
ML4 B&I: Introduction to Machine Learning
Lecture 2- Decision Trees & Ensembles

Murat A. Erdogdu

Vector Institute, Fall 2022

Intro ML (Vector) ML4 B&I-Lec2 1 / 45

Today

Announcement: A2 to be released this F, due on next F 5pm on D2L.

Decision Trees

I Simple but powerful learning algorithm
I Used widely in Kaggle competitions
I Lets us motivate concepts from information theory (entropy, mutual

information, etc.)

Bias-variance decomposition

I Concept to motivate combining different classifiers.

Ensemble methods

I A commonly used technique to combine various methods.

Intro ML (Vector) ML4 B&I-Lec2 2 / 45

Decision Trees

Measure attributes: width, heigth

Make predictions by splitting on features according to a tree structure.

Yes No

Yes No Yes No

Intro ML (Vector) ML4 B&I-Lec2 3 / 45

Decision Trees

Make predictions by splitting on features according to a tree structure.

Intro ML (Vector) ML4 B&I-Lec2 4 / 45

Decision Trees—Continuous Features

Split continuous features by checking whether that feature is greater
than or less than some threshold.

Decision boundary is made up of axis-aligned planes.

Intro ML (Vector) ML4 B&I-Lec2 5 / 45

Decision Trees

Yes No

Yes No Yes No

Internal nodes test a feature (attribute)

Branching is determined by the feature value

Leaf nodes are outputs (predictions)

Question: What are the hyperparameters of this model?

Intro ML (Vector) ML4 B&I-Lec2 6 / 45

Decision Trees—Classification and Regression

Each path from root to a leaf defines a region Rm

of input space

Let {(x(m1), t(m1)), . . . , (x(mk), t(mk))} be the
training examples that fall into Rm

m = 4 on the right

Regression tree:

I continuous output

I leaf value ym typically set to the mean value in {t(m1), . . . , t(mk)}

Classification tree (we will focus on this):

I discrete output

I leaf value ym typically set to the most common value in
{t(m1), . . . , t(mk)}

Intro ML (Vector) ML4 B&I-Lec2 7 / 45

Decision Trees—Discrete Features

Will I eat at this restaurant?

Intro ML (Vector) ML4 B&I-Lec2 8 / 45

Decision Trees—Discrete Features

Split discrete features into a partition of possible values.

Features:
Intro ML (Vector) ML4 B&I-Lec2 9 / 45

Learning Decision Trees

Decision trees are universal function approximators.

I For any training set we can construct a decision tree that has
exactly the one leaf for every training point, but it probably won’t
generalize.

I Example - If all D features were binary, and we had N = 2D unique
training examples, a Full Binary Tree would have one leaf per
example.

So, how do we construct a useful decision tree?

Intro ML (Vector) ML4 B&I-Lec2 10 / 45

Learning Decision Trees

Resort to a greedy heuristic:

I Start with the whole training set and an empty decision tree.
I Pick a feature and candidate split that would most reduce a loss
I Split on that feature and recurse on subpartitions.

What is a loss?

I When learning a model, we use a scalar number to assess whether
we’re on track

I Scalar value: low is good, high is bad

Which loss should we use?

Intro ML (Vector) ML4 B&I-Lec2 11 / 45

Choosing a Good Split

Consider the following data. Let’s split on width.

Classify by majority.

Intro ML (Vector) ML4 B&I-Lec2 12 / 45

Choosing a Good Split

Which is the best split? Vote!

Intro ML (Vector) ML4 B&I-Lec2 13 / 45

Choosing a Good Split

A feels like a better split, because the left-hand region is very
certain about whether the fruit is an orange.

Can we quantify this?

Intro ML (Vector) ML4 B&I-Lec2 14 / 45

Choosing a Good Split

How can we quantify uncertainty in prediction for a given leaf node?

I If all examples in leaf have same class: good, low uncertainty
I If each class has same amount of examples in leaf: bad, high

uncertainty

Idea: Use counts at leaves to define probability distributions; use a
probabilistic notion of uncertainty to decide splits.

A brief detour through information theory...

Intro ML (Vector) ML4 B&I-Lec2 15 / 45

Entropy - Quantifying uncertainty

You may have encountered the term entropy quantifying the state of
chaos in chemical and physical systems,

The entropy of a random variable quantifies the uncertainty inherent.

To explain entropy, consider flipping two different coins...

Intro ML (Vector) ML4 B&I-Lec2 16 / 45

We Flip Two Different Coins

Each coin is a binary random variable with outcomes 1 or 0:

Sequence 1:
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 ... ?	

Sequence 2:
0 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 ... ?	

16

2
8 10

0	 1	

versus

0	 1	

Intro ML (Vector) ML4 B&I-Lec2 17 / 45

Quantifying Uncertainty

The entropy of a loaded coin with probability p of heads is given by

−p log2(p)− (1− p) log2(1− p)

0	 1	

8/9

1/9

−8

9
log2

8

9
− 1

9
log2

1

9
≈ 1

2

0	 1	

4/9 5/9

−4

9
log2

4

9
− 5

9
log2

5

9
≈ 1

Notice: the coin whose outcomes are more certain has a lower entropy.

In the extreme case p = 0 or p = 1, we were certain of the outcome before
observing. So, we gained no certainty by observing it, i.e., entropy is 0.

Intro ML (Vector) ML4 B&I-Lec2 18 / 45

Quantifying Uncertainty

Can also think of entropy as the expected information content of a
random draw from a probability distribution.

0.2 0.4 0.6 0.8 1.0
probability p of heads

0.2

0.4

0.6

0.8

1.0

entropy

Claude Shannon showed: you cannot store the outcome of a random
draw using fewer expected bits than the entropy without losing
information.

So units of entropy are bits; a fair coin flip has 1 bit of entropy.

Intro ML (Vector) ML4 B&I-Lec2 19 / 45

Entropy

More generally, the entropy of a discrete random variable Y is given by

H(Y) = −
∑
y∈Y

p(y) log2 p(y)

“High Entropy”:

I Variable has a uniform like distribution over many outcomes
I Flat histogram
I Values sampled from it are less predictable

“Low Entropy”

I Distribution is concentrated on only a few outcomes
I Histogram is concentrated in a few areas
I Values sampled from it are more predictable

[Slide credit: Vibhav Gogate]

Intro ML (Vector) ML4 B&I-Lec2 20 / 45

Entropy

Suppose we observe partial information X about a random variable Y

I For example, X = sign(Y).

We want to work towards a definition of the expected amount of
information that will be conveyed about Y by observing X.

I Or equivalently, the expected reduction in our uncertainty about Y
after observing X.

Intro ML (Vector) ML4 B&I-Lec2 21 / 45

Entropy of a Joint Distribution

Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

H(X,Y) = −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(x, y)

= − 24

100
log2

24

100
− 1

100
log2

1

100
− 25

100
log2

25

100
− 50

100
log2

50

100

≈ 1.56bits

Intro ML (Vector) ML4 B&I-Lec2 22 / 45

Conditional Entropy

Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

What is the entropy of cloudiness Y , given that it is raining?

H(Y |X = x) = −
∑
y∈Y

p(y|x) log2 p(y|x)

= −24

25
log2

24

25
− 1

25
log2

1

25

≈ 0.24bits

We used: p(y|x) = p(x,y)
p(x) , and p(x) =

∑
y p(x, y) (sum in a row)

Intro ML (Vector) ML4 B&I-Lec2 23 / 45

Conditional Entropy

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

The expected conditional entropy:

H(Y |X) = Ex[H(Y |X = x)]

=
∑
x∈X

p(x)H(Y |X = x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(y|x)

Intro ML (Vector) ML4 B&I-Lec2 24 / 45

Conditional Entropy

Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

What is the entropy of cloudiness, given the knowledge of whether or not
it is raining?

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x)

=
1

4
H(cloudy|is raining) +

3

4
H(cloudy|not raining)

≈ 0.75 bits

Intro ML (Vector) ML4 B&I-Lec2 25 / 45

Conditional Entropy

Some useful properties:

I H is always non-negative

I Chain rule: H(X,Y) = H(X|Y) + H(Y) = H(Y |X) + H(X)

I If X and Y independent, then X does not affect our uncertainty
about Y : H(Y |X) = H(Y)

I But knowing Y makes our knowledge of Y certain: H(Y |Y) = 0

I By knowing X, we can only decrease uncertainty about Y :
H(Y |X) ≤ H(Y)

Intro ML (Vector) ML4 B&I-Lec2 26 / 45

Information Gain

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

How much more certain am I about whether it’s cloudy if I’m told
whether it is raining? My uncertainty in Y minus my expected
uncertainty that would remain in Y after seeing X.

This is called the information gain IG(Y |X) in Y due to X, or the
mutual information of Y and X

IG(Y |X) = H(Y)−H(Y |X) (1)

If X is completely uninformative about Y : IG(Y |X) = 0

If X is completely informative about Y : IG(Y |X) = H(Y)

Intro ML (Vector) ML4 B&I-Lec2 27 / 45

Revisiting Our Original Example

Information gain measures the informativeness of a variable,
which is exactly what we desire in a decision tree split!

The information gain of a split: how much information (over the training
set) about the class label Y is gained by knowing which side of a split
you’re on.

Intro ML (Vector) ML4 B&I-Lec2 28 / 45

Information Gain of Split B

What is the information gain of split B? Not terribly informative...

Entropy of class outcome before split:
H(Y) = − 2

7 log2(2
7)− 5

7 log2(5
7) ≈ 0.86

Conditional entropy of class outcome after split:
H(Y |left) ≈ 0.81, H(Y |right) ≈ 0.92

IG(split) ≈ 0.86− (4
7 · 0.81 + 3

7 · 0.92) ≈ 0.006

Intro ML (Vector) ML4 B&I-Lec2 29 / 45

Information Gain of Split A

What is the information gain of split A? Very informative!

Entropy of class outcome before split:
H(Y) = − 2

7 log2(2
7)− 5

7 log2(5
7) ≈ 0.86

Conditional entropy of class outcome after split:
H(Y |left) = 0, H(Y |right) ≈ 0.97

IG(split) ≈ 0.86− (2
7 · 0 + 5

7 · 0.97) ≈ 0.17!!

Intro ML (Vector) ML4 B&I-Lec2 30 / 45

Constructing Decision Trees

Yes No

Yes No Yes No

At each level, one must choose:

1. Which feature to split.
2. Possibly where to split it.

Choose them based on how much information we would gain from the
decision! (choose feature that gives the highest gain)

Intro ML (Vector) ML4 B&I-Lec2 31 / 45

Decision Tree Construction Algorithm

Simple, greedy, recursive approach, builds up tree node-by-node

Loop:

1. pick a feature to split at a non-terminal node
2. split examples into groups based on feature value

Terminates when all leaves contain only examples in the same class or
are empty.

Choose

I the feature to split on and the split (threshold)
I that gives the highest information gain.

Intro ML (Vector) ML4 B&I-Lec2 32 / 45

Back to Our Example

Features: [from: Russell & Norvig]

Intro ML (Vector) ML4 B&I-Lec2 33 / 45

Feature Selection

IG(Y) = H(Y)−H(Y |X)

IG(type) = 1−
[

2

12
H(Y |Fr.) +

2

12
H(Y |It.) +

4

12
H(Y |Thai) +

4

12
H(Y |Bur.)

]
= 0

IG(Patrons) = 1−
[

2

12
H(Y |Non) +

4

12
H(Y |Some) +

6

12
H(Y |Full)

]
≈ 0.541

Intro ML (Vector) ML4 B&I-Lec2 34 / 45

Which Tree is Better? Vote!

Intro ML (Vector) ML4 B&I-Lec2 35 / 45

What Makes a Good Tree?

Not too small: need to handle important but possibly subtle distinctions
in data

Not too big:

I Avoid over-fitting training examples
I Computational efficiency (avoid redundant, spurious attributes)
I Human interpretability

We desire small trees with informative nodes near the root

Intro ML (Vector) ML4 B&I-Lec2 36 / 45

KNN versus Decision Trees

Advantages of decision trees over KNNs

Simple to deal with discrete features, missing values, and poorly scaled
data

Fast at test time

More interpretable

Advantages of KNNs over decision trees

Few hyperparameters

Can incorporate interesting distance measures (e.g. shape contexts)

Intro ML (Vector) ML4 B&I-Lec2 37 / 45

Bias-Variance Decomposition

Overly simple models underfit the data,
and overly complex models overfit.

We can quantify underfitting and overfitting
in terms of the bias/variance decomposition.

Intro ML (Vector) ML4 B&I-Lec2 38 / 45

Bias variance tradeoff

test error = bias2 + variance

We split the expected loss into three terms:

bias: how wrong the expected prediction is
(corresponds to underfitting – small decision tree)

variance: the amount of variability in the predictions
(corresponds to overfitting – huge decision tree)

Intro ML (Vector) ML4 B&I-Lec2 39 / 45

Bias and Variance

Throwing darts = predictions for each draw of a dataset

Intro ML (Vector) ML4 B&I-Lec2 40 / 45

Ensemble methods: Bagging

Suppose we could somehow sample m independent training sets
{Di}mi=1 from pdataset.

We could then learn a predictor hi := hDi based on each one, and
take the average h = 1

m

∑m
i=1 hi.

How does this affect the performance?
I Bias: unchanged, since the averaged prediction has the same

expectation

E
D1,...,Dm

iid∼ pdataset
[h(x)] =

1

m

m∑
i=1

EDi∼pdataset
[hi(x)] = ED∼pdataset

[hD(x)]

I Variance: reduced, since we’re averaging over independent
samples

Var
D1,...,Dm

[h(x)] =
1

m2

m∑
i=1

Var
Di

[hi(x)] =
1

m
Var
D

[hD(x)].

What if m→∞?
Intro ML (Vector) ML4 B&I-Lec2 41 / 45

Bagging: The Idea

In practice, we don’t have access to the underlying data generating
distribution psample.

It is expensive to collect many i.i.d. datasets from pdataset.

Solution: bootstrap aggregation, or bagging.

I Take a single dataset D with n examples.

I Generate m new datasets, each by sampling n training examples
from D, with replacement.

I Average the predictions of models trained on each of these datasets.

Intro ML (Vector) ML4 B&I-Lec2 42 / 45

Bagging: The Idea

Problem: the datasets are not independent, so we don’t get the
1/m variance reduction.

I Still helps reduce the variance.

Ironically, it can be advantageous to introduce additional
variability into your algorithm, as long as it reduces the
correlation between samples.

I Can help to use average over multiple algorithms, or multiple
configurations of the same algorithm.

Intro ML (Vector) ML4 B&I-Lec2 43 / 45

Random Forests

Random forests = bagged decision trees, with one extra trick to
decorrelate the predictions

When choosing each node of the decision tree, choose a random
set of d input features, and only consider splits on those features

The main idea in random forests is to improve the variance
reduction of bagging by reducing the correlation between the trees.

Random forests are probably the best black-box machine learning
algorithm — they often work well with no tuning whatsoever.

I one of the most widely used algorithms in Kaggle competitions

Intro ML (Vector) ML4 B&I-Lec2 44 / 45

Conclusion

Decision trees are simple and interpretable models.

Complexity of the model impacts the test error through
bias-variance decomposition

Ensemble methods can be used to ”trick” bias-variance tradeoff.

Next lecture, we focus on linear regression.

Intro ML (Vector) ML4 B&I-Lec2 45 / 45

	Ensembles

