ML4 B\&I: Introduction to Machine Learning
 Lecture 2- Decision Trees \& Ensembles

Murat A. Erdogdu

Vector Institute, Fall 2022

Today

- Announcement: A2 to be released this F, due on next F 5pm on D2L.
- Decision Trees
- Simple but powerful learning algorithm
- Used widely in Kaggle competitions
- Lets us motivate concepts from information theory (entropy, mutual information, etc.)
- Bias-variance decomposition
- Concept to motivate combining different classifiers.
- Ensemble methods
- A commonly used technique to combine various methods.

Decision Trees

- Measure attributes: width, heigth
- Make predictions by splitting on features according to a tree structure.

Decision Trees

- Make predictions by splitting on features according to a tree structure.

Test example

$$
\text { width }>6.5 \mathrm{~cm} ?
$$

height $>9.5 \mathrm{~cm}$?

height $>6.0 \mathrm{~cm}$?

Decision Trees-Continuous Features

- Split continuous features by checking whether that feature is greater than or less than some threshold.
- Decision boundary is made up of axis-aligned planes.

Decision Trees

- Internal nodes test a feature (attribute)
- Branching is determined by the feature value
- Leaf nodes are outputs (predictions)

Question: What are the hyperparameters of this model?

Decision Trees-Classification and Regression

- Each path from root to a leaf defines a region R_{m} of input space
- Let $\left\{\left(x^{\left(m_{1}\right)}, t^{\left(m_{1}\right)}\right), \ldots,\left(x^{\left(m_{k}\right)}, t^{\left(m_{k}\right)}\right)\right\}$ be the training examples that fall into R_{m}
- $m=4$ on the right

- Regression tree:
- continuous output
- leaf value y^{m} typically set to the mean value in $\left\{t^{\left(m_{1}\right)}, \ldots, t^{\left(m_{k}\right)}\right\}$
- Classification tree (we will focus on this):
- discrete output
- leaf value y^{m} typically set to the most common value in $\left\{t^{\left(m_{1}\right)}, \ldots, t^{\left(m_{k}\right)}\right\}$

Decision Trees-Discrete Features

- Will I eat at this restaurant?

Decision Trees-Discrete Features

- Split discrete features into a partition of possible values.

Example	Input Attributes										Goal WillWait
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
\mathbf{x}_{1}	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	$y_{1}=Y$ es
x_{2}	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_{2}=N_{o}$
x_{3}	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_{3}=Y e s$
x_{4}	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_{4}=Y e s$
\mathbf{x}_{5}	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	> 60	$y_{5}=N_{0}$
x_{6}	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	$y_{6}=Y$ Yes
x_{7}	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_{7}=N_{0}$
x_{8}	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	$y_{8}=Y e s$
x_{9}	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_{9}=N_{o}$
x_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10}=N_{0}$
x_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	$y_{11}=N_{0}$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12}=Y e s$

Features:

Alternate: whether there is a suitable alternative restaurant nearby.
Bar: whether the restaurant has a comfortable bar area to wait in.
Fri/Sat: true on Fridays and Saturdays.
Hungry: whether we are hungry.
Patrons: how many people are in the restaurant (values are None, Some, and Full).
Price: the restaurant's price range ($\$, \$ \$, \$ \$ \$$).
Raining: whether it is raining outside.
Reservation: whether we made a reservation.
Type: the kind of restaurant (French, Italian, Thai or Burger).
WaitEstimate: the wait estimated by the host ($0-10$ minutes, $10-30,30-60,>60$).

Learning Decision Trees

- Decision trees are universal function approximators.
- For any training set we can construct a decision tree that has exactly the one leaf for every training point, but it probably won't generalize.
- Example - If all D features were binary, and we had $N=2^{D}$ unique training examples, a Full Binary Tree would have one leaf per example.
- So, how do we construct a useful decision tree?

Learning Decision Trees

- Resort to a greedy heuristic:
- Start with the whole training set and an empty decision tree.
- Pick a feature and candidate split that would most reduce a loss
- Split on that feature and recurse on subpartitions.
- What is a loss?
- When learning a model, we use a scalar number to assess whether we're on track
- Scalar value: low is good, high is bad
- Which loss should we use?

Choosing a Good Split

- Consider the following data. Let's split on width.
- Classify by majority.

Choosing a Good Split

- Which is the best split? Vote!

Choosing a Good Split

- A feels like a better split, because the left-hand region is very certain about whether the fruit is an orange.
- Can we quantify this?

- oranges
- lemons

Choosing a Good Split

- How can we quantify uncertainty in prediction for a given leaf node?
- If all examples in leaf have same class: good, low uncertainty
- If each class has same amount of examples in leaf: bad, high uncertainty
- Idea: Use counts at leaves to define probability distributions; use a probabilistic notion of uncertainty to decide splits.
- A brief detour through information theory...

Entropy - Quantifying uncertainty

- You may have encountered the term entropy quantifying the state of chaos in chemical and physical systems,
- The entropy of a random variable quantifies the uncertainty inherent.
- To explain entropy, consider flipping two different coins...

We Flip Two Different Coins

Each coin is a binary random variable with outcomes 1 or 0 :
Sequence 1:
$000100000000000100 \ldots$?
Sequence 2:
$010101110100110101 \ldots$?

0
versus

Quantifying Uncertainty

- The entropy of a loaded coin with probability p of heads is given by

$$
-p \log _{2}(p)-(1-p) \log _{2}(1-p)
$$

- Notice: the coin whose outcomes are more certain has a lower entropy.
- In the extreme case $p=0$ or $p=1$, we were certain of the outcome before observing. So, we gained no certainty by observing it, i.e., entropy is 0 .

Quantifying Uncertainty

- Can also think of entropy as the expected information content of a random draw from a probability distribution.

- Claude Shannon showed: you cannot store the outcome of a random draw using fewer expected bits than the entropy without losing information.
- So units of entropy are bits; a fair coin flip has 1 bit of entropy.

Entropy

- More generally, the entropy of a discrete random variable Y is given by

$$
H(Y)=-\sum_{y \in Y} p(y) \log _{2} p(y)
$$

- "High Entropy":
- Variable has a uniform like distribution over many outcomes
- Flat histogram
- Values sampled from it are less predictable
- "Low Entropy"
- Distribution is concentrated on only a few outcomes
- Histogram is concentrated in a few areas
- Values sampled from it are more predictable
[Slide credit: Vibhav Gogate]

Entropy

- Suppose we observe partial information X about a random variable Y
- For example, $X=\operatorname{sign}(Y)$.
- We want to work towards a definition of the expected amount of information that will be conveyed about Y by observing X.
- Or equivalently, the expected reduction in our uncertainty about Y after observing X.

Entropy of a Joint Distribution

- Example: $X=\{$ Raining, Not raining $\}, Y=\{$ Cloudy, Not cloudy $\}$

	Cloudy	Not Cloudy
Raining	$24 / 100$	$1 / 100$
Not Raining	$25 / 100$	$50 / 100$

$$
\begin{aligned}
H(X, Y) & =-\sum_{x \in X} \sum_{y \in Y} p(x, y) \log _{2} p(x, y) \\
& =-\frac{24}{100} \log _{2} \frac{24}{100}-\frac{1}{100} \log _{2} \frac{1}{100}-\frac{25}{100} \log _{2} \frac{25}{100}-\frac{50}{100} \log _{2} \frac{50}{100} \\
& \approx 1.56 \mathrm{bits}
\end{aligned}
$$

Conditional Entropy

- Example: $X=\{$ Raining, Not raining $\}, Y=\{$ Cloudy, Not cloudy $\}$

	Cloudy	Not Cloudy
Raining	$24 / 100$	$1 / 100$
Not Raining	$25 / 100$	$50 / 100$

- What is the entropy of cloudiness Y, given that it is raining?

$$
\begin{aligned}
H(Y \mid X=x) & =-\sum_{y \in Y} p(y \mid x) \log _{2} p(y \mid x) \\
& =-\frac{24}{25} \log _{2} \frac{24}{25}-\frac{1}{25} \log _{2} \frac{1}{25} \\
& \approx 0.24 \mathrm{bits}
\end{aligned}
$$

- We used: $p(y \mid x)=\frac{p(x, y)}{p(x)}$, and $p(x)=\sum_{y} p(x, y) \quad$ (sum in a row)

Conditional Entropy

	Cloudy	Not Cloudy
Raining	$24 / 100$	$1 / 100$
Not Raining	$25 / 100$	$50 / 100$

- The expected conditional entropy:

$$
\begin{aligned}
H(Y \mid X) & =\mathbb{E}_{x}[H(Y \mid X=x)] \\
& =\sum_{x \in X} p(x) H(Y \mid X=x) \\
& =-\sum_{x \in X} \sum_{y \in Y} p(x, y) \log _{2} p(y \mid x)
\end{aligned}
$$

Conditional Entropy

- Example: $X=\{$ Raining, Not raining $\}, Y=\{$ Cloudy, Not cloudy $\}$

	Cloudy	Not Cloudy
Raining	$24 / 100$	$1 / 100$
Not Raining	$25 / 100$	$50 / 100$

- What is the entropy of cloudiness, given the knowledge of whether or not it is raining?

$$
\begin{aligned}
H(Y \mid X) & =\sum_{x \in X} p(x) H(Y \mid X=x) \\
& =\frac{1}{4} H(\text { cloudy } \mid \text { is raining })+\frac{3}{4} H(\text { cloudy } \mid \text { not raining }) \\
& \approx 0.75 \mathrm{bits}
\end{aligned}
$$

Conditional Entropy

- Some useful properties:
- H is always non-negative
- Chain rule: $H(X, Y)=H(X \mid Y)+H(Y)=H(Y \mid X)+H(X)$
- If X and Y independent, then X does not affect our uncertainty about $Y: H(Y \mid X)=H(Y)$
- But knowing Y makes our knowledge of Y certain: $H(Y \mid Y)=0$
- By knowing X, we can only decrease uncertainty about Y : $H(Y \mid X) \leq H(Y)$

Information Gain

	Cloudy	Not Cloudy
Raining	$24 / 100$	$1 / 100$
Not Raining	$25 / 100$	$50 / 100$

- How much more certain am I about whether it's cloudy if I'm told whether it is raining? My uncertainty in Y minus my expected uncertainty that would remain in Y after seeing X.
- This is called the information gain $I G(Y \mid X)$ in Y due to X, or the mutual information of Y and X

$$
\begin{equation*}
I G(Y \mid X)=H(Y)-H(Y \mid X) \tag{1}
\end{equation*}
$$

- If X is completely uninformative about $Y: \operatorname{IG}(Y \mid X)=0$
- If X is completely informative about $Y: I G(Y \mid X)=H(Y)$

Revisiting Our Original Example

- Information gain measures the informativeness of a variable, which is exactly what we desire in a decision tree split!
- The information gain of a split: how much information (over the training set) about the class label Y is gained by knowing which side of a split you're on.

Information Gain of Split B

- What is the information gain of split B? Not terribly informative...

- Entropy of class outcome before split: $H(Y)=-\frac{2}{7} \log _{2}\left(\frac{2}{7}\right)-\frac{5}{7} \log _{2}\left(\frac{5}{7}\right) \approx 0.86$
- Conditional entropy of class outcome after split: $H(Y \mid$ left $) \approx 0.81, H(Y \mid$ right $) \approx 0.92$
- $I G($ split $) \approx 0.86-\left(\frac{4}{7} \cdot 0.81+\frac{3}{7} \cdot 0.92\right) \approx 0.006$

Information Gain of Split A

- What is the information gain of split A? Very informative!

- Entropy of class outcome before split: $H(Y)=-\frac{2}{7} \log _{2}\left(\frac{2}{7}\right)-\frac{5}{7} \log _{2}\left(\frac{5}{7}\right) \approx 0.86$
- Conditional entropy of class outcome after split: $H(Y \mid l e f t)=0, H(Y \mid$ right $) \approx 0.97$
- $I G($ split $) \approx 0.86-\left(\frac{2}{7} \cdot 0+\frac{5}{7} \cdot 0.97\right) \approx 0.17!!$

Constructing Decision Trees

- At each level, one must choose:

1. Which feature to split.
2. Possibly where to split it.

- Choose them based on how much information we would gain from the decision! (choose feature that gives the highest gain)

Decision Tree Construction Algorithm

- Simple, greedy, recursive approach, builds up tree node-by-node Loop:

1. pick a feature to split at a non-terminal node
2. split examples into groups based on feature value

- Terminates when all leaves contain only examples in the same class or are empty.
- Choose
- the feature to split on and the split (threshold)
- that gives the highest information gain.

Back to Our Example

Example	Input Attributes										Goal WillWait
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
x_{1}	Yes	No	No	Yes	Some	\$\$8	No	Yes	French	0-10	$y_{1}=$ Yes
x_{2}	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_{2}=N o$
x_{3}	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_{3}=Y$ es
x_{4}	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_{4}=Y$ es
x_{5}	Yes	No	Yes	No	Full	\$\$8	No	Yes	French	>60	$y_{5}=N_{o}$
x_{6}	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	$y_{6}=Y$ es
\mathbf{x}_{7}	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_{7}=N_{o}$
x_{8}	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	$y_{8}=Y e s$
x_{9}	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_{9}=N_{o}$
x_{10}	Yes	Yes	Yes	Yes	Full	\$\$8	No	Yes	Italian	10-30	$y_{10}=N_{o}$
x_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	$y_{11}=N_{o}$
x_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12}=Y e s$

[^0]Features:

Feature Selection

$$
\begin{gathered}
I G(Y)=H(Y)-H(Y \mid X) \\
I G(\text { type })=1-\left[\frac{2}{12} H(Y \mid \text { Fr. })+\frac{2}{12} H(Y \mid \text { It. })+\frac{4}{12} H(Y \mid \text { Thai })+\frac{4}{12} H(Y \mid \text { Bur. })\right]=0 \\
I G(\text { Patrons })=1-\left[\frac{2}{12} H(Y \mid \text { Non })+\frac{4}{12} H(Y \mid \text { Some })+\frac{6}{12} H(Y \mid \text { Full })\right] \approx 0.541
\end{gathered}
$$

Which Tree is Better? Vote!

What Makes a Good Tree?

- Not too small: need to handle important but possibly subtle distinctions in data
- Not too big:
- Avoid over-fitting training examples
- Computational efficiency (avoid redundant, spurious attributes)
- Human interpretability
- We desire small trees with informative nodes near the root

KNN versus Decision Trees

Advantages of decision trees over KNNs

- Simple to deal with discrete features, missing values, and poorly scaled data
- Fast at test time
- More interpretable

Advantages of KNNs over decision trees

- Few hyperparameters
- Can incorporate interesting distance measures (e.g. shape contexts)

Bias-Variance Decomposition

- Overly simple models underfit the data, and overly complex models overfit.
- We can quantify underfitting and overfitting in terms of the bias/variance decomposition.

Bias variance tradeoff

$$
\text { test error }=\text { bias }^{2}+\text { variance }
$$

We split the expected loss into three terms:

- bias: how wrong the expected prediction is (corresponds to underfitting - small decision tree)
- variance: the amount of variability in the predictions (corresponds to overfitting - huge decision tree)

Bias and Variance

- Throwing darts $=$ predictions for each draw of a dataset

Ensemble methods: Bagging

- Suppose we could somehow sample m independent training sets $\left\{\mathcal{D}_{i}\right\}_{i=1}^{m}$ from $p_{\text {dataset }}$.
- We could then learn a predictor $h_{i}:=h_{\mathcal{D}_{i}}$ based on each one, and take the average $h=\frac{1}{m} \sum_{i=1}^{m} h_{i}$.
- How does this affect the performance?
- Bias: unchanged, since the averaged prediction has the same expectation

$$
\mathbb{E}_{\mathcal{D}_{1}, \ldots, \mathcal{D}_{m} \sim i^{i \lambda d} \sim p_{\text {dataset }}}[h(\mathbf{x})]=\frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{\mathcal{D}_{i} \sim p_{\text {dataset }}}\left[h_{i}(\mathbf{x})\right]=\mathbb{E}_{\mathcal{D} \sim p_{\text {dataset }}}\left[h_{\mathcal{D}}(\mathbf{x})\right]
$$

- Variance: reduced, since we're averaging over independent samples

$$
\underset{\mathcal{D}_{1}, \ldots, \mathcal{D}_{m}}{\operatorname{Var}}[h(\mathbf{x})]=\frac{1}{m^{2}} \sum_{i=1}^{m} \underset{\mathcal{D}_{i}}{\operatorname{Var}}\left[h_{i}(\mathbf{x})\right]=\frac{1}{m} \underset{\mathcal{D}}{\operatorname{Var}}\left[h_{\mathcal{D}}(\mathbf{x})\right] .
$$

What if $m \rightarrow \infty$?

Bagging: The Idea

- In practice, we don't have access to the underlying data generating distribution $p_{\text {sample }}$.
- It is expensive to collect many i.i.d. datasets from $p_{\text {dataset }}$.
- Solution: bootstrap aggregation, or bagging.
- Take a single dataset \mathcal{D} with n examples.
- Generate m new datasets, each by sampling n training examples from \mathcal{D}, with replacement.
- Average the predictions of models trained on each of these datasets.

Bagging: The Idea

- Problem: the datasets are not independent, so we don't get the $1 / m$ variance reduction.
- Still helps reduce the variance.
- Ironically, it can be advantageous to introduce additional variability into your algorithm, as long as it reduces the correlation between samples.
- Can help to use average over multiple algorithms, or multiple configurations of the same algorithm.

Random Forests

- Random forests $=$ bagged decision trees, with one extra trick to decorrelate the predictions
- When choosing each node of the decision tree, choose a random set of d input features, and only consider splits on those features
- The main idea in random forests is to improve the variance reduction of bagging by reducing the correlation between the trees.
- Random forests are probably the best black-box machine learning algorithm - they often work well with no tuning whatsoever.
- one of the most widely used algorithms in Kaggle competitions

Conclusion

- Decision trees are simple and interpretable models.
- Complexity of the model impacts the test error through bias-variance decomposition
- Ensemble methods can be used to "trick" bias-variance tradeoff.
- Next lecture, we focus on linear regression.

[^0]: 1. Alternate: whether there is a suitable alternative restaurant nearby.

 Bar: whether the restaurant has a comfortable bar area to wait in.
 Fri/Sat: true on Fridays and Saturdays.
 Hungry: whether we are hungry.
 Patrons: how many people are in the restaurant (values are None, Some, and Full).
 Price: the restaurant's price range (\$, \$\$, \$\$\$).
 Raining: whether it is raining outside.
 Reservation: whether we made a reservation.
 Type: the kind of restaurant (French, Italian, Thai or Burger). WaitEstimate: the wait estimated by the host ($0-10$ minutes, $10-30,30-60,>60$). [fror

