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Overview of the first hour

We build on the kernel viewpoint of regression.

We introduce Gaussian processes.

This provides an additional component to kernel regression.

We dispense with the parametric model and define a prior
distribution over functions directly.

There are multiple advantages (e.g. uncertainty quantification).
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Recap: Linear Regression

Given a training set of inputs and targets {(x(i), y(i))}Ni=1

Linear model:
y = w>ψ(x) + ε

where ψ(x) is the feature map.

Vectorized, we have the design matrix X in input space and

Ψ =


− ψ(x(1)) −
− ψ(x(2)) −

...

− ψ(x(N)) −

 ∈ RN×M

and predictions

ŷ = Ψw.
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Recap: Bayesian Linear Regression

We gave linear regression a probabilistic interpretation by
assuming a Gaussian noise model:

y |x ∼ N (ŷ(x), σ2), ŷ(x) = w>ψ(x)

and a Gaussian prior

w ∼ N (0,
1

α
IM )

Prior induces a probability distribution over

ŷ = Ψw ∼ N (0,
1

α
ΨΨ>).
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Distribution over prediction function

In practice, we evaluate the prediction function ŷ(x) at specific
points, for example at the training data points x(i) for i = 1, ..., N .

So we are interested in the joint distribution of the function values

ŷ(x(1)), . . . , ŷ(x(N))

which we denote by the vector ŷ = (ŷ(x(1)), . . . , ŷ(x(N))).

We showed that

ŷ ∼ N (0,K) K =
1

α
ΨΨ>

where K is the (scaled) Gram matrix

Kij =
1

α
k(x(i),x(j)) =

1

α
ψ(x(i))>ψ(x(j))
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Gaussian process

Definition: A Gaussian process is a probability distribution
over functions ŷ(x) such that for any N ≥ 1 and any set of N
points x(1),x(2), . . . ,x(N) in RD, the vector (ŷ(x(1)), . . . , ŷ(x(N))) is
jointly Gaussian.

The joint distribution is specified completely by the second-order
statistics, i.e. the mean and the covariance functions.

In most applications, the mean function of ŷ(x) can be set to zero
and then the Gaussian process is completely specified by the
covariance function

E[ŷ(x)ŷ(x′)] =
1

α
k(x,x′)
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Gaussian process

We can directly define the kernel of a Gaussian process, not
worrying about the feature map.

Samples from Gaussian processes for a Gaussian kernel (left) and
an exponential kernel (right).
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Gaussian processes for regression

We have the linear model

y |x ∼ N (ŷ(x), σ2) ŷ(x) = w>ψ(x)

Given N independent observations, we have

y | ŷ ∼ N (ŷ, σ2IN ), ŷ ∼ N (0,K).

Therefore the marginal of y is given by

y ∼ N (0,C) C = K + σ2IN

where the corresponding kernel is

c(x(i),x(j)) =
1

α
k(x(i),x(j)) + σ2δ(x(i),x(j))

δ(x,x′) = 1 if x = x′ and δ(x,x′) = 0 otherwise.
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Gaussian processes for regression

Denote now yN = (y(1), y(2), ..., y(N)).

We have the marginal of yN given by

yN ∼ N (0,CN ) CN = KN + σ2IN .

This reflects the two Gaussian sources of randomness.

Goal: We want to predict for a new output y(N+1).

We need
p(y(N+1) |yN )

Note that x(1), . . . ,x(N) are treated as constants.
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Gaussian processes for regression

We have

yN+1 ∼ N (0,CN+1) CN+1 = KN+1 + σ2IN+1

where

CN+1 =

[
CN k
k> c

]
.

I Here, c = 1
αk(x(N+1),x(N+1)) + σ2

I k is a vector with entries ki = 1
αk(x(i),x(N+1))

Since the vector yN+1 is Gaussian, we easily find y(N+1) |yN .
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Property of Multivariate Gaussian Distribution

Recall:

If we have x ∼ N (µ,Σ) with

x =

[
x1

x2

]
µ =

[
µ1

µ2

]
Σ =

[
Σ11 Σ12

Σ21 Σ22

]
Then,

x2 | (x1 = a) ∼ N (m,C)

with

m = µ2 + Σ21Σ
−1
11 (a− µ1) C = Σ22 −Σ21Σ

−1
11 Σ12.
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Gaussian processes for regression

Recall:

yN+1 ∼ N(0, CN+1), CN+1 =

[
CN k

k> c

]
.

Since yN+1 is multivariate Gaussian, y(N+1) |yN is also Gaussian
with mean and variance

mean = k>C−1N yN variance = c− k>C−1N k

These are the key results that define Gaussian process regression.

The vector k is a function of the new test input x(N+1).

The predictive distribution is a Gaussian whose mean and variance
both depend on x(1), . . . ,x(N),x(N+1).
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GPs for regression

The green curve is the true sinusoidal function from which the
data points, shown in blue, are obtained.

The red line shows the mean of the Gaussian process predictive
distribution.

The shaded region corresponds to plus and minus two standard
deviations.
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GPs for classification

Consider a classification problem with target variables y ∈ {0, 1}
We define a Gaussian process over a function a(x) and then
transform the function using sigmoid ŷ(x) = σ(a(x)).

We obtain a non-Gaussian stochastic process over functions
ŷ(x) ∈ (0, 1).

Left: a(x) Right: ŷ(x)
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GPs for classification

The probability distribution over target is then given by

p(y|a) = σ(a)y(1− σ(a))1−y, y ∈ {0, 1}.

We need to compute
p(y(N+1) |yN )

and notice that a(x) is a Gaussian process but ŷ(x) is not.

We have aN+1 ∼ N (0,CN+1), where

CN+1(x
(i),x(j)) =

1

α
k(x(i),x(j)) + νδij .

But aN is not observed, so we write

p(y(N+1) |yN ) =

∫
p(y(N+1) |aN+1)p(aN+1 |yN )daN+1

This is intractable. We need MCMC based methods, or numerical
integration to approximate this integral.
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GPs for classification: Illustration

Illustration of GPs for classification:

Left: optimal decision boundary from the true distribution in
green, and the decision boundary from the Gaussian process
classifier in black.

Right: predicted posterior for the blue and red classes together
with the Gaussian process decision boundary.
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Learning the hyperparameters

We didn’t do any learning other than choosing a kernel!

Rather than fixing the covariance function 1
αk(x,x′), we may

prefer to use a parametric family of functions and then infer the
parameter values from the data.

Denoting the hyperparameters with θ, one can easily write down
the likelihood of the Gaussian process model.

log p(y | θ) = −1

2
log |CN | −

1

2
y>C−1N y − N

2
log(2π)

The next step is standard: gradient based optimization, grid
search etc.
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Summary of the first hour

Gaussian processes are flexible tools that can be used in regression
and classification tasks.

One can simply choose a kernel and find the predictive density!

They can be used together with modern tools, creating powerful
learning methods.
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