}\left[\phi\left(x^{(r)}\right)\right] \\
& =\frac{1}{R} \sum_{r=1}^{R} \underset{x \sim p(x)}{\mathbb{E}}[\phi(x)]=\frac{R}{R} \underset{x \sim p(x)}{\mathbb{E}}[\phi(x)] \\
& =\Phi
\end{aligned}
$$

Simple properties of Monte Carlo estimation

- Variance: As the number of samples of R increases, the variance of $\hat{\Phi}$ will decrease with rate $\frac{1}{R}$

$$
\begin{aligned}
\operatorname{var}[\hat{\Phi}] & =\operatorname{var}\left[\frac{1}{R} \sum_{r=1}^{R} \phi\left(x^{(r)}\right)\right] \\
& =\frac{1}{R^{2}} \operatorname{var}\left[\sum_{r=1}^{R} \phi\left(x^{(r)}\right)\right] \\
& =\frac{1}{R^{2}} \sum_{r=1}^{R} \operatorname{var}\left[\phi\left(x^{(r)}\right)\right] \\
& =\frac{R}{R^{2}} \operatorname{var}[\phi(x)] \\
& =\frac{1}{R} \operatorname{var}[\phi(x)]
\end{aligned}
$$

Accuracy of the Monte Carlo estimate depends on the variance of ϕ.

Normalizing constant

- Assume we know the density $p(x)$ up to a multiplicative constant

$$
p(x)=\frac{\tilde{p}(x)}{Z}
$$

- There are two difficulties:
- We do not generally know the normalizing constant, Z. The main diffuculty is computing it

$$
Z=\int \tilde{p}(x) d x
$$

which requires computing a high-dimensional integral.

- Even if we did know Z, the problem of drawing samples from $p(x)$ is still a challenging one, especially in high-dimensional spaces.

Bad Idea: Lattice Discretization

Imagine that we wish to draw samples from the density $p(x)=\frac{\tilde{p}(x)}{Z}$ given in figure (a).

(a)

(b)

- How to compute Z ?
- We could discretize the variable x and sample from the discrete distribution (figure (b)).
- In figure (b) there are 50 uniformly spaced points in one dimension. If our system had, $D=1000$ dimensions say, then the corresponding number of points would be $50^{D}=50^{1000}$. Thus, the cost is exponential in dimension!

An analogy

Imagine the tasks of drawing random water samples from a lake and finding the average plankton concentration. Let

- $\tilde{p}(\mathbf{x})=$ the depth of the lake at $\mathbf{x}=(x, y)$
- $\phi(\mathbf{x})=$ the plankton concentration as a function of \mathbf{x}
- $Z=$ the volume of the lake $=\int \tilde{p}(\mathbf{x}) d \mathbf{x}$

The average concentration of plankton is therefore

$$
\Phi=\frac{1}{Z} \int \phi(\mathbf{x}) \tilde{p}(\mathbf{x}) d \mathbf{x}
$$

An analogy

You can take the boat to any desired location \mathbf{x} on the lake, and can measure the depth, $\tilde{p}(\mathbf{x})$, and plankton concentration, $\phi(\mathbf{x})$, at that point. Therefore,

- Problem 1 is to draw water samples at random such that each sample is equally likely to come from any point within the lake.
- Problem 2 is to find the average plankton concentration.

- To correctly estimate Φ, our method must implicitly discover the canyons and find their volume relative to the rest of the lake.

A slice through a lake that includes some canyons.

Estimation tool: Importance Sampling

Importance sampling is a method for estimating the expectation of a function $\phi(x)$.

- The density from which we wish to draw samples, $p(x)$, can be evaluated up to normalizing constant, $\tilde{p}(x)$

$$
p(x)=\frac{\tilde{p}(x)}{Z_{p}}
$$

- There is a simpler density, $q(x)$ from which it is easy to sample from and easy to evaluate up to normalizing constant (i.e. $\tilde{q}(x)$)

$$
q(x)=\frac{\tilde{q}(x)}{Z_{q}}
$$

Estimation tool: Importance Sampling

- In importance sampling, we generate R samples from $q(x)$

$$
\left\{x^{(r)}\right\}_{r=1}^{R} \sim q(x)
$$

- If these points were samples from $p(x)$ then we could estimate Φ by

$$
\Phi=\underset{x \sim p(x)}{\mathbb{E}}[\phi(x)] \approx \frac{1}{R} \sum_{r=1}^{R} \phi\left(x^{(r)}\right)=\hat{\Phi}
$$

That is, we could use a simple Monte Carlo estimator.

- But we sampled from q. We need to correct this!
- Values of x where $q(x)$ is greater than $p(x)$ will be over-represented in this estimator, and points where $q(x)$ is less than $p(x)$ will be under-represented. Thus, we introduce weights.
- Introduce weights: $\tilde{w}_{r}=\frac{\tilde{p}\left(x^{(r)}\right)}{\tilde{q}\left(x^{(r)}\right)}$ and notice that

$$
\frac{1}{R} \sum_{r=1}^{R} \tilde{w}_{r} \approx \underset{x \sim q(x)}{\mathbb{E}}\left[\frac{\tilde{p}(x)}{\tilde{q}(x)}\right]=\int \frac{\tilde{p}(x)}{\tilde{q}(x)} q(x) d x=\frac{Z_{p}}{Z_{q}}
$$

- Finally, we rewrite our estimator under q
$\Phi=\int \phi(x) p(x) d x=\int \phi(x) \cdot \frac{p(x)}{q(x)} \cdot q(x) d x \approx \frac{1}{R} \sum_{r=1}^{R} \phi\left(x^{(r)}\right) \frac{p\left(x^{(r)}\right)}{q\left(x^{(r)}\right)}=(*)$
- However, the estimator relies on p. It can only rely on \tilde{p} and \tilde{q}.

$$
\begin{aligned}
(*) & =\frac{Z_{q}}{Z_{p}} \frac{1}{R} \sum_{r=1}^{R} \phi\left(x^{(r)}\right) \cdot \frac{\tilde{p}\left(x^{(r)}\right)}{\tilde{q}\left(x^{(r)}\right)}=\frac{Z_{q}}{Z_{p}} \frac{1}{R} \sum_{r=1}^{R} \phi\left(x^{(r)}\right) \cdot \tilde{w}_{r} \\
& \approx \frac{\frac{1}{R} \sum_{r=1}^{R} \phi\left(x^{(r)}\right) \cdot \tilde{w}_{r}}{\frac{1}{R} \sum_{r=1}^{R} \tilde{w}_{r}}=\sum_{r=1}^{R} \phi\left(x^{(r)}\right) \cdot w_{r}=\hat{\Phi}_{i w}
\end{aligned}
$$

where $w_{r}=\frac{\tilde{w}_{r}}{\sum_{r=1}^{R} \tilde{w}_{r}}$ and $\hat{\Phi}_{i w}$ is our importance weighted estimator.

Sampling tool: Rejection sampling

- We want expectations under $p(x)=\tilde{p}(x) / Z_{p}$ which is a very complicated one-dimensional density.
- Assume that we have a simpler proposal density $q(x)$ which we can evaluate (within a multiplicative factor Z_{q}, as before), and from which we can generate samples, i.e. $\tilde{q}(x)=Z_{q} \cdot q(x)$.
- Further assume that we know the value of a constant c such that

$$
c \tilde{q}(x)>\tilde{p}(x) \quad \forall x
$$

Sampling tool: Rejection sampling

The procedure is as follows:

1. Generate two random numbers.
1.1 The first, x, is generated from the proposal density $q(x)$.
1.2 The second, u is generated uniformly from the interval $[0, c \tilde{q}(x)]$ (see figure (b) above: book's notation $P^{*}=\tilde{p}, Q^{*}=\tilde{q}$).
2. Accept or reject the sample x by comparing the value of u with the value of $\tilde{p}(x)$
2.1 If $u>\tilde{p}(x)$, then x is rejected
2.2 Otherwise x is accepted; x is added to our set of samples $\left\{x^{(r)}\right\}$ and the value of u discarded.

Why does rejection sampling work?

1. $x \sim q(x)$
2. $u \mid x \sim \operatorname{Unif}[0, c \tilde{q}(x)]$
3. x is accepted if $u \leq \tilde{p}(x)$.

For any set A

$$
\begin{aligned}
& \mathbb{P}_{x \sim p}(x \in A)=\int_{A} p(x) d x=\int \mathbf{1}_{\{x \in A\}} p(x) d x=\mathbb{E}_{x \sim p}\left[\mathbf{1}_{\{x \in A\}}\right] \\
& \mathbb{P}_{x \sim q}(x \in A \mid u \leq \tilde{p}(x))=\mathbb{P}_{x \sim q}(x \in A, u \leq \tilde{p}(x)) / \mathbb{E}_{x \sim q}[\mathbb{P}(u \leq \tilde{p}(x) \mid x)] \\
&=\mathbb{E}_{x \sim q}\left[\mathbf{1}_{\{x \in A\}} \mathbb{P}(u \leq \tilde{p}(x) \mid x)\right] / \mathbb{E}_{x \sim q}\left[\frac{\tilde{p}(x)}{c \tilde{q}(x)}\right] \\
&=\mathbb{E}_{x \sim q}\left[\mathbf{1}_{\{x \in A\}} \frac{\tilde{p}(x)}{c \tilde{q}(x)}\right] / \frac{Z_{p}}{c Z_{q}} \\
&=\mathbb{P}_{x \sim p}(x \in A) \frac{Z_{p}}{c Z_{q}} / \frac{Z_{p}}{c Z_{q}} \\
&=\mathbb{P}_{x \sim p}(x \in A)
\end{aligned}
$$

Rejection sampling in many dimensions

- In high-dimensional problems, the requirement that $c \tilde{q}(x) \geq \tilde{p}(x)$ will force c to be huge, so acceptances will be very rare.
- Finding such a value of c may be difficult too, since we don't know where the modes of \tilde{p} are located nor how high they are.
- In general c grows exponentially with the dimensionality, so the acceptance rate is expected to be exponentially small in dimension

$$
\text { acceptance rate }=\frac{\text { area under } \tilde{p}}{\text { area under } c \tilde{q}}=\frac{Z_{p}}{c Z_{q}}
$$

Summary

- Estimating expectations is an important problem, which is in general hard. We learned 3 sampling-based tools for this task:
- Simple Monte Carlo
- Importance Sampling
- Rejection Sampling
- Next lecture, we will learn to generate samples from a particular distribution.

