CSC 412/2506: Probabilistic Learning and Reasoning Week 11: Bayesian Regression & Kernel Methods

Murat A. Erdogdu

University of Toronto

- Continuing in our theme of probabilistic models for continuous variables.
- We give a probabilistic interpretation of linear regression.
- Chapter 3.3 in Bishop's book.

Completing the Square for Gaussians

Useful technique to find moments of Gaussian random variables.

- It is a multivariate generalization of completing the square.
- The density of $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ satisfies:

$$\log p(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}) + \text{const}$$
$$= -\frac{1}{2} \mathbf{x}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x} + \mathbf{x}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} + \text{const}$$

• Thus, if we know **w** is Gaussian with *unknown* mean and covariance, and we also know that

$$\log p(\mathbf{w}) = -\frac{1}{2}\mathbf{w}^{\top}\mathbf{A}\mathbf{w} + \mathbf{w}^{\top}\mathbf{b} + \text{const}$$

for \mathbf{A} positive definite, then we know that

$$\mathbf{w} \sim \mathcal{N}(\mathbf{A}^{-1}\mathbf{b}, \mathbf{A}^{-1}).$$

Prob Learning (UofT)

CSC412-Week 11

- We take the Bayesian approach to linear regression.
 - ▶ This is in contrast with the standard regression.
 - ▶ By inferring a posterior distribution over the *parameters*, the model can know what it doesn't know.
- How can uncertainty in the predictions help us?
 - Smooth out the predictions by averaging over lots of plausible explanations
 - Assign confidences to predictions
 - Make more robust decisions

Recap: Linear Regression

- Given a training set of inputs and targets $\{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^N$
- Linear model:

$$y = \mathbf{w}^\top \boldsymbol{\psi}(\mathbf{x}) + \boldsymbol{\epsilon}$$

 $\bullet\,$ Vectorized, we have the design matrix ${\bf X}$ in input space and

$$\boldsymbol{\Psi} = \begin{bmatrix} - & \boldsymbol{\psi}(\mathbf{x}^{(1)}) & - \\ - & \boldsymbol{\psi}(\mathbf{x}^{(2)}) & - \\ \vdots & \\ - & \boldsymbol{\psi}(\mathbf{x}^{(N)}) & - \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{bmatrix}$$

and predictions

$$\hat{\mathbf{y}} = \mathbf{\Psi} \mathbf{w}$$

Recap: Ridge Regression from 311

- No statistical model.
- Penalized sum of squares (ridge regression):

minimize
$$\frac{1}{2} \|\mathbf{y} - \boldsymbol{\Psi}\mathbf{w}\|^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

- The gradient: $(\boldsymbol{\Psi}^{\top}\boldsymbol{\Psi} + \lambda \mathbf{I})\mathbf{w} \boldsymbol{\Psi}^{\top}\mathbf{y}$.
- Solution 1: solve analytically by setting the gradient to 0

$$\mathbf{w} = (\boldsymbol{\Psi}^\top \boldsymbol{\Psi} + \lambda \mathbf{I})^{-1} \boldsymbol{\Psi}^\top \mathbf{y}$$

• Solution 2: solve approximately using gradient descent

$$\mathbf{w} \leftarrow (1 - \alpha \lambda) \mathbf{w} - \alpha \mathbf{\Psi}^\top (\mathbf{\Psi} \mathbf{w} - \mathbf{y})$$

Linear Regression as Maximum Likelihood

• We can give linear regression a probabilistic interpretation by assuming a Gaussian noise model:

$$y \mid \mathbf{x} \sim \mathcal{N}(\mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x}), \sigma^2)$$

• Linear regression is just maximum log-likelihood under this model:

$$\sum_{i=1}^{N} \log p(y^{(i)} | \mathbf{x}^{(i)}; \mathbf{w}, b) = \sum_{i=1}^{N} \log \mathcal{N}(y^{(i)}; \mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x}^{(i)}), \sigma^{2})$$
$$= \sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x}^{(i)}))^{2}}{2\sigma^{2}}\right) \right]$$
$$= \operatorname{const} - \frac{1}{2\sigma^{2}} \sum_{i=1}^{N} (y^{(i)} - \mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x}^{(i)}))^{2}$$
$$= \operatorname{const} - \frac{1}{2\sigma^{2}} \|\mathbf{y} - \mathbf{\Psi}\mathbf{w}\|^{2}$$

Regularized Linear Regression as MAP Estimation

- View an L_2 regularizer as MAP inference with a Gaussian prior. $\arg \max_{\mathbf{w}} \log p(\mathbf{w} \mid \mathcal{D}) = \arg \max_{\mathbf{w}} \left[\log p(\mathbf{w}) + \log p(\mathcal{D} \mid \mathbf{w}) \right]$
- We just derived the likelihood term $\log p(\mathcal{D} \mid \mathbf{w})$:

$$\log p(\mathcal{D} \mid \mathbf{w}) = \text{const} - \frac{1}{2\sigma^2} \|\mathbf{y} - \boldsymbol{\Psi}\mathbf{w}\|^2$$

• Assume a Gaussian prior, $\mathbf{w} \sim \mathcal{N}(\mathbf{m}, \mathbf{S})$:

$$\log p(\mathbf{w}) = \log \left[\frac{1}{(2\pi)^{D/2} |\mathbf{S}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{w} - \mathbf{m})^{\top} \mathbf{S}^{-1} (\mathbf{w} - \mathbf{m})\right) \right]$$
$$= -\frac{1}{2} (\mathbf{w} - \mathbf{m})^{\top} \mathbf{S}^{-1} (\mathbf{w} - \mathbf{m}) + \text{const}$$

• Commonly, $\mathbf{m} = \mathbf{0}$ and $\mathbf{S} = \eta \mathbf{I}$, so

$$\log p(\mathbf{w}) = -\frac{1}{2\eta} \|\mathbf{w}\|^2 + \text{const.}$$

This is just L_2 regularization!

Prob Learning (UofT)

CSC412-Week 11

- Full Bayesian inference makes predictions by averaging over all likely explanations under the posterior distribution.
- Compute posterior using Bayes' Rule:

 $p(\mathbf{w} \mid \mathcal{D}) \propto p(\mathbf{w}) p(\mathcal{D} \mid \mathbf{w})$

• Make predictions using the posterior predictive distribution:

$$p(y | \mathbf{x}, \mathcal{D}) = \int p(\mathbf{w} | \mathcal{D}) p(y | \mathbf{x}, \mathbf{w}) \, \mathrm{d}\mathbf{w}$$

• Doing this lets us quantify our uncertainty.

- Prior distribution: $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{S})$
- Likelihood: $y | \mathbf{x}, \mathbf{w} \sim \mathcal{N}(\mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x}), \sigma^2)$
- Assuming fixed/known ${\bf S}$ and σ^2 is a big assumption. More on this later.

Bayesian Linear Regression

- Bayesian linear regression considers various plausible explanations for how the data were generated.
- It makes predictions using all possible regression weights, weighted by their posterior probability.
- Here are samples from the prior $p(\mathbf{w})$ and posteriors $p(\mathbf{w} \mid \mathcal{D})$

Bayesian Linear Regression: Posterior

• Deriving the posterior distribution:

 $\log p(\mathbf{w} \mid \mathcal{D}) = \log p(\mathbf{w}) + \log p(\mathcal{D} \mid \mathbf{w}) + \text{const}$ $= -\frac{1}{2} \mathbf{w}^{\top} \mathbf{S}^{-1} \mathbf{w} - \frac{1}{2\sigma^{2}} \| \boldsymbol{\Psi} \mathbf{w} - \mathbf{y} \|^{2} + \text{const}$ $= -\frac{1}{2} \mathbf{w}^{\top} \mathbf{S}^{-1} \mathbf{w} - \frac{1}{2\sigma^{2}} \left(\mathbf{w}^{\top} \boldsymbol{\Psi}^{\top} \boldsymbol{\Psi} \mathbf{w} - 2\mathbf{y}^{\top} \boldsymbol{\Psi} \mathbf{w} + \mathbf{y}^{\top} \mathbf{y} \right) + \text{const}$

 $= -\frac{1}{2}\mathbf{w}^{\top} \left(\sigma^{-2} \boldsymbol{\Psi}^{\top} \boldsymbol{\Psi} + \mathbf{S}^{-1} \right) \mathbf{w} + \frac{1}{\sigma^{2}} \mathbf{y}^{\top} \boldsymbol{\Psi} \mathbf{w} + \text{const (complete the } \Box!)$

Thus $\mathbf{w} \mid \mathcal{D} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where

$$\boldsymbol{\mu} = \left(\boldsymbol{\Psi}^{\top}\boldsymbol{\Psi} + \sigma^{2}\mathbf{S}^{-1}\right)^{-1}\boldsymbol{\Psi}^{\top}\mathbf{y}$$
$$\boldsymbol{\Sigma} = \sigma^{2}\left(\boldsymbol{\Psi}^{\top}\boldsymbol{\Psi} + \sigma^{2}\mathbf{S}^{-1}\right)^{-1}$$

- Gaussian prior leads to a Gaussian posterior, and so the Gaussian distribution is the conjugate prior for linear regression model.
- Compare μ to the closed-form solution for linear regression:

$$\mathbf{w} = (\boldsymbol{\Psi}^\top \boldsymbol{\Psi} + \lambda \mathbf{I})^{-1} \boldsymbol{\Psi}^\top \mathbf{y}$$

This is the mean of the posterior for $\mathbf{S} = \frac{\sigma^2}{\lambda} \mathbf{I}$.

 As λ → 0, the standard deviation of the prior goes to ∞, and the mean of the posterior converges to the MLE.

Bayesian Linear Regression

Illustration of sequential Bayesian learning for $y = w_0 + w_1 x$, $w_0 = -0.3, w_1 = 0.5$.

Left column:

- Likelihood of a single data point.
- Single point does not identify a line.
- Fix (x, y) then $w_0 = y w_1 x$.

Middle column:

• Prior/posterior.

Right column:

- Lines: samples from the posterior.
- Dots: data points.

Radial bases example

• Example with radial basis function (RBF) features

$$\psi_j(x) = \exp\left(-\frac{(x-\mu_j)^2}{2s^2}\right)$$

Radial bases example

Functions sampled from the posterior:

Posterior predictive distribution

- The posterior just gives us distribution over the parameter space, but if we want to make predictions, the natural choice is to use the posterior predictive distribution.
- Posterior predictive distribution:

$$p(y \mid \mathbf{x}, \mathcal{D}) = \int \underbrace{p(y \mid \mathbf{x}, \mathbf{w})}_{\mathcal{N}(y; \mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x}), \sigma)} \underbrace{p(\mathbf{w} \mid \mathcal{D})}_{\mathcal{N}(\mathbf{w}; \boldsymbol{\mu}, \boldsymbol{\Sigma})} d\mathbf{w}$$

• Another interpretation: $y = \mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x}) + \varepsilon$, where $\varepsilon \sim \mathcal{N}(0, \sigma)$ is independent of $\mathbf{w} \mid \mathcal{D} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

Recall

$$\boldsymbol{\mu} = \left(\boldsymbol{\Psi}^{\top}\boldsymbol{\Psi} + \sigma^{2}\mathbf{S}^{-1}\right)^{-1}\boldsymbol{\Psi}^{\top}\mathbf{y}$$
$$\boldsymbol{\Sigma} = \sigma^{2}\left(\boldsymbol{\Psi}^{\top}\boldsymbol{\Psi} + \sigma^{2}\mathbf{S}^{-1}\right)^{-1}$$

Bayesian Linear Regression

- Another interpretation: $y = \mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x}) + \varepsilon$, where $\varepsilon \sim \mathcal{N}(0, \sigma)$ is independent of $\mathbf{w} \mid \mathcal{D} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
- Again by the fact that affine transformations of Gaussian vectors are Gaussian, y is a Gaussian distribution with parameters

$$\begin{aligned} \mu_{\text{pred}} &= \boldsymbol{\mu}^{\top} \boldsymbol{\psi}(\mathbf{x}) \\ \sigma_{\text{pred}}^2 &= \boldsymbol{\psi}(\mathbf{x})^{\top} \boldsymbol{\Sigma} \boldsymbol{\psi}(\mathbf{x}) + \sigma^2 \end{aligned}$$

• Hence, the posterior predictive distribution is $\mathcal{N}(y \mid \mu_{\text{pred}}, \sigma_{\text{pred}}^2)$.

Bayesian Linear Regression

Here we visualize confidence intervals based on the posterior predictive mean and variance at each point:

• This lecture covered the basics of Bayesian regression.

Key points:

- Posterior can be computed by completing the square.
- Posterior predictive distribution.
- Uncertainty quantification.

• We gave linear regression a probabilistic interpretation by assuming a Gaussian noise model:

$$y \mid \mathbf{x} \sim \mathcal{N}(\mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x}), \sigma^2)$$

- The MLE under the first model leads to ordinary least squares.
- We can also do full Bayesian inference as explained last hour.
 - ▶ Recall MAP estimator with a special Gaussian prior becomes equivalent to the ridge regression estimator.

Some problems with this formulation

- The MLE will not be uniquely defined if N < M.
 - We can use ridge regression or other regularization.
- Flexibility may require a large number M of features, which may need to depend on N.
- We would like to have a method that is more automatic.
- Kernel regression offers such a flexible framework.

Kernel methods are applicable widely beyond regression problems.

• We cover classification later in the context of Gaussian Processes.

Regularized Linear Regression: towards kernel trick

• In the ridge regression problem we minimize

$$E(\mathbf{w}) = \frac{1}{2} \|\mathbf{y} - \boldsymbol{\Psi}\mathbf{w}\|^2 + \frac{\lambda}{2} \mathbf{w}^\top \mathbf{w}$$
$$\nabla E(\mathbf{w}) = \boldsymbol{\Psi}^\top \boldsymbol{\Psi}\mathbf{w} - \boldsymbol{\Psi}^\top \mathbf{y} + \lambda \mathbf{w}.$$

• Taking $\nabla E(\mathbf{w}) = 0$ is equivalent to solving:

$$\mathbf{w} = rac{1}{\lambda} \mathbf{\Psi}^{ op} (\mathbf{y} - \mathbf{\Psi} \mathbf{w}) = \mathbf{\Psi}^{ op} \mathbf{a} \ \in \ \mathbb{R}^M,$$

where $\boldsymbol{a} = (\mathbf{y} - \boldsymbol{\Psi} \mathbf{w}) / \lambda \in \mathbb{R}^N$. • Substitute $\mathbf{w} = \boldsymbol{\Psi}^\top \mathbf{a}$ back in $E(\mathbf{w})$, we get

$$E(\mathbf{a}) = \frac{1}{2} \|\mathbf{y} - \boldsymbol{\Psi}\boldsymbol{\Psi}^{\top}\mathbf{a}\|^{2} + \frac{\lambda}{2}\mathbf{a}^{\top}\boldsymbol{\Psi}\boldsymbol{\Psi}^{\top}\mathbf{a}$$

Kernel Ridge Regression

• Introduce the gram matrix $\mathbf{K} = \mathbf{\Psi} \mathbf{\Psi}^{\top}$, i.e.

$$K_{ij} = \boldsymbol{\psi}(\mathbf{x}^{(i)})^{\top} \boldsymbol{\psi}(\mathbf{x}^{(j)}) =: k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$$

which we call the kernel matrix. Function k(x, x') is the kernel.
Therefore, we minimize

$$E(\mathbf{a}) = \frac{1}{2} \|\mathbf{y} - \mathbf{K}\mathbf{a}\|^2 + \frac{\lambda}{2} \mathbf{a}^\top \mathbf{K}\mathbf{a}$$

• Plugging $\mathbf{w} = \mathbf{\Psi}^\top \mathbf{a}$ to $\mathbf{a} = (\mathbf{y} - \mathbf{\Psi}\mathbf{w})/\lambda$ we get
 $\mathbf{a} = (\mathbf{K} + \lambda \mathbf{I}_N)^{-1}\mathbf{y}.$

• Substitute back into the linear regression model

$$\hat{y}(\mathbf{x}) = \boldsymbol{\psi}(\mathbf{x})^{\top} \mathbf{w} = \boldsymbol{\psi}(\mathbf{x})^{\top} \boldsymbol{\Psi}^{\top} \mathbf{a} = \mathbf{k}(\mathbf{x})^{\top} (\boldsymbol{K} + \lambda \mathbf{I}_N)^{-1} \mathbf{y}$$

where $\mathbf{k}(\mathbf{x}) = \boldsymbol{\Psi} \boldsymbol{\psi}(\mathbf{x}) = [\boldsymbol{\psi}(\mathbf{x}^{(i)})^{\top} \boldsymbol{\psi}(\mathbf{x})]_i = [k(\mathbf{x}^{(i)}, \mathbf{x})]_i.$

Prob Learning (UofT)

Kernel Ridge Regression

- This is known as a dual formulation, aka Kernel trick.
- We have

 $\hat{y}(\mathbf{x}) = \mathbf{k}(\mathbf{x})^{\top} (\mathbf{K} + \lambda \mathbf{I}_N)^{-1} \mathbf{y},$

where $[\mathbf{k}(\mathbf{x})]_i = k(\mathbf{x}^{(i)}, \mathbf{x}), \ \mathbf{K}_{ij} = k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}).$

- The prediction at \mathbf{x} is given by a linear combination \mathbf{y} .
- The coefficients depend on "proximity" of \mathbf{x} to $\mathbf{x}^{(i)}$.
- Dual formulation requires inverting an $N \times N$ matrix, whereas the standard one requires inverting an $M \times M$ matrix.
- The advantage of the dual formulation is that it is expressed entirely in terms of the kernel function with no explicit reference to the feature map $\psi(\mathbf{x})$ (can use features of high dimension).

Positive semidefinite matrix (PSD)

A symmetric matrix $\boldsymbol{A} \in \mathbb{R}^{N \times N}$ is PSD if for every vector $\mathbf{u} \in \mathbb{R}^N$

 $\mathbf{u}^{\top} \boldsymbol{A} \mathbf{u} \geq 0.$

• We can use feature maps $\boldsymbol{\psi}: \mathbb{R}^D \to \mathbb{R}^M$ to define kernels:

$$k(\mathbf{x}, \mathbf{x}') = \boldsymbol{\psi}(\mathbf{x})^{\top} \boldsymbol{\psi}(\mathbf{x}').$$

But we can consider a (slightly) more general definition.

• A kernel $k(\mathbf{x}, \mathbf{x}')$ is any function such that for any N data points $\mathbf{x}^{(i)}$ for i = 1, ..., N, the kernel matrix \mathbf{K} with entries $K_{ij} = k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$ is positive semidefinite (Schoenberg 1938).

Feature map defines a kernel

• Let
$$k(\mathbf{x}, \mathbf{x}') = \boldsymbol{\psi}(\mathbf{x})^{\top} \boldsymbol{\psi}(\mathbf{x}')$$

- The kernel matrix is given as $K_{ij} = k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}), \ \mathbf{K} = \mathbf{\Psi} \mathbf{\Psi}^{\top}.$
- We show that this matrix is positive semi-definite, $\forall \mathbf{u} \in \mathbb{R}^N$,

$$\mathbf{u}^{\top} \boldsymbol{K} \mathbf{u} = \mathbf{u}^{\top} \boldsymbol{\Psi} \boldsymbol{\Psi}^{\top} \mathbf{u} = (\boldsymbol{\Psi}^{\top} \mathbf{u})^{\top} \boldsymbol{\Psi}^{\top} \mathbf{u} = \| \boldsymbol{\Psi}^{\top} \mathbf{u} \|^{2} \ge 0.$$

Main points:

- Forget the feature map.
- We can directly choose a kernel and work with it!
- The dimension of the feature space does not matter anymore.
- Kernels provide a measure of proximity between \mathbf{x} and \mathbf{x}' .

Kernels: Examples

Example 1:

• *D*-dimensional inputs: $\mathbf{x} = (x_1, x_2, ..., x_D)^{\top}$ and $\mathbf{z} = (z_1, z_2, ..., z_D)^{\top}$

$$\begin{aligned} k(\mathbf{x}, \mathbf{z}) &= (\mathbf{x}^{\top} \mathbf{z})^2 = (x_1 z_1 + x_2 z_2 + ...)^2 \\ &= x_1^2 z_1^2 + 2 x_1 z_1 x_2 z_2 + x_2^2 z_2^2 + ... \\ &= (x_1^2, x_2^2, ..., \sqrt{2} x_1 x_2, ...)^{\top} (z_1^2, z_2^2, ..., \sqrt{2} z_1 z_2, ...) \\ &= \boldsymbol{\psi}(\mathbf{x})^{\top} \boldsymbol{\psi}(\mathbf{z}) \end{aligned}$$

Example 2 (Gaussian kernel): $k(\mathbf{x}, \mathbf{z}) = \exp(-\|\mathbf{x} - \mathbf{z}\|^2 / 2\sigma^2)$.

• The feature vector has infinite dimension here!

• Predictions in the kernel ridge regression:

$$y(\mathbf{x}) = \mathbf{w}^T \boldsymbol{\psi}(\mathbf{x}) = \mathbf{a}^T \boldsymbol{\Psi} \boldsymbol{\psi}(\mathbf{x}) = \mathbf{k}(\mathbf{x})^T (\boldsymbol{K} + \lambda I)^{-1} \mathbf{y}$$

• Lets look at the predictions for the scaled targets $\mathbf{a} = (\mathbf{K} + \lambda I)^{-1} \mathbf{y}$

$$y(\mathbf{x}) = \mathbf{k}(\mathbf{x})^T \mathbf{a} = \sum_{i=1}^N k(\mathbf{x}, \mathbf{x}^{(i)}) \ a_i$$

• Which looks very much like k-NN!

Constructing kernels from kernels

Given valid kernels $k_1(\mathbf{x}, \mathbf{x}')$ and $k_2(\mathbf{x}, \mathbf{x}')$, the following kernels will also be valid:

$$k(\mathbf{x}, \mathbf{x}') = ck_1(\mathbf{x}, \mathbf{x}') \quad \text{for } c > 0,$$

$$k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') \cdot k_2(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^{\top} A \mathbf{x} \quad (A \text{ PSD})$$

$$k(\mathbf{x}, \mathbf{x}') = \exp(k_1(\mathbf{x}, \mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = q(k_1(\mathbf{x}, \mathbf{x}'))$$

where q polynomial with ≥ 0 coefficients.

Local vs Global Kernels

Polynomial basis functions:

Basis functions are global: small changes in x affect all basis functions.

Gaussian basis functions:

Basis functions are local: small changes in x only affect nearby basis functions. μ_j and s control location and scale (width).

Radial basis functions

To get a better feeling for the kernel method consider the case where kernel is defined by a radial basis function.

• Radial basis functions depend only on the distance from μ_i , i.e.

$$\boldsymbol{\psi}_j(\mathbf{x}) = h(\|\mathbf{x} - \boldsymbol{\mu}_j\|).$$

- Sigmoidal basis functions: h is sigmoid.
- Gaussian basis functions: h is normal pdf

Prob Learning (UofT)

Example: Radial basis functions

Original input space

- We define two Gaussian basis functions with centers shown by the green crosses, and with contours shown by the green circles.
- Linear decision boundary (right) corresponds to the nonlinear decision boundary in the input space (left, black curve).

Prob Learning (UofT)

CSC412-Week 11

Radial basis functions: motivation

• Given a set of data samples $(\mathbf{x}^{(i)}, y^{(i)})$ for i = 1, ..., N, we want to find a smooth function f that fits data as

$$f(\mathbf{x}^{(i)}) \approx y^{(i)}$$
 for $i = 1, \dots, N$.

• This is achieved by expressing $f(\mathbf{x})$ as a linear combination of radial basis functions, one centred on every data point

$$f(\mathbf{x}) = \sum_{i=1}^{N} w_i h(\|\mathbf{x} - \mathbf{x}^{(i)}\|)$$

where w_i are found by least squares.

• In practice we may use many less functions than N.

Radial basis functions: Illustration

• Kernel regression model using isotropic Gaussian kernels:

- The original sine function is shown by the green curve.
- The data points are shown in blue, and each is the centre of an isotropic Gaussian kernel.
- The resulting regression function is shown by the red line.

Neural Networks and Feature learning

Last layer in Neural networks:

- If task is regression: choose $\mathbf{y} = f^{(L)}(\mathbf{h}^{(L-1)}) = (\mathbf{w}^{(L)})^{\top}\mathbf{h}^{(L-1)} + b^{(L)}$
- If task is binary classification: choose $\mathbf{y} = f^{(L)}(\mathbf{h}^{(L-1)}) = \sigma((\mathbf{w}^{(L)})^{\top}\mathbf{h}^{(L-1)} + b^{(L)})$
- Neural nets can be viewed as a way of learning features:

- This lecture covered the basics of kernel-based methods.
- Kernels can be used directly for regression and classification.
- These are useful functions that capture a measure of proximity between inputs, and express predictions based on this measure.
- Next week, we will continue with kernel methods and introduce Gaussian processes.