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Overview of the first hour

Continuing in our theme of probabilistic models for continuous
variables.

We give a probabilistic interpretation of linear regression.

Chapter 3.3 in Bishop’s book.
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Completing the Square for Gaussians

Useful technique to find moments of Gaussian random variables.

It is a multivariate generalization of completing the square.

The density of x ∼ N (µ,Σ) satifies:

log p(x) = −1
2(x− µ)>Σ−1(x− µ) + const

= −1
2x>Σ−1x + x>Σ−1µ+ const

Thus, if we know w is Gaussian with unknown mean and
covariance, and we also know that

log p(w) = −1
2w>Aw + w>b + const

for A positive definite, then we know that

w ∼ N (A−1b,A−1).
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Bayesian Linear Regression

We take the Bayesian approach to linear regression.
I This is in contrast with the standard regression.
I By inferring a posterior distribution over the parameters, the model

can know what it doesn’t know.

How can uncertainty in the predictions help us?
I Smooth out the predictions by averaging over lots of plausible

explanations
I Assign confidences to predictions
I Make more robust decisions
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Recap: Linear Regression

Given a training set of inputs and targets {(x(i), y(i))}Ni=1

Linear model:
y = w>ψ(x) + ε

Vectorized, we have the design matrix X in input space and

Ψ =


− ψ(x(1)) −
− ψ(x(2)) −

...

− ψ(x(N)) −

 , y =


y(1)

y(2)

...

y(N)


and predictions

ŷ = Ψw
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Recap: Ridge Regression from 311

No statistical model.

Penalized sum of squares (ridge regression):

minimize
1

2
‖y −Ψw‖2 +

λ

2
‖w‖2

The gradient: (Ψ>Ψ + λI)w −Ψ>y.

Solution 1: solve analytically by setting the gradient to 0

w = (Ψ>Ψ + λI)−1Ψ>y

Solution 2: solve approximately using gradient descent

w← (1− αλ)w − αΨ>(Ψw − y)
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Linear Regression as Maximum Likelihood

We can give linear regression a probabilistic interpretation by
assuming a Gaussian noise model:

y |x ∼ N (w>ψ(x), σ2)

Linear regression is just maximum log-likelihood under this model:

N∑
i=1

log p(y(i) |x(i);w, b) =
N∑
i=1

logN (y(i);w>ψ(x(i)), σ2)

=

N∑
i=1

log

[
1√
2πσ

exp

(
− (y(i) −w>ψ(x(i)))2

2σ2

)]

= const− 1

2σ2

N∑
i=1

(y(i) −w>ψ(x(i)))2

= const− 1

2σ2
‖y −Ψw‖2
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Regularized Linear Regression as MAP Estimation

View an L2 regularizer as MAP inference with a Gaussian prior.

arg max
w

log p(w | D) = arg max
w

[log p(w) + log p(D |w)]

We just derived the likelihood term log p(D |w):

log p(D |w) = const− 1

2σ2
‖y −Ψw‖2

Assume a Gaussian prior, w ∼ N (m,S):

log p(w) = log

[
1

(2π)D/2|S|1/2
exp

(
− 1

2
(w −m)>S−1(w −m)

)]
= − 1

2
(w −m)>S−1(w −m) + const

Commonly, m = 0 and S = ηI, so

log p(w) = − 1

2η
‖w‖2 + const.

This is just L2 regularization!
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Full Bayesian Inference

Full Bayesian inference makes predictions by averaging over all
likely explanations under the posterior distribution.

Compute posterior using Bayes’ Rule:

p(w | D) ∝ p(w)p(D |w)

Make predictions using the posterior predictive distribution:

p(y |x,D) =

∫
p(w | D) p(y |x,w) dw

Doing this lets us quantify our uncertainty.
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Bayesian Linear Regression

Prior distribution: w ∼ N (0,S)

Likelihood: y |x,w ∼ N (w>ψ(x), σ2)

Assuming fixed/known S and σ2 is a big assumption. More on this
later.
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Bayesian Linear Regression

Bayesian linear regression considers various plausible explanations
for how the data were generated.

It makes predictions using all possible regression weights, weighted
by their posterior probability.

Here are samples from the prior p(w) and posteriors p(w | D)
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Bayesian Linear Regression: Posterior

Deriving the posterior distribution:

log p(w | D) = log p(w) + log p(D |w) + const

= − 1
2
w>S−1w − 1

2σ2
‖Ψw − y‖2 + const

= − 1
2
w>S−1w − 1

2σ2

(
w>Ψ>Ψw − 2y>Ψw + y>y

)
+ const

= − 1
2
w>

(
σ−2Ψ>Ψ + S−1

)
w +

1

σ2
y>Ψw + const (complete the �!)

Thus w | D ∼ N (µ,Σ) where

µ =
(
Ψ>Ψ + σ2S−1

)−1
Ψ>y

Σ = σ2
(
Ψ>Ψ + σ2S−1

)−1
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Bayesian Linear Regression: Posterior

Gaussian prior leads to a Gaussian posterior, and so the Gaussian
distribution is the conjugate prior for linear regression model.

Compare µ to the closed-form solution for linear regression:

w = (Ψ>Ψ + λI)−1Ψ>y

This is the mean of the posterior for S = σ2

λ I.

As λ→ 0, the standard deviation of the prior goes to ∞, and the
mean of the posterior converges to the MLE.
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Bayesian Linear Regression

Illustration of sequential Bayesian learning for y = w0 + w1x,
w0 = −0.3, w1 = 0.5.

Left column:

Likelihood of a single data point.

Single point does not identify a line.

Fix (x, y) then w0 = y − w1x.

Middle column:

Prior/posterior.

Right column:

Lines: samples from the posterior.

Dots: data points.
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Radial bases example

Example with radial basis function (RBF) features

ψj(x) = exp

(
−(x− µj)2

2s2

)
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Radial bases example

Functions sampled from the posterior:
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Posterior predictive distribution

The posterior just gives us distribution over the parameter space,
but if we want to make predictions, the natural choice is to use the
posterior predictive distribution.

Posterior predictive distribution:

p(y |x,D) =

∫
p(y |x,w)︸ ︷︷ ︸
N (y ;w>ψ(x),σ)

p(w | D)︸ ︷︷ ︸
N (w ;µ,Σ)

dw

Another interpretation: y = w>ψ(x) + ε, where ε ∼ N (0, σ) is
independent of w | D ∼ N (µ,Σ).

Recall

µ =
(
Ψ>Ψ + σ2S−1

)−1

Ψ>y

Σ = σ2
(
Ψ>Ψ + σ2S−1

)−1
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Bayesian Linear Regression

Another interpretation: y = w>ψ(x) + ε, where ε ∼ N (0, σ) is
independent of w | D ∼ N (µ,Σ).

Again by the fact that affine transformations of Gaussian vectors
are Gaussian, y is a Gaussian distribution with parameters

µpred = µ>ψ(x)

σ2pred = ψ(x)>Σψ(x) + σ2

Hence, the posterior predictive distribution is N (y |µpred, σ2pred).
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Bayesian Linear Regression

Here we visualize confidence intervals based on the posterior predictive
mean and variance at each point:

— Bishop, Pattern Recognition and Machine Learning
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Summary

This lecture covered the basics of Bayesian regression.

Key points:

Posterior can be computed by completing the square.

Posterior predictive distribution.

Uncertainty quantification.
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Linear Regression as Maximum Likelihood

We gave linear regression a probabilistic interpretation by
assuming a Gaussian noise model:

y |x ∼ N (w>ψ(x), σ2)

The MLE under the first model leads to ordinary least squares.

We can also do full Bayesian inference as explained last hour.
I Recall MAP estimator with a special Gaussian prior becomes

equivalent to the ridge regression estimator.
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Some problems with this formulation

The MLE will not be uniquely defined if N < M .
I We can use ridge regression or other regularization.

Flexibility may require a large number M of features, which may
need to depend on N .

We would like to have a method that is more automatic.

Kernel regression offers such a flexible framework.

Kernel methods are applicable widely beyond regression problems.

We cover classification later in the context of Gaussian Processes.
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Regularized Linear Regression: towards kernel trick

In the ridge regression problem we minimize

E(w) =
1

2
‖y −Ψw‖2 +

λ

2
w>w

∇E(w) = Ψ>Ψw −Ψ>y + λw.

Taking ∇E(w) = 0 is equivalent to solving:

w =
1

λ
Ψ>(y −Ψw) = Ψ>a ∈ RM ,

where a = (y −Ψw)/λ ∈ RN .

Substitute w = Ψ>a back in E(w), we get

E(a) =
1

2
‖y −ΨΨ>a‖2 +

λ

2
a>ΨΨ>a
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Kernel Ridge Regression

Introduce the gram matrix K = ΨΨ>, i.e.

Kij = ψ(x(i))>ψ(x(j)) =: k(x(i),x(j))

which we call the kernel matrix. Function k(x,x′) is the kernel.

Therefore, we minimize

E(a) =
1

2
‖y −Ka‖2 +

λ

2
a>Ka

Plugging w = Ψ>a to a = (y −Ψw)/λ we get

a = (K + λIN )−1y.

Substitute back into the linear regression model

ŷ(x) = ψ(x)>w = ψ(x)>Ψ>a = k(x)>(K + λIN )−1y

where k(x) = Ψψ(x) = [ψ(x(i))>ψ(x)]i = [k(x(i),x)]i.
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Kernel Ridge Regression

This is known as a dual formulation, aka Kernel trick.

We have
ŷ(x) = k(x)>(K + λIN )−1y,

where [k(x)]i = k(x(i),x), Kij = k(x(i),x(j)).

The prediction at x is given by a linear combination y.

The coefficients depend on “proximity” of x to x(i).

Dual formulation requires inverting an N ×N matrix, whereas the
standard one requires inverting an M ×M matrix.

The advantage of the dual formulation is that it is expressed
entirely in terms of the kernel function with no explicit reference
to the feature map ψ(x) (can use features of high dimension).
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Kernels: Formal definition

Positive semidefinite matrix (PSD)

A symmetric matrix A ∈ RN×N is PSD if for every vector u ∈ RN

u>Au ≥ 0.

We can use feature maps ψ : RD → RM to define kernels:

k(x,x′) = ψ(x)>ψ(x′).

But we can consider a (slightly) more general definition.

A kernel k(x,x′) is any function such that for any N data points
x(i) for i = 1, ..., N , the kernel matrix K with entries
Kij = k(x(i),x(j)) is positive semidefinite (Schoenberg 1938).
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Feature map defines a kernel

Let k(x,x′) = ψ(x)>ψ(x′)

The kernel matrix is given as Kij = k(x(i),x(j)), K = ΨΨ>.

We show that this matrix is positive semi-definite, ∀u ∈ RN ,

u>Ku = u>ΨΨ>u = (Ψ>u)>Ψ>u = ‖Ψ>u‖2 ≥ 0.

Main points:

Forget the feature map.

We can directly choose a kernel and work with it!

The dimension of the feature space does not matter anymore.

Kernels provide a measure of proximity between x and x′.
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Kernels: Examples

Example 1:

D-dimensional inputs: x = (x1, x2, ..., xD)> and z = (z1, z2, ...zD)>

k(x, z) =(x>z)2 = (x1z1 + x2z2 + ...)2

=x21z
2
1 + 2x1z1x2z2 + x22z

2
2 + ...

=(x21, x
2
2, ...,

√
2x1x2, ...)

>(z21 , z
2
2 , ...,

√
2z1z2, ...)

=ψ(x)>ψ(z)

Example 2 (Gaussian kernel): k(x, z) = exp(−‖x− z‖2/2σ2).

The feature vector has infinite dimension here!
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Kernels: Example

Predictions in the kernel ridge regression:

y(x) = wTψ(x) = aTΨψ(x) = k(x)T (K + λI)−1y

Lets look at the predictions for the scaled targets a = (K+λI)−1y

y(x) = k(x)Ta =

N∑
i=1

k(x,x(i)) ai

Which looks very much like k-NN!
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Constructing kernels from kernels

Given valid kernels k1(x,x
′) and k2(x,x

′), the following kernels will
also be valid:

k(x,x′) = ck1(x,x
′) for c > 0,

k(x,x′) = f(x)k1(x,x
′)f(x′)

k(x,x′) = k1(x,x
′) + k2(x,x

′)

k(x,x′) = k1(x,x
′) · k2(x,x′)

k(x,x′) = x>Ax (A PSD)

k(x,x′) = exp(k1(x,x
′))

k(x,x′) = q(k1(x,x
′))

where q polynomial with ≥ 0 coefficients.
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Local vs Global Kernels
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Radial basis functions

To get a better feeling for the kernel method consider the case where
kernel is defined by a radial basis function.

Radial basis functions depend only on the distance from µj , i.e.

ψj(x) = h(‖x− µj‖).

Sigmoidal basis functions: h is sigmoid.

Gaussian basis functions: h is normal pdf
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Example: Radial basis functions

We define two Gaussian basis functions with centers shown by the
green crosses, and with contours shown by the green circles.

Linear decision boundary (right) corresponds to the nonlinear
decision boundary in the input space (left, black curve).
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Radial basis functions: motivation

Given a set of data samples (x(i), y(i)) for i = 1, .., N , we want to
find a smooth function f that fits data as

f(x(i)) ≈ y(i) for i = 1, . . . , N.

This is achieved by expressing f(x) as a linear combination of
radial basis functions, one centred on every data point

f(x) =

N∑
i=1

wih(‖x− x(i)‖)

where wi are found by least squares.

In practice we may use many less functions than N .
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Radial basis functions: Illustration

Kernel regression model using isotropic Gaussian kernels:

The original sine function is shown by the green curve.

The data points are shown in blue, and each is the centre of an
isotropic Gaussian kernel.

The resulting regression function is shown by the red line.
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Neural Networks and Feature learning

Last layer in Neural networks:

If task is regression: choose
y = f (L)(h(L−1)) = (w(L))>h(L−1) + b(L)

If task is binary classification: choose
y = f (L)(h(L−1)) = σ((w(L))>h(L−1) + b(L))

Neural nets can be viewed as a way of learning features:
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Summary of the second hour

This lecture covered the basics of kernel-based methods.

Kernels can be used directly for regression and classification.

These are useful functions that capture a measure of proximity
between inputs, and express predictions based on this measure.

Next week, we will continue with kernel methods and introduce
Gaussian processes.
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