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These slides are based on:

e CVPR 2022 Tutorial: Denoising Diffusion-based Generative Modeling;:
Foundations and Applications, by Kreis, Gao, and Vahdat

o Lilian Weng’s blogpost: What are diffusion models?
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https://cvpr2022-tutorial-diffusion-models.github.io/
https://cvpr2022-tutorial-diffusion-models.github.io/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Generative Modeling

Common methods:

Variational Autoencoders

Generative Adversarial Networks (GAN)
o Flow-based models

Today: Diffusion Models
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Diffusion Models: Text-to-Image Generation and More

Stable Diffusion 3, prompt: Frog sitting in a

DALL-E 3, prompt: Tiny potato kings wearing 1950s diner wcaring a lc‘athcr jacket and a top
majestic crowns, sitting on thrones, overseeing h-at. On the ta‘ljlc s a g‘ént b:lrgcr and a small
their vast potato kingdom filled with potato sign that says “froggy fridays”.

subjects and potato castles.

CSC412-Week 12-2/2 4/34



Diffusion Models

Diffusion models use two processes:

o A forward process, start from image and keep adding noise.

o A reverse process, start from noise and keep denoising it to recover
an image.

Forward diffusion process (fixed)

Data Noise

Reverse denoising process (generative)
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Forward Process

e The forward process is a Markov chain: g(z1.7|%¢) = Hthl q(ze]xe—1)

o Each step adds Gaussian noise:

q(zilzi—1) = N(V/1 = Bewy—1, Bel),

Or equivalently,

2t =+/1= Bt + / Brer—1, -1 ~ N(0,1).

Forward diffusion process (fixed)

Data Noise

q(z1]zo) q(@2|z1) q(zr|zr-1)
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Forward Process

Let ap .= 1— 3 and &y == H?;:l ;.

Ty = JouTi—1 + V1 — e
= Vorou_1ri—2 + Vo (1 — o—1)e—2 + V1 — agerq

d

= o119+ /1 — apay_1e, € ~N(0,1).

—
=

Therefore

$t=@$0+\/1—@t6, ENN(O,I)
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Forward Process and White Noise

.I‘t:\/C_Tt.Q?()—l-\/l—O_étﬁ, ENN(O,I)

(B¢)L_; is chosen such that a7 — 0, thus x7 converges to a standard
normal random vector.

Diffused Data Distributions
Data Noise

a(xo) a(xy) q(x) q(xs) q(*r)

Prob Learning (UofT) CSC412-Week 12-2/2 8/34



Reverse Process

o Ideally, to generate a sample:
1. T NN(O,I) ~ q(XT).
2. xpq ~ q(xi_q|zy) for t =T,...,1.

e But ¢g(z;—1|z¢) is intractable.

q(zolz1) q(z1]z2) q(zr-1lzT)

Data Noise

Reverse denoising process (generative)
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Reverse Process

q(z—1|z¢) is approximately normal if 3; is small.

e We approximate it with

po(zi—1|ze) = N(ug(24, 1), 07).

@ Ly comes from a trainable architecture (e.g. neural network) with
parameter 6.

For the reverse process

T
po(zo:7) = po(zT) H (p—1]z¢).

e To make pg(z1.7|z0) close to q(z1.7|x0), we will use ideas from
Variational Inference.
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Evidence Lower Bound: ELBO

@ Recall the ELBO:

Po (xO:T)

KL . . Ep mg |1 =1
(q(z1.7]z0)||Po(1:7]20)) + Eaypmg [Og q(x1:T|x0)] og pg (o)

L Q($1;T!$0)]
= Minimize E, ., |log—F—| = L.
- q[ 5 po(wo.1)

e Our goal becomes minimizing L.
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Variational Upper Bound

e While expressing q(z;—1|z;) is difficult. By Bayes rule, expressing
q(x—1|z¢, 0) is easy:

q(zt|mi—1)q(@e—1|20)
q(xt|wo)
(zt|70)q(—1|m1, T0) %
o) B

Q($t71|$ta $0) =

q
= q(ze|Ti-1) =
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Variational Upper Bound

[ q(z1.7]70)
L=E; . |log———=
Zo.7~q Og p@(l‘OT) :|
T
po(zr) [[;—1 po(we—1]zt)
r T
g s q(mT|:co>HtT_2q<m|xt,wo>] By (9
L po(zr) [T;=1 po(we—1]ze)
: T
=Eagrnq | KL(a(@r|zo)|lpo(er)) + Y KL(q(@e1|zs, %0)||po(ws—1 7))
i =2

lr li—1

——
N——

lo
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Variational Upper Bound

o Let Lt :Eq[lt] fOI'LL:O,...,T.

e L7 is constant because x7 is just the standard normal random
vector.

e To compute L; for t =1,...,T — 1, we first show q(x¢—1|x¢, x0) is
Gaussian.

Q(l’t—1|$t, 170) X Q($t|$t—1)Q($t—1’l’0)

_ 2 _ 2
o(exp<_||l't Vot [z \/ozt_on)

26, 2(1 — ay—1)

lze—1 — fi(we, z0)|>
xexp | — 25 ,
t
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Variational Upper Bound

e Therefore, q(z¢—1|zt, x0) = N (u(xt, x0), Bel).

o Basic algebra shows

\/Olt(l_o_ét—l) \/Oét 1P
1—dt 1—at
= l—aq

pr = —— B

1—O£t

/j(xt?xo) -

e Computing KL between two Gaussians is straightforward:

L1 = Eq [KL(q(z1-1|zt, 20)|Ipo (v1-1]71))]

(e, z0) — pg (e, )|
207

=[E, + const.
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Parameterizing the Mean

e Recall 2y = /ayxg + /1 —are, e~ N(0,1).

e By plugging in xg in terms of x; and e:
Az, x0) = L (l“t - Btﬁ) .
T V19— oy

e As a result, we parameterize pg(z¢) to try to predict the noise
using a neural network eg(zy, t),
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Training Objective

@ The loss thus becomes

87 2
Liw=;5—"—""-E ~q,E~, 7t - y
t—1 20't2at(1 _at) zo~q,e~N(0,I) [Hég(l’t ) 6” ]
— ———
At

where z; = /arzg + /1 — age.

e Ho et al. [2020] observed that the performance improves if we
simply choose A\; = 1.

@ The simplified loss is thus

Lii—niple = IE$0~q,e~J\/(O,I) [HEQ(V Qgxo + mﬁ, t) - EHQ] .
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Test-Time Sample Generation

e Start from z1 ~ N(0,1).
o Fort=1T,...,1, sample x;_1 ~ pp(xi—1|zs)

> Recall py(ey1|1) = N (o1, 1), 07).
» As a result

1 1-—
Ty = e (wt - l_oztﬁe(xt,t)) + oz, z2~N(0,1).
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Summary

Algorithm 1 Training Algorithm 2 Sampling
1: repeat 1: xp ~N(0,T)
2 X0 ~ q(x0) 2 fort="T,...,1do
Z‘ tr~ IJ{?(l(f)OIII;“({l’ T} 3 z~N(0,I)ift>1,elsez=0
L e ) . l—a
5: Take gradient descent step on 4 X = \/%7 (xt - e (x4, t)) + oz
Vo ||e — es(v/aurxo + V1 — e, t)”2 5: end for
6: until converged 6: return xo
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Design Choices: Architecture

o cg(xy,t) is implemented using a U-Net architecture, with
residual blocks and self-attention layers.

o Weights are shared across time.

H | )
1 1 1
: 1 H A
1 H |
1 1 '
1 1 !
__________________ S S
Time Representanon

Fully-connected
Layers
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Design Choices: Hyperparameters

o (3; and o, control the variance of the forward and reverse process
respectively.

f3; is chosen linearly between $; = 10~* and S = 0.02.

0?2 = ;. We could instead consider a trainable full covariance
matrix, i.e. Xg(z¢, ).

e T = 1000 steps are taken.

Fancier f; schedules can further reduce loss [Nichol and Dhariwal,
2021].
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Comparison with Variational Autoencoders (VAE)

Decoder
po(x|z)

VAE

Xo X1 X2 R, a—

[ - == - - - [ ——————— e

Diffusion Model
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Comparison with VAEs

e Diffusion models and VAEs both map to isotropic Gaussian.

@ The latent space has the same dimension as the input space in
DMs. In VAEs, it is smaller dimensional.

@ The forward process is the encoder, which is fixed. This is trained
in VAEs.

@ The reverse process is the decoder, which is trained, similar to
the VAEs.
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Conditional Generation

o The original examples we saw were images generated conditioned
on a text caption. More examples:

Midjourney, prompt: A close-up profile of a DALL-E 3, prompt: Illustration of a chic chair
cute green-eyed kitten with a black nose and with a design reminiscent of a pumpkin’s form,
light cheeks sitting on top of a wooden floor with deep orange cushioning, in a stylish loft
under bright daylight. setting.

o But the diffusion model we learned about can only generate
unconditioned images.
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Conditional Generation: General Formulation

e Suppose we want to condition on y (e.g. class label or describing

caption).
e The training data are pairs of (zg,y).
e Conditional reverse process:
T
po(zo.rly) = H (zi-1|ze,y)

e We still model the transition probabilities as Gaussian:

po(zi—1]xe,y) = N(po(we, t, ¢), Bo(xe,t,9)).
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Conditional Generation

@ The new loss:

L=E, |lr+ > KL(q(@i—1|ze, 20)|lpo(2i—1|z1, ) — log po(xolz1, y

t>2

e How to incorporate y into the U-Net architecture?

» Different techniques for different types of conditioning (labels,
images, captions, ...)
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Classifier Guidance

e To further strengthen conditioning, we can train a classifier
Ps(y|x) and incorporate its log-gradient into score with a scale s.

e [Nichol and Dhariwal, 2021]

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model (pq(x,), Lg(z)), classi-
fier py(y|z:), and gradient scale s.

Input: class label y, gradient scale s
7 + sample from A/(0,1)
for all £ from T" to 1 do
s L+ He (Ii)| EB(Et)
T;—1 + sample from N (p + sE ¥, log ps(y|z:), )
end for
return zo
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Classifier-Free Guidance

o Instead of training a separate classifier, simultaneously train a
conditional and an unconditional diffusion model.

e We have an implicit classifier by Bayes rule,

p(zely)
p(y’xt) Xy p(l't) :

o We can simply use

Ve, logp(yla) = Ve, log p(z|y) — Ve, log p(xy).
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Tradeoff: Sample Quality vs Diversity

5|
A

P2

29 /34
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Conditioning Applications

Conditioning is not always on captions.

< Generated Input Generated >

Uncropping

JPEG restoration

[Saharia et al., 2022]
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Tradeoffs in Generative Modeling

High

N i \ !

Generative Quality )\ Denoising
Adversarial 7\ | Diffusion
Networks Samples /% “\fodels

Fast

Sampling ]

Variational Autoencoders,
Normalizing Flows

[Xiao et al., 2021]

o Accelerating diffusion models can overcome the above trilemma.
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Summary

o Diffusion Models: Forward and Reverse Processes

Training via Variational Upper Bounds

o Conditional Generation
o Tradeoffs
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Topics for Further Reading

e Denoising Score Matching [Song et al., 2021]
e Probability Flow ODE [Song et al., 2021]
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