CSC 412/2506:

Probabilistic Learning and Reasoning

Week 11: Bayesian Regression \& Kernel Methods

Murat A. Erdogdu
University of Toronto

Overview of the first hour

- Continuing in our theme of probabilistic models for continuous variables.
- We give a probabilistic interpretation of linear regression.
- Chapter 3.3 in Bishop's book.

Completing the Square for Gaussians

Useful technique to find moments of Gaussian random variables.

- It is a multivariate generalization of completing the square.
- The density of $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ satifies:

$$
\begin{aligned}
\log p(\mathbf{x}) & =-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})+\mathrm{const} \\
& =-\frac{1}{2} \mathbf{x}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}+\mathbf{x}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}+\mathrm{const}
\end{aligned}
$$

- Thus, if we know w is Gaussian with unknown mean and covariance, and we also know that

$$
\log p(\mathbf{w})=-\frac{1}{2} \mathbf{w}^{\top} \mathbf{A} \mathbf{w}+\mathbf{w}^{\top} \mathbf{b}+\mathrm{const}
$$

for \mathbf{A} positive definite, then we know that

$$
\mathbf{w} \sim \mathcal{N}\left(\mathbf{A}^{-1} \mathbf{b}, \mathbf{A}^{-1}\right)
$$

Bayesian Linear Regression

- We take the Bayesian approach to linear regression.
- This is in contrast with the standard regression.
- By inferring a posterior distribution over the parameters, the model can know what it doesn't know.
- How can uncertainty in the predictions help us?
- Smooth out the predictions by averaging over lots of plausible explanations
- Assign confidences to predictions
- Make more robust decisions

Recap: Linear Regression

- Given a training set of inputs and targets $\left\{\left(\mathbf{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}$
- Linear model:

$$
y=\mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x})+\epsilon
$$

- Vectorized, we have the design matrix \mathbf{X} in input space and

$$
\boldsymbol{\Psi}=\left[\begin{array}{ccc}
- & \boldsymbol{\psi}\left(\mathbf{x}^{(1)}\right) & - \\
- & \boldsymbol{\psi}\left(\mathbf{x}^{(2)}\right) & - \\
\vdots & \\
- & \boldsymbol{\psi}\left(\mathbf{x}^{(N)}\right) & -
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{c}
y^{(1)} \\
y^{(2)} \\
\vdots \\
y^{(N)}
\end{array}\right]
$$

and predictions

$$
\hat{\mathbf{y}}=\Psi \mathbf{w}
$$

Recap: Ridge Regression from 311

- No statistical model.
- Penalized sum of squares (ridge regression):

$$
\operatorname{minimize} \quad \frac{1}{2}\|\mathbf{y}-\mathbf{\Psi} \mathbf{w}\|^{2}+\frac{\lambda}{2}\|\mathbf{w}\|^{2}
$$

- The gradient: $\left(\mathbf{\Psi}^{\top} \boldsymbol{\Psi}+\lambda \mathbf{I}\right) \mathbf{w}-\mathbf{\Psi}^{\top} \mathbf{y}$.
- Solution 1: solve analytically by setting the gradient to 0

$$
\mathbf{w}=\left(\mathbf{\Psi}^{\top} \mathbf{\Psi}+\lambda \mathbf{I}\right)^{-1} \mathbf{\Psi}^{\top} \mathbf{y}
$$

- Solution 2: solve approximately using gradient descent

$$
\mathbf{w} \leftarrow(1-\alpha \lambda) \mathbf{w}-\alpha \mathbf{\Psi}^{\top}(\mathbf{\Psi} \mathbf{w}-\mathbf{y})
$$

Linear Regression as Maximum Likelihood

- We can give linear regression a probabilistic interpretation by assuming a Gaussian noise model:

$$
y \mid \mathbf{x} \sim \mathcal{N}\left(\mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x}), \sigma^{2}\right)
$$

- Linear regression is just maximum log-likelihood under this model:

$$
\begin{aligned}
\sum_{i=1}^{N} \log p\left(y^{(i)} \mid \mathbf{x}^{(i)} ; \mathbf{w}, b\right) & =\sum_{i=1}^{N} \log \mathcal{N}\left(y^{(i)} ; \mathbf{w}^{\top} \boldsymbol{\psi}\left(\mathbf{x}^{(i)}\right), \sigma^{2}\right) \\
& =\sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(y^{(i)}-\mathbf{w}^{\top} \boldsymbol{\psi}\left(\mathbf{x}^{(i)}\right)\right)^{2}}{2 \sigma^{2}}\right)\right] \\
& =\text { const }-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N}\left(y^{(i)}-\mathbf{w}^{\top} \boldsymbol{\psi}\left(\mathbf{x}^{(i)}\right)\right)^{2} \\
& =\text { const }-\frac{1}{2 \sigma^{2}}\|\mathbf{y}-\mathbf{\Psi} \mathbf{w}\|^{2}
\end{aligned}
$$

Regularized Linear Regression as MAP Estimation

- View an L_{2} regularizer as MAP inference with a Gaussian prior.

$$
\arg \max _{\mathbf{w}} \log p(\mathbf{w} \mid \mathcal{D})=\arg \max _{\mathbf{w}}[\log p(\mathbf{w})+\log p(\mathcal{D} \mid \mathbf{w})]
$$

- We just derived the likelihood term $\log p(\mathcal{D} \mid \mathbf{w})$:

$$
\log p(\mathcal{D} \mid \mathbf{w})=\mathrm{const}-\frac{1}{2 \sigma^{2}}\|\mathbf{y}-\mathbf{\Psi} \mathbf{w}\|^{2}
$$

- Assume a Gaussian prior, $\mathbf{w} \sim \mathcal{N}(\mathbf{m}, \mathbf{S})$:

$$
\begin{aligned}
\log p(\mathbf{w}) & =\log \left[\frac{1}{(2 \pi)^{D / 2}|\mathbf{S}|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{w}-\mathbf{m})^{\top} \mathbf{S}^{-1}(\mathbf{w}-\mathbf{m})\right)\right] \\
& =-\frac{1}{2}(\mathbf{w}-\mathbf{m})^{\top} \mathbf{S}^{-1}(\mathbf{w}-\mathbf{m})+\text { const }
\end{aligned}
$$

- Commonly, $\mathbf{m}=\mathbf{0}$ and $\mathbf{S}=\eta \mathbf{I}$, so

$$
\log p(\mathbf{w})=-\frac{1}{2 \eta}\|\mathbf{w}\|^{2}+\text { const. }
$$

This is just L_{2} regularization!

Full Bayesian Inference

- Full Bayesian inference makes predictions by averaging over all likely explanations under the posterior distribution.
- Compute posterior using Bayes' Rule:

$$
p(\mathbf{w} \mid \mathcal{D}) \propto p(\mathbf{w}) p(\mathcal{D} \mid \mathbf{w})
$$

- Make predictions using the posterior predictive distribution:

$$
p(y \mid \mathbf{x}, \mathcal{D})=\int p(\mathbf{w} \mid \mathcal{D}) p(y \mid \mathbf{x}, \mathbf{w}) \mathrm{d} \mathbf{w}
$$

- Doing this lets us quantify our uncertainty.

Bayesian Linear Regression

- Prior distribution: $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{S})$
- Likelihood: $y \mid \mathbf{x}, \mathbf{w} \sim \mathcal{N}\left(\mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x}), \sigma^{2}\right)$
- Assuming fixed/known \mathbf{S} and σ^{2} is a big assumption. More on this later.

Bayesian Linear Regression

- Bayesian linear regression considers various plausible explanations for how the data were generated.
- It makes predictions using all possible regression weights, weighted by their posterior probability.
- Here are samples from the prior $p(\mathbf{w})$ and posteriors $p(\mathbf{w} \mid \mathcal{D})$

no observations

one observation

two observations

Bayesian Linear Regression: Posterior

- Deriving the posterior distribution:

$$
\begin{aligned}
\log p(\mathbf{w} \mid \mathcal{D}) & =\log p(\mathbf{w})+\log p(\mathcal{D} \mid \mathbf{w})+\text { const } \\
& =-\frac{1}{2} \mathbf{w}^{\top} \mathbf{S}^{-1} \mathbf{w}-\frac{1}{2 \sigma^{2}}\|\mathbf{\Psi} \mathbf{w}-\mathbf{y}\|^{2}+\text { const } \\
& =-\frac{1}{2} \mathbf{w}^{\top} \mathbf{S}^{-1} \mathbf{w}-\frac{1}{2 \sigma^{2}}\left(\mathbf{w}^{\top} \mathbf{\Psi}^{\top} \mathbf{\Psi} \mathbf{w}-2 \mathbf{y}^{\top} \mathbf{\Psi} \mathbf{w}+\mathbf{y}^{\top} \mathbf{y}\right)+\text { const } \\
& \left.=-\frac{1}{2} \mathbf{w}^{\top}\left(\sigma^{-2} \mathbf{\Psi}^{\top} \mathbf{\Psi}+\mathbf{S}^{-1}\right) \mathbf{w}+\frac{1}{\sigma^{2}} \mathbf{y}^{\top} \mathbf{\Psi} \mathbf{w}+\text { const (complete the } \square!\right)
\end{aligned}
$$

Thus $\mathbf{w} \mid \mathcal{D} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where

$$
\begin{aligned}
\boldsymbol{\mu} & =\left(\boldsymbol{\Psi}^{\top} \boldsymbol{\Psi}+\sigma^{2} \mathbf{S}^{-1}\right)^{-1} \boldsymbol{\Psi}^{\top} \mathbf{y} \\
\boldsymbol{\Sigma} & =\sigma^{2}\left(\boldsymbol{\Psi}^{\top} \boldsymbol{\Psi}+\sigma^{2} \mathbf{S}^{-1}\right)^{-1}
\end{aligned}
$$

Bayesian Linear Regression: Posterior

- Gaussian prior leads to a Gaussian posterior, and so the Gaussian distribution is the conjugate prior for linear regression model.
- Compare $\boldsymbol{\mu}$ to the closed-form solution for linear regression:

$$
\mathbf{w}=\left(\mathbf{\Psi}^{\top} \boldsymbol{\Psi}+\lambda \mathbf{I}\right)^{-1} \mathbf{\Psi}^{\top} \mathbf{y}
$$

This is the mean of the posterior for $\mathbf{S}=\frac{\sigma^{2}}{\lambda} \mathbf{I}$.

- As $\lambda \rightarrow 0$, the standard deviation of the prior goes to ∞, and the mean of the posterior converges to the MLE.

Bayesian Linear Regression

Illustration of sequential Bayesian learning for $y=w_{0}+w_{1} x$, $w_{0}=-0.3, w_{1}=0.5$.

Left column:

- Likelihood of a single data point.
- Single point does not identify a line.
- Fix (x, y) then $w_{0}=y-w_{1} x$.

Middle column:

- Prior/posterior.

Right column:

- Lines: samples from the posterior.
- Dots: data points.
likelihood

Radial bases example

- Example with radial basis function (RBF) features

$$
\psi_{j}(x)=\exp \left(-\frac{\left(x-\mu_{j}\right)^{2}}{2 s^{2}}\right)
$$

Radial bases example

Functions sampled from the posterior:

Posterior predictive distribution

- The posterior just gives us distribution over the parameter space, but if we want to make predictions, the natural choice is to use the posterior predictive distribution.
- Posterior predictive distribution:

$$
p(y \mid \mathbf{x}, \mathcal{D})=\int \underbrace{p(y \mid \mathbf{x}, \mathbf{w})}_{\mathcal{N}\left(y ; \mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x}), \sigma\right)} \underbrace{p(\mathbf{w} \mid \mathcal{D})}_{\mathcal{N}(\mathbf{w} ; \boldsymbol{\mu}, \mathbf{\Sigma})} \mathrm{d} \mathbf{w}
$$

- Another interpretation: $y=\mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x})+\varepsilon$, where $\varepsilon \sim \mathcal{N}(0, \sigma)$ is independent of $\mathbf{w} \mid \mathcal{D} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

Recall

$$
\begin{aligned}
\boldsymbol{\mu} & =\left(\boldsymbol{\Psi}^{\top} \boldsymbol{\Psi}+\sigma^{2} \mathbf{S}^{-1}\right)^{-1} \boldsymbol{\Psi}^{\top} \mathbf{y} \\
\boldsymbol{\Sigma} & =\sigma^{2}\left(\boldsymbol{\Psi}^{\top} \boldsymbol{\Psi}+\sigma^{2} \mathbf{S}^{-1}\right)^{-1}
\end{aligned}
$$

Bayesian Linear Regression

- Another interpretation: $y=\mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x})+\varepsilon$, where $\varepsilon \sim \mathcal{N}(0, \sigma)$ is independent of $\mathbf{w} \mid \mathcal{D} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
- Again by the fact that affine transformations of Gaussian vectors are Gaussian, y is a Gaussian distribution with parameters

$$
\begin{aligned}
\mu_{\text {pred }} & =\boldsymbol{\mu}^{\top} \boldsymbol{\psi}(\mathbf{x}) \\
\sigma_{\text {pred }}^{2} & =\boldsymbol{\psi}(\mathbf{x})^{\top} \boldsymbol{\Sigma} \boldsymbol{\psi}(\mathbf{x})+\sigma^{2}
\end{aligned}
$$

- Hence, the posterior predictive distribution is $\mathcal{N}\left(y \mid \mu_{\text {pred }}, \sigma_{\text {pred }}^{2}\right)$.

Bayesian Linear Regression

Here we visualize confidence intervals based on the posterior predictive mean and variance at each point:

Summary

- This lecture covered the basics of Bayesian regression.

Key points:

- Posterior can be computed by completing the square.
- Posterior predictive distribution.
- Uncertainty quantification.

Linear Regression as Maximum Likelihood

- We gave linear regression a probabilistic interpretation by assuming a Gaussian noise model:

$$
y \mid \mathbf{x} \sim \mathcal{N}\left(\mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x}), \sigma^{2}\right)
$$

- The MLE under the first model leads to ordinary least squares.
- We can also do full Bayesian inference as explained last hour.
- Recall MAP estimator with a special Gaussian prior becomes equivalent to the ridge regression estimator.

Some problems with this formulation

- The MLE will not be uniquely defined if $N<M$.
- We can use ridge regression or other regularization.
- Flexibility may require a large number M of features, which may need to depend on N.
- We would like to have a method that is more automatic.
- Kernel regression offers such a flexible framework.

Kernel methods are applicable widely beyond regression problems.

- We cover classification later in the context of Gaussian Processes.

Regularized Linear Regression: towards kernel trick

- In the ridge regression problem we minimize

$$
\begin{gathered}
E(\mathbf{w})=\frac{1}{2}\|\mathbf{y}-\mathbf{\Psi} \mathbf{w}\|^{2}+\frac{\lambda}{2} \mathbf{w}^{\top} \mathbf{w} \\
\nabla E(\mathbf{w})=\mathbf{\Psi}^{\top} \mathbf{\Psi} \mathbf{w}-\mathbf{\Psi}^{\top} \mathbf{y}+\lambda \mathbf{w}
\end{gathered}
$$

- Taking $\nabla E(\mathbf{w})=0$ is equivalent to solving:

$$
\mathbf{w}=\frac{1}{\lambda} \boldsymbol{\Psi}^{\top}(\mathbf{y}-\boldsymbol{\Psi} \mathbf{w})=\boldsymbol{\Psi}^{\top} \mathbf{a} \in \mathbb{R}^{M}
$$

where $\boldsymbol{a}=(\mathbf{y}-\mathbf{\Psi} \mathbf{w}) / \lambda \in \mathbb{R}^{N}$.

- Substitute $\mathbf{w}=\mathbf{\Psi}^{\top} \mathbf{a}$ back in $E(\mathbf{w})$, we get

$$
E(\mathbf{a})=\frac{1}{2}\left\|\mathbf{y}-\Psi \Psi^{\top} \mathbf{a}\right\|^{2}+\frac{\lambda}{2} \mathbf{a}^{\top} \Psi \Psi^{\top} \mathbf{a}
$$

Kernel Ridge Regression

- Introduce the gram matrix $\boldsymbol{K}=\Psi \Psi^{\top}$, i.e.

$$
K_{i j}=\boldsymbol{\psi}\left(\mathbf{x}^{(i)}\right)^{\top} \boldsymbol{\psi}\left(\mathbf{x}^{(j)}\right)=: k\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)
$$

which we call the kernel matrix. Function $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ is the kernel.

- Therefore, we minimize

$$
E(\mathbf{a})=\frac{1}{2}\|\mathbf{y}-\boldsymbol{K} \mathbf{a}\|^{2}+\frac{\lambda}{2} \mathbf{a}^{\top} \boldsymbol{K} \mathbf{a}
$$

- Plugging $\mathbf{w}=\mathbf{\Psi}^{\top} \mathbf{a}$ to $\mathbf{a}=(\mathbf{y}-\mathbf{\Psi} \mathbf{w}) / \lambda$ we get

$$
\mathbf{a}=\left(\boldsymbol{K}+\lambda \mathbf{I}_{N}\right)^{-1} \mathbf{y}
$$

- Substitute back into the linear regression model

$$
\hat{y}(\mathbf{x})=\boldsymbol{\psi}(\mathbf{x})^{\top} \mathbf{w}=\boldsymbol{\psi}(\mathbf{x})^{\top} \boldsymbol{\Psi}^{\top} \mathbf{a}=\mathbf{k}(\mathbf{x})^{\top}\left(\boldsymbol{K}+\lambda \mathbf{I}_{N}\right)^{-1} \mathbf{y}
$$

where $\mathbf{k}(\mathbf{x})=\boldsymbol{\Psi} \boldsymbol{\psi}(\mathbf{x})=\left[\boldsymbol{\psi}\left(\mathbf{x}^{(i)}\right)^{\top} \boldsymbol{\psi}(\mathbf{x})\right]_{i}=\left[k\left(\mathbf{x}^{(i)}, \mathbf{x}\right)\right]_{i}$.

Kernel Ridge Regression

- This is known as a dual formulation, aka Kernel trick.
- We have

$$
\hat{y}(\mathbf{x})=\mathbf{k}(\mathbf{x})^{\top}\left(\boldsymbol{K}+\lambda \mathbf{I}_{N}\right)^{-1} \mathbf{y}
$$

where $[\mathbf{k}(\mathbf{x})]_{i}=k\left(\mathbf{x}^{(i)}, \mathbf{x}\right), \mathbf{K}_{i j}=k\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)$.

- The prediction at \mathbf{x} is given by a linear combination \mathbf{y}.
- The coefficients depend on "proximity" of \mathbf{x} to $\mathbf{x}^{(i)}$.
- Dual formulation requires inverting an $N \times N$ matrix, whereas the standard one requires inverting an $M \times M$ matrix.
- The advantage of the dual formulation is that it is expressed entirely in terms of the kernel function with no explicit reference to the feature map $\boldsymbol{\psi}(\mathbf{x})$ (can use features of high dimension).

Kernels: Formal definition

Positive semidefinite matrix (PSD)

A symmetric matrix $\boldsymbol{A} \in \mathbb{R}^{N \times N}$ is PSD if for every vector $\mathbf{u} \in \mathbb{R}^{N}$

$$
\mathbf{u}^{\top} \boldsymbol{A} \mathbf{u} \geq 0
$$

- We can use feature maps $\psi: \mathbb{R}^{D} \rightarrow \mathbb{R}^{M}$ to define kernels:

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\boldsymbol{\psi}(\mathbf{x})^{\top} \boldsymbol{\psi}\left(\mathbf{x}^{\prime}\right)
$$

But we can consider a (slightly) more general definition.

- A kernel $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ is any function such that for any N data points $\mathbf{x}^{(i)}$ for $i=1, \ldots, N$, the kernel matrix \boldsymbol{K} with entries $K_{i j}=k\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)$ is positive semidefinite (Schoenberg 1938).

Feature map defines a kernel

- Let $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\boldsymbol{\psi}(\mathbf{x})^{\top} \boldsymbol{\psi}\left(\mathbf{x}^{\prime}\right)$
- The kernel matrix is given as $K_{i j}=k\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right), \boldsymbol{K}=\boldsymbol{\Psi} \boldsymbol{\Psi}^{\top}$.
- We show that this matrix is positive semi-definite, $\forall \mathbf{u} \in \mathbb{R}^{N}$,

$$
\mathbf{u}^{\top} \boldsymbol{K} \mathbf{u}=\mathbf{u}^{\top} \boldsymbol{\Psi} \boldsymbol{\Psi}^{\top} \mathbf{u}=\left(\boldsymbol{\Psi}^{\top} \mathbf{u}\right)^{\top} \boldsymbol{\Psi}^{\top} \mathbf{u}=\left\|\boldsymbol{\Psi}^{\top} \mathbf{u}\right\|^{2} \geq 0
$$

Main points:

- Forget the feature map.
- We can directly choose a kernel and work with it!
- The dimension of the feature space does not matter anymore.
- Kernels provide a measure of proximity between \mathbf{x} and \mathbf{x}^{\prime}.

Kernels: Examples

Example 1:

- D-dimensional inputs: $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{D}\right)^{\top}$ and $\mathbf{z}=\left(z_{1}, z_{2}, \ldots z_{D}\right)^{\top}$

$$
\begin{aligned}
k(\mathbf{x}, \mathbf{z}) & =\left(\mathbf{x}^{\top} \mathbf{z}\right)^{2}=\left(x_{1} z_{1}+x_{2} z_{2}+\ldots\right)^{2} \\
& =x_{1}^{2} z_{1}^{2}+2 x_{1} z_{1} x_{2} z_{2}+x_{2}^{2} z_{2}^{2}+\ldots \\
& =\left(x_{1}^{2}, x_{2}^{2}, \ldots, \sqrt{2} x_{1} x_{2}, \ldots\right)^{\top}\left(z_{1}^{2}, z_{2}^{2}, \ldots, \sqrt{2} z_{1} z_{2}, \ldots\right) \\
& =\boldsymbol{\psi}(\mathbf{x})^{\top} \boldsymbol{\psi}(\mathbf{z})
\end{aligned}
$$

Example 2 (Gaussian kernel): $k(\mathbf{x}, \mathbf{z})=\exp \left(-\|\mathbf{x}-\mathbf{z}\|^{2} / 2 \sigma^{2}\right)$.

- The feature vector has infinite dimension here!

Kernels: Example

- Predictions in the kernel ridge regression:

$$
y(\mathbf{x})=\mathbf{w}^{T} \boldsymbol{\psi}(\mathbf{x})=\mathbf{a}^{T} \boldsymbol{\Psi} \boldsymbol{\psi}(\mathbf{x})=\mathbf{k}(\mathbf{x})^{T}(\boldsymbol{K}+\lambda I)^{-1} \mathbf{y}
$$

- Lets look at the predictions for the scaled targets $\mathbf{a}=(\boldsymbol{K}+\lambda I)^{-1} \mathbf{y}$

$$
y(\mathbf{x})=\mathbf{k}(\mathbf{x})^{T} \mathbf{a}=\sum_{i=1}^{N} k\left(\mathbf{x}, \mathbf{x}^{(i)}\right) a_{i}
$$

- Which looks very much like k-NN!

Constructing kernels from kernels

Given valid kernels $k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ and $k_{2}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$, the following kernels will also be valid:

$$
\begin{aligned}
& k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=c k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \quad \text { for } c>0, \\
& k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=f(\mathbf{x}) k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) f\left(\mathbf{x}^{\prime}\right) \\
& k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+k_{2}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \\
& k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \cdot k_{2}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \\
& k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbf{x}^{\top} A \mathbf{x} \quad(A \text { PSD }) \\
& k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right) \\
& k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=q\left(k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right)
\end{aligned}
$$

where q polynomial with ≥ 0 coefficients.

Local vs Global Kernels

Polynomial basis functions:

$$
\phi_{j}(x)=x^{j} .
$$

Basis functions are global: small changes in x affect all basis functions.

Gaussian basis functions:

Basis functions are local: small changes in x only affect nearby basis functions. μ_{j} and s control location and scale (width).

Radial basis functions

To get a better feeling for the kernel method consider the case where kernel is defined by a radial basis function.

- Radial basis functions depend only on the distance from $\boldsymbol{\mu}_{j}$, i.e.

$$
\boldsymbol{\psi}_{j}(\mathbf{x})=h\left(\left\|\mathbf{x}-\boldsymbol{\mu}_{j}\right\|\right)
$$

- Sigmoidal basis functions: h is sigmoid.
- Gaussian basis functions: h is normal pdf

Example: Radial basis functions

Corresponding feature space using two Gaussian basis functions

- We define two Gaussian basis functions with centers shown by the green crosses, and with contours shown by the green circles.
- Linear decision boundary (right) corresponds to the nonlinear decision boundary in the input space (left, black curve).

Radial basis functions: motivation

- Given a set of data samples $\left(\mathbf{x}^{(i)}, y^{(i)}\right)$ for $i=1, . ., N$, we want to find a smooth function f that fits data as

$$
f\left(\mathbf{x}^{(i)}\right) \approx y^{(i)} \quad \text { for } i=1, \ldots, N
$$

- This is achieved by expressing $f(\mathbf{x})$ as a linear combination of radial basis functions, one centred on every data point

$$
f(\mathbf{x})=\sum_{i=1}^{N} w_{i} h\left(\left\|\mathbf{x}-\mathbf{x}^{(i)}\right\|\right)
$$

where w_{i} are found by least squares.

- In practice we may use many less functions than N.

Radial basis functions: Illustration

- Kernel regression model using isotropic Gaussian kernels:

- The original sine function is shown by the green curve.
- The data points are shown in blue, and each is the centre of an isotropic Gaussian kernel.
- The resulting regression function is shown by the red line.

Neural Networks and Feature learning

Last layer in Neural networks:

- If task is regression: choose

$$
\mathbf{y}=f^{(L)}\left(\mathbf{h}^{(L-1)}\right)=\left(\mathbf{w}^{(L)}\right)^{\top} \mathbf{h}^{(L-1)}+b^{(L)}
$$

- If task is binary classification: choose $\mathbf{y}=f^{(L)}\left(\mathbf{h}^{(L-1)}\right)=\sigma\left(\left(\mathbf{w}^{(L)}\right)^{\top} \mathbf{h}^{(L-1)}+b^{(L)}\right)$
- Neural nets can be viewed as a way of learning features:

Summary of the second hour

- This lecture covered the basics of kernel-based methods.
- Kernels can be used directly for regression and classification.
- These are useful functions that capture a measure of proximity between inputs, and express predictions based on this measure.
- Next week, we will continue with kernel methods and introduce Gaussian processes.

