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These slides are based on:

CVPR 2022 Tutorial: Denoising Diffusion-based Generative Modeling:

Foundations and Applications, by Kreis, Gao, and Vahdat

Lilian Weng’s blogpost: What are diffusion models?
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https://cvpr2022-tutorial-diffusion-models.github.io/
https://cvpr2022-tutorial-diffusion-models.github.io/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/


Generative Modeling

Common methods:

Variational Autoencoders

Generative Adversarial Networks (GAN)

Flow-based models

Today: Diffusion Models
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Diffusion Models: Text-to-Image Generation and More

DALL·E 3, prompt: Tiny potato kings wearing
majestic crowns, sitting on thrones, overseeing
their vast potato kingdom filled with potato
subjects and potato castles.

Stable Diffusion 3, prompt: Frog sitting in a
1950s diner wearing a leather jacket and a top
hat. On the table is a giant burger and a small
sign that says “froggy fridays”.
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Diffusion Models

Diffusion models use two processes:

A forward process, start from image and keep adding noise.

A reverse process, start from noise and keep denoising it to recover
an image.
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Forward Process

The forward process is a Markov chain: q(x1:T |x0) =
∏T
t=1 q(xt|xt−1)

Each step adds Gaussian noise:

q(xt|xt−1) = N (
√

1− βtxt−1, βtI),

Or equivalently,

xt =
√

1− βtxt−1 +
√
βtεt−1, εt−1 ∼ N (0, I).
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Forward Process

Let αt := 1− βt and ᾱt :=
∏t
i=1 αi.

xt =
√
αtxt−1 +

√
1− αtεt−1

=
√
αtαt−1xt−2 +

√
αt(1− αt−1)εt−2 +

√
1− αtεt−1

(d)
=
√
αtαt−1xt−2 +

√
1− αtαt−1ε, ε ∼ N (0, I).

Therefore
xt =

√
ᾱtx0 +

√
1− ᾱtε, ε ∼ N (0, I).
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Forward Process and White Noise

xt =
√
ᾱtx0 +

√
1− ᾱtε, ε ∼ N (0, I).

(βt)
T
t=1 is chosen such that ᾱT → 0, thus xT converges to a standard

normal random vector.
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Reverse Process

Ideally, to generate a sample:

1. xT ∼ N (0, I) ≈ q(XT ).
2. xt−1 ∼ q(xt−1|xt) for t = T, . . . , 1.

But q(xt−1|xt) is intractable.
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Reverse Process

q(xt−1|xt) is approximately normal if βt is small.

We approximate it with

pθ(xt−1|xt) = N (µθ(xt, t), σ
2
t ).

µθ comes from a trainable architecture (e.g. neural network) with
parameter θ.

For the reverse process

pθ(x0:T ) = pθ(xT )

T∏
t=1

pθ(xt−1|xt).

To make pθ(x1:T |x0) close to q(x1:T |x0), we will use ideas from
Variational Inference.
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Evidence Lower Bound: ELBO

Recall the ELBO:

KL(q(x1:T |x0)||pθ(x1:T |x0)) + Ex1:T∼q

[
log

pθ(x0:T )

q(x1:T |x0)

]
= log pθ(x0)

=⇒ Minimize Ex0:T∼q

[
log

q(x1:T |x0)
pθ(x0:T )

]
=: L.

Our goal becomes minimizing L.
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Variational Upper Bound

While expressing q(xt−1|xt) is difficult. By Bayes rule, expressing
q(xt−1|xt, x0) is easy:

q(xt−1|xt, x0) =
q(xt|xt−1)q(xt−1|x0)

q(xt|x0)

=⇒ q(xt|xt−1) =
q(xt|x0)q(xt−1|xt, x0)

q(xt−1|x0)
. (*)
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Variational Upper Bound

L =Ex0:T∼q

[
log

q(x1:T |x0)
pθ(x0:T )

]
=Ex0:T∼q

[
log

∏T
t=1 q(xt|xt−1)

pθ(xT )
∏T
t=1 pθ(xt−1|xt)

]

=Ex0:T∼q

[
log

q(xT |x0)
∏T
t=2 q(xt−1|xt, x0)

pθ(xT )
∏T
t=1 pθ(xt−1|xt)

]
By (*)

=Ex0:T∼q

[
KL(q(xT |x0)||pθ(xT ))︸ ︷︷ ︸

lT

+

T∑
t=2

KL(q(xt−1|xt, x0)||pθ(xt−1|xt))︸ ︷︷ ︸
lt−1

+− log pθ(x0|x1)︸ ︷︷ ︸
l0

]
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Variational Upper Bound

Let Lt = Eq[lt] for t = 0, . . . , T .

LT is constant because xT is just the standard normal random
vector.

To compute Lt for t = 1, . . . , T − 1, we first show q(xt−1|xt, x0) is
Gaussian.

q(xt−1|xt, x0) ∝ q(xt|xt−1)q(xt−1|x0)

∝ exp

(
−
‖xt −

√
αtxt−1‖2

2βt
− ‖xt−1 −

√
ᾱt−1x0‖2

2(1− ᾱt−1)

)
∝ exp

(
−‖xt−1 − µ̃(xt, x0)‖2

2β̃t

)
,
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Variational Upper Bound

Therefore, q(xt−1|xt, x0) = N (µ̃(xt, x0), β̃tI).

Basic algebra shows

µ̃(xt, x0) =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x0

β̃t =
1− ᾱt−1
1− ᾱt

βt.

Computing KL between two Gaussians is straightforward:

Lt−1 = Eq [KL(q(xt−1|xt, x0)||pθ(xt−1|xt))]

= Eq
[
‖µ̃(xt, x0)− µθ(xt, t)‖2

2σ2t

]
+ const.
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Parameterizing the Mean

Recall xt =
√
ᾱtx0 +

√
1− ᾱtε, ε ∼ N (0, I).

By plugging in x0 in terms of xt and ε:

µ̃(xt, x0) =
1
√
αt

(
xt −

βt√
1− ᾱt

ε

)
.

As a result, we parameterize µθ(xt) to try to predict the noise
using a neural network εθ(xt, t),

µθ(xt, t) :=
1
√
αt

(
xt −

βt√
1− ᾱt

εθ(xt, t)

)
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Training Objective

The loss thus becomes

Lt−1 =
β2t

2σ2tαt(1− αt)︸ ︷︷ ︸
λt

Ex0∼q,ε∼N (0,I)

[
‖εθ(xt, t)− ε‖2

]
,

where xt =
√
ᾱtx0 +

√
1− ᾱtε.

Ho et al. [2020] observed that the performance improves if we
simply choose λt = 1.

The simplified loss is thus

Lsimple
t−1 = Ex0∼q,ε∼N (0,I)

[
‖εθ
(√
ᾱtx0 +

√
1− ᾱtε, t

)
− ε‖2

]
.
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Test-Time Sample Generation

Start from xT ∼ N (0, I).

For t = T, . . . , 1, sample xt−1 ∼ pθ(xt−1|xt)
I Recall pθ(xt−1|xt) = N (µθ(xt, t), σ

2
t ).

I As a result

xt−1 =
1
√
αt

(
xt −

1− αt√
1− ᾱt

εθ(xt, t)

)
+ σtz, z ∼ N (0, I).
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Summary
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Design Choices: Architecture

εθ(xt, t) is implemented using a U-Net architecture, with
residual blocks and self-attention layers.

Weights are shared across time.

Prob Learning (UofT) CSC412-Week 12-2/2 20 / 34



Design Choices: Hyperparameters

βt and σt control the variance of the forward and reverse process
respectively.

βt is chosen linearly between β1 = 10−4 and βT = 0.02.

σ2t = βt. We could instead consider a trainable full covariance
matrix, i.e. Σθ(xt, t).

T = 1000 steps are taken.

Fancier βt schedules can further reduce loss [Nichol and Dhariwal,
2021].
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Comparison with Variational Autoencoders (VAE)

VAE

Diffusion Model
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Comparison with VAEs

Diffusion models ‌and VAEs both map to isotropic Gaussian.

The latent space has the same dimension as the input space in
DMs. In VAEs, it is smaller dimensional.

The forward process is the encoder, which is fixed. This is trained
in VAEs.

The reverse process is the decoder, which is trained, similar to
the VAEs.
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Conditional Generation

The original examples we saw were images generated conditioned
on a text caption. More examples:

Midjourney, prompt: A close-up profile of a
cute green-eyed kitten with a black nose and
light cheeks sitting on top of a wooden floor
under bright daylight.

DALL·E 3, prompt: Illustration of a chic chair
with a design reminiscent of a pumpkin’s form,
with deep orange cushioning, in a stylish loft
setting.

But the diffusion model we learned about can only generate
unconditioned images.
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Conditional Generation: General Formulation

Suppose we want to condition on y (e.g. class label or describing
caption).

The training data are pairs of (x0, y).

Conditional reverse process:

pθ(x0:T |y) = p(xT )

T∏
t=1

pθ(xt−1|xt, y)

We still model the transition probabilities as Gaussian:

pθ(xt−1|xt, y) = N (µθ(xt, t, c),Σθ(xt, t, y)).
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Conditional Generation

The new loss:

L = Eq

lT +
∑
t≥2

KL(q(xt−1|xt, x0)||pθ(xt−1|xt, y))− log pθ(x0|x1, y )


How to incorporate y into the U-Net architecture?

I Different techniques for different types of conditioning (labels,
images, captions, ...)
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Classifier Guidance

To further strengthen conditioning, we can train a classifier
pφ(y|x) and incorporate its log-gradient into score with a scale s.

[Nichol and Dhariwal, 2021]
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Classifier-Free Guidance

Instead of training a separate classifier, simultaneously train a
conditional and an unconditional diffusion model.

We have an implicit classifier by Bayes rule,

p(y|xt) ∝y
p(xt|y)

p(xt)
.

We can simply use

∇xt log p(y|xt) = ∇xt log p(xt|y)−∇xt log p(xt).
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Tradeoff: Sample Quality vs Diversity

s = 0 s = 1 s = 3
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Conditioning Applications

Conditioning is not always on captions.

[Saharia et al., 2022]
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Tradeoffs in Generative Modeling

1

Generative 
Adversarial 
Networks

Denoising 
Diffusion 
Models

Variational Autoencoders, 
Normalizing Flows

Fast 
Sampling

High 
Quality 
Samples

Mode 
Coverage / 
Diversity

[Xiao et al., 2021]

Accelerating diffusion models can overcome the above trilemma.
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Summary

Diffusion Models: Forward and Reverse Processes

Training via Variational Upper Bounds

Conditional Generation

Tradeoffs
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Topics for Further Reading

Denoising Score Matching [Song et al., 2021]

Probability Flow ODE [Song et al., 2021]
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