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Today

@ Announcement: A2 to be released this F, due on next F 5pm on D2L.
@ Decision Trees

» Simple but powerful learning algorithm

» Used widely in Kaggle competitions

» Lets us motivate concepts from information theory (entropy, mutual
information, etc.)

@ Bias-variance decomposition
» Concept to motivate combining different classifiers.

Ensemble methods

» A commonly used technique to combine various methods.
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Decision Trees

@ Measure attributes: width, heigth

@ Make predictions by splitting on features according to a tree structure.

B/vidth > 6.5cm? ]

Yes No

helght >9.5cm? helght >6.0cm?

/\ l\

Intro ML (Vector) ML4 B&I-Lec2 3/45




Decision Trees

@ Make predictions by splitting on features according to a tree structure.

Test example

[Wldth > 6.5cm?

/\

[height>9.5cm? ] [height>6.0cm? ]‘
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Decision Trees—Continuous Features

@ Split continuous features by checking whether that feature is greater
than or less than some threshold.

@ Decision boundary is made up of axis-aligned planes.
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Decision Trees

width > 6.5cm?

[height>9.50m? ] [height>6.0cm? ]

@ Internal nodes test a feature (attribute)
@ Branching is determined by the feature value
@ Leaf nodes are outputs (predictions)

Question: What are the hyperparameters of this model?
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Decision Trees—Classification and Regression

@ Each path from root to a leaf defines a region R, P |1 @
of input space Somas
put sp o i e
® Let {(x(m1)7t(ml))7 ceey (x(m’“),t(m’“))} be the g,
training examples that fall into R,, @ - —
@ m = 4 on the right L e °

@ Regression tree:

» continuous output

> leaf value y™ typically set to the mean value in {t(ml)7 . ,t(mk)}
o Classification tree (we will focus on this):

» discrete output

> leaf value y™ typically set to the most common value in
[em), . lm)y
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Decision Trees—Discrete Features

@ Will I eat at this restaurant?

Alternate?
No Yes No

| Reservation? || Fri/Sat? |
No Yes

Alternate?
No
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Decision Trees—Discrete Features

@ Split discrete features into a partition of possible values.

Example Input Attributes Goal
Alt | Bar | Fri | Hun | Pat | Price | Rain | Res | Type Est WillWait

X1 Yes| No| No | Yes| Some| $$$ | No | Yes| French| 0-10 | y; = Yes
X3 Yes| No | No | Yes| Full 3 No | No Thai | 30-60 | y,= No
X3 No | Yes| No | No | Some $ No | No | Burger | 0-10 | y3= Yes
X4 Yes| No | Yes| Yes Full 3 Yes | No Thai 10-30 | y4 = Yes
X5 Yes | No | Yes| No Full | $3$ | No | Yes| French| >60 | ys= No
Xg No | Yes No | Yes| Some| 38 | Yes| Yes| ltalian | 0-10 | yg= Yes
X7 No | Yes| No | No | None $ Yes | No | Burger| 0-10 | y;= No
Xg No| No| No| Yes| Some| 3§ | Yes| Yes| Thai 0-10 | ys = Yes
Xg No | Yes| Yes| No Full 3 Yes | No | Burger| >60 y9 = No
X190 Yes | Yes| VYes| Yes| Full | $$88  No | Yes| ltalian | 10-30 | yi0= No
X11 No| No| No| No | None 3 No | No Thai 0-10 | yi1 = No
X12 Yes | Yes| Yes| Yes| Full 3 No | No | Burger | 30-60 | yia = Yes

1 Alternate: whether there is a suitable alternative restaurant nearby.

2. | | Bar: whether the restaurant has a comfortable bar area to wait in

3. | | Fri/Sat: true on Fridays and Saturdays.

4. | | Hungry: whether we are hungry.

- Patrons: how many people are in the restaurant (values are None, Some, and Full)

6 Price: the restaurant's price range ($, $$, $$%).

7. Raining: whether it is raining outside.

8, Reservation: whether we made a reservation

9. | | Type: the kind of restaurant (French, Italian, Thai or Burger)

Features: 10. WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).
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Learning Decision Trees

@ Decision trees are universal function approximators.

» For any training set we can construct a decision tree that has
exactly the one leaf for every training point, but it probably won’t
generalize.

» Example - If all D features were binary, and we had N = 2” unique
training examples, a Full Binary Tree would have one leaf per
example.

@ So, how do we construct a useful decision tree?
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Learning Decision Trees

@ Resort to a greedy heuristic:

» Start with the whole training set and an empty decision tree.
» Pick a feature and candidate split that would most reduce a loss
» Split on that feature and recurse on subpartitions.

@ What is a loss?

» When learning a model, we use a scalar number to assess whether
we’re on track
» Scalar value: low is good, high is bad

@ Which loss should we use?
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Choosing a Good Split

o Consider the following data. Let’s split on width.

o Classify by majority.

e ee
< ® oranges
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width
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Choosing a Good Split

e Which is the best split? Vote!

A

B
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Choosing a Good Split

o A feels like a better split, because the left-hand region is very
certain about whether the fruit is an orange.

e Can we quantify this?

A

B
_e| eoe o eofe
< ® oranges
12 Ao Alo P
< emons
o A [ A
width width
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Choosing a Good Split

@ How can we quantify uncertainty in prediction for a given leaf node?

» If all examples in leaf have same class: good, low uncertainty
» If each class has same amount of examples in leaf: bad, high
uncertainty

@ Idea: Use counts at leaves to define probability distributions; use a
probabilistic notion of uncertainty to decide splits.

@ A brief detour through information theory...
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Entropy - Quantifying uncertainty

@ You may have encountered the term entropy quantifying the state of
chaos in chemical and physical systems,

@ The entropy of a random variable quantifies the uncertainty inherent.

@ To explain entropy, consider flipping two different coins...
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We Flip Two Different Coins

Each coin is a binary random variable with outcomes 1 or 0:

Sequence 1:
0001000000000 0100 ...7

Sequence 2:
1010111010011 0101...7
16
8 10
Ll
0 1
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Quantifying Uncertainty

@ The entropy of a loaded coin with probability p of heads is given by

—plogy(p) — (1 —p) logy(1 — p)

8/9
49 S
1/9 lj lj
— 0 1
0 1
8 8§ 1 1 1 4 4 5 5
—§log2§—§log2§~§ —§1og2§—§log2§z1

@ Notice: the coin whose outcomes are more certain has a lower entropy.

@ In the extreme case p = 0 or p = 1, we were certain of the outcome before
observing. So, we gained no certainty by observing it, i.e., entropy is 0.
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Quantifying Uncertainty

@ Can also think of entropy as the expected information content of a
random draw from a probability distribution.

entropy

1.0
0.8+
0.6+
0.4+

0.2

. . I - robability p of heads
0.2 0.4 0.6 0.8 1.0 P e

@ Claude Shannon showed: you cannot store the outcome of a random
draw using fewer expected bits than the entropy without losing
information.

@ So units of entropy are bits; a fair coin flip has 1 bit of entropy.
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Entropy

@ More generally, the entropy of a discrete random variable Y is given by

= p(y)logy py)

yey

e “High Entropy”:

» Variable has a uniform like distribution over many outcomes
» Flat histogram
» Values sampled from it are less predictable

o “Low Entropy”

» Distribution is concentrated on only a few outcomes
» Histogram is concentrated in a few areas
» Values sampled from it are more predictable

[Slide credit: Vibhav Gogate]
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Entropy

@ Suppose we observe partial information X about a random variable Y
» For example, X = sign(Y).

@ We want to work towards a definition of the expected amount of
information that will be conveyed about Y by observing X.

» Or equivalently, the expected reduction in our uncertainty about Y
after observing X.
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Entropy of a Joint Distribution

e Example: X = {Raining, Not raining}, ¥ = {Cloudy, Not cloudy}

Cloudy [Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 | 50/100

HX,)Y) = => Y pla,y)log,p(x,y)
rzeX yey
_ o4, o 1,01 25, 2 50, 50
= 7100 %2700 100 22700 100 %2700 100 %100
~ 1.56bits
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Conditional Entropy

o Example: X = {Raining, Not raining}, ¥ = {Cloudy, Not cloudy}

Cloudy [Not Cloudy
Raining 24/100 1/100
Not Raining| 25/100 50/100

@ What is the entropy of cloudiness Y, given that it is raining?

HY|X =2) =

Q

— > p(yle)log, plyl)
yey
20 24 1 1

0.24bits

o We used: p(ylz) = 222, and p(z) = ¥, p(,y)

p(z)
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Conditional Entropy

@ The expected conditional entropy:

Intro ML

Cloudy [Not Cloudy
Raining 24/100 1/100
Not Raining| 25/100 50/100
HY|X) = E[H(Y|X =uz)]

(Vector)

Y p@)HY|X =)

rzeX

=3 pla,y)logs p(yl)

rzeX yey

ML4 B&I-Lec2

24 /45



Conditional Entropy

e Example: X = {Raining, Not raining}, ¥ = {Cloudy, Not cloudy}

Cloudy [Not Cloudy
Raining 24/100 1/100
Not Raining| 25/100 50/100

@ What is the entropy of cloudiness, given the knowledge of whether or not

it is raining?

HY|X) = Y p@H(Y|X =x2)

zeX

1 3
= ZH(Cloudyhs raining) + iH(cloudy\not raining)

~ 0.75 bits
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Conditional Entropy

@ Some useful properties:
» H is always non-negative
» Chain rule: H(X,Y)=HX|Y)+ HY)=HY|X)+ H(X)
» If X and Y independent, then X does not affect our uncertainty
about Y: HY|X)=H(®Y)
» But knowing Y makes our knowledge of Y certain: H(Y|Y) =0

» By knowing X, we can only decrease uncertainty about Y:
H(Y|X) < H(Y)
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Information Gain

Cloudy [Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

@ How much more certain am I about whether it’s cloudy if I'm told
whether it is raining? My uncertainty in Y minus my expected
uncertainty that would remain in Y after seeing X.

@ This is called the information gain IG(Y|X) in Y due to X, or the
mutual information of Y and X

IG(Y|X) = H(Y) — H(Y|X) (1)

o If X is completely uninformative about Y: IG(Y|X) =0
e If X is completely informative about Y: IG(Y|X) = H(Y)
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Revisiting Our Original Example

@ Information gain measures the informativeness of a variable,
which is exactly what we desire in a decision tree split!

@ The information gain of a split: how much information (over the training
set) about the class label Y is gained by knowing which side of a split
you're on.
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Information Gain of Split B

@ What is the information gain of split B? Not terribly informative...

B
. e e|e —
= ® oranges
5 Al® L
o emons
o A
width

@ Entropy of class outcome before split:
H(Y) = —2logy(2) — 3 logy(3) ~ 0.86

@ Conditional entropy of class outcome after split:
H(Y|left) ~ 0.81, H(Y|right) ~ 0.92

o IG(split) ~0.86 — (% -0.81 + 2 -0.92) ~ 0.006
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Information Gain of Split A

@ What is the information gain of split A? Very informative!

A
e ee —
= ® oranges
5 A® L
o emons
o A
width

@ Entropy of class outcome before split:
H(Y) = —2logy(2) — 3 logy(3) ~ 0.86

@ Conditional entropy of class outcome after split:
H(Y|left) =0, H(Y |right) ~ 0.97

o IG(split) ~0.86— (2-0+2-0.97) ~ 0.17!!
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Constructing Decision Trees

lwidth > 6.5cm?

height (cm)

{height >6.0cm? ]

{height >9.5cm?
..'
4 ° ® oranges Yes No Yes No
A lemons

¢ 6widlh (cmi8 " v é v

@ At each level, one must choose:

1. Which feature to split.
2. Possibly where to split it.

@ Choose them based on how much information we would gain from the
decision! (choose feature that gives the highest gain)
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Decision Tree Construction Algorithm

@ Simple, greedy, recursive approach, builds up tree node-by-node
Loop:

1. pick a feature to split at a non-terminal node
2. split examples into groups based on feature value

@ Terminates when all leaves contain only examples in the same class or
are empty.

@ Choose

» the feature to split on and the split (threshold)
» that gives the highest information gain.
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Back to Our Example

Example Input Attributes Goal
Alt | Bar | Fri | Hun | Pat | Price | Rain| Res | Type Est WillWait

X1 Yes No | No| Yes| Some| $$% | No | Yes| French| 0-10 | y; = Yes
Xo Yes No No | Yes Full $ No | No Thai 30-60 | y, = No
X3 No | Yes| No | No | Some k) No | No | Burger| 0-10 | ys= Yes
X4 Yes No | Yes| Yes Full $ Yes | No Thai 10-30 | y4 = Yes
X5 Yes No | Yes| No| Full | $8% | No | Yes| French| >60 | ys= No
Xg No | Yes No | Yes| Some| 3% | Yes| Yes| ltalian | 0-10 | yg= Yes
X7 No | Yes| No | No | None $ Yes | No | Burger | 0-10 | y;= No
Xg No | No No| Yes| Some| 8§ | Yes| Yes| Thai 0-10 | yg = Yes
Xg No | Yes| Yes| No Full $ Yes | No | Burger | >60 y9 = No
X10 Yes Yes| Yes| Yes| Full | $8% | No | Yes| ltalian | 10-30 | 310 = No
X11 No | No | No| No | None $ No | No Thai 0-10 | y11 = No
X129 Yes | Yes| Yes | Yes Full k) No | No | Burger| 30-60 | yi2 = Yes

1 Alternate: whether there is a suitable alternative restaurant nearby.

2, Bar: whether the restaurant has a comfortable bar area to wait in.

3 Fri/Sat: true on Fridays and Saturdays.

4. Hungry: whether we are hungry.

5. Patrons: how many people are in the restaurant (values are None, Some, and Full).

6. Price: the restaurant's price range ($, $$, $$$).

7. | | Raining: whether it is raining outside.

8, Reservation: whether we made a reservation.

9. | | Type: the kind of restaurant (French, Italian, Thai or Burger).

Features: 10. WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60). [fromf Russell & Norvig]
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Feature Selection

IG(Y) = H(Y) — H(Y|X)
IG(type) = 1 — [%Hmn.) + %H(Yut) + %H(Y|Thai) + %H(Y|Bur.)] =0
2

4 6
IG(Patrons) =1 — |:EH(Y|NOII) + EH(Y|Some) + EH(Y|Full)} ~ 0.541
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Which Tree is Better? Vote!

Patrons?

French Burger

Patrons?

No

[ Reservation? |[ Fri/sat? |
No Yes
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What Makes a Good Tree?

@ Not too small: need to handle important but possibly subtle distinctions
in data

@ Not too big:

» Avoid over-fitting training examples
» Computational efficiency (avoid redundant, spurious attributes)
» Human interpretability

@ We desire small trees with informative nodes near the root
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KNN versus Decision Trees

Advantages of decision trees over KNNs

@ Simple to deal with discrete features, missing values, and poorly scaled
data

@ Fast at test time
@ More interpretable

Advantages of KNNs over decision trees
@ Few hyperparameters

@ Can incorporate interesting distance measures (e.g. shape contexts)
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Bias-Variance Decomposition

@ Overly simple models underfit the data,
and overly complex models overfit.

o We can quantify underfitting and overfitting
in terms of the bias/variance decomposition.

Qe s,‘ Um‘y
5 gt
VO Q, /J//\\/ Ez,
Q §§
o
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Bias variance tradeoff
test error = bias? + variance

We split the expected loss into three terms:

@ bias: how wrong the expected prediction is
(corresponds to underfitting — small decision tree)

@ variance: the amount of variability in the predictions
(corresponds to overfitting — huge decision tree)

A

Total Error

Optimum Model Complexity

Variance

Error
/

Model Complexity

Intro ML (Vector) ML4 B&I-Lec2 39 /45




Bias and Variance

e Throwing darts = predictions for each draw of a dataset

Low Variance High Variance

0©

()

Intro ML (Vector) ML4 B&I-Lec2 40 /45

Low Bias

High Bias




Ensemble methods: Bagging

@ Suppose we could somehow sample m independent training sets
{Dz}gl from Pdataset -

e We could then learn a predictor h; := hp, based on each one, and
take the average h = = 3" h,.

e How does this affect the performance?

» Bias: unchanged, since the averaged prediction has the same
expectation

m ™~ Pdataset

1 m
]EDl,...7'D iid [h’(x)] = E Z EDindataset [hl (X)] = EDdiataset [h’D (X)]

» Variance: reduced, since we're averaging over independent
samples

1 & 1
oV [h(x)] = —s ; = — Var[hp(x)].

What if m — oo?
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Bagging: The Idea

o In practice, we don’t have access to the underlying data generating
distribution psample-

o It is expensive to collect many i.i.d. datasets from pgataset-

e Solution: bootstrap aggregation, or bagging.

» Take a single dataset D with n examples.

» Generate m new datasets, each by sampling n training examples
from D, with replacement.

» Average the predictions of models trained on each of these datasets.
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Bagging: The Idea

@ Problem: the datasets are not independent, so we don’t get the
1/m variance reduction.

» Still helps reduce the variance.

@ Ironically, it can be advantageous to introduce additional
variability into your algorithm, as long as it reduces the
correlation between samples.

» Can help to use average over multiple algorithms, or multiple
configurations of the same algorithm.
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Random Forests

e Random forests = bagged decision trees, with one extra trick to
decorrelate the predictions

@ When choosing each node of the decision tree, choose a random
set of d input features, and only consider splits on those features

@ The main idea in random forests is to improve the variance
reduction of bagging by reducing the correlation between the trees.

o Random forests are probably the best black-box machine learning
algorithm — they often work well with no tuning whatsoever.

» one of the most widely used algorithms in Kaggle competitions
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Conclusion

Decision trees are simple and interpretable models.

Complexity of the model impacts the test error through
bias-variance decomposition

e Ensemble methods can be used to ”trick” bias-variance tradeoff.

e Next lecture, we focus on linear regression.
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