ML4 B&I: Introduction to Machine Learning

Lecture 3- Linear Models for Regression

Murat A. Erdogdu

Vector Institute, Fall 2022

Intro ML (Vector) ML4 B&I-Lec3 1/50

Outline

@ Linear Regression

© Vectorization

@ Optimization

@ Stochastic Gradient Descent
@ Feature Mappings

O Regularization

Intro ML (Vector) ML4 B&I-Lec3

2/50

@ Linecar Regression

Intro ML (Vector) ML4 B&I-Lec3 3 /50

Linear Regression

e Task: predict scalar-valued targets (e.g. stock prices)

@ Architecture: linear function of the inputs

Intro ML (Vector) ML4 B&I-Lec3 4 /50

A Modular Approach to ML

@ choose a model describing relationships between variables
o define a loss function quantifying how well the model fits the data
o choose a regularizer expressing preference over different models

e fit a model that minimizes the loss function and satisfies the
regularizer’s constraint /penalty, possibly using an optimization
algorithm

Intro ML (Vector) ML4 B&I-Lec3 5/50

Supervised Learning Setup

e Input x € X' (a vector of features)

o Target t € T

Data D = {(x,t®) for i = 1,2, ..., N}

@ Objective: learn a function f : X — T based on the data
such that t = y = f(x)

Intro ML (Vector) ML4 B&I-Lec3 6 /50

Model

Model: a linear function of the features x = (21,...,2p)’ € RP
to make prediction y € R of the target ¢t € R:

y=f(x)=) wjzj+b=w'x+b
j

e Parameters are weights w and the bias/intercept b

e Want the prediction to be close to the target: y ~ t.

Intro ML (Vector) ML4 B&I-Lec3 7 /50

Loss Function

Loss function L(y,t) defines how badly the algorithm’s prediction y fits
the target t for some example x.

Squared error loss function: L(y,t) = 2 (y —t)?
e y — t is the residual, and we want to minimize this magnitude
° % makes calculations convenient.

Cost function: loss function averaged over all training examples
also called empirical or average loss.

1 N , A\ 2 1 N) N\ 2
ﬁZ(y(”—f(’)> :ﬁz(wamM_t(z))

=1

J(w,b) =

i=1

Intro ML (Vector) ML4 B&I-Lec3 8 /50

© Vectorization

Intro ML r) ML4 B&I-Lec3 9 /50

Loops v.s. Vectorized Code

o We can compute prediction for one data point using a for loop:
y=b
for j in range(M):
y += wl[jl * x[j]
e But, excessive super/sub scripts are hard to work with, and
Python loops are slow.

o Instead, we express algorithms using vectors and matrices.

W:(wla"'va)T X:(x17"'a$D)T
y=w'x+b
o This is simpler and executes much faster:

y = np.dot(w, x) + Db

Intro ML (Vector) ML4 B&I-Lec3 10 /50

Benefits of Vectorization

Why vectorize?

@ The code is simpler and more readable. No more dummy
variables /indices!
@ Vectorized code is much faster

» Cut down on Python interpreter overhead
» Use highly optimized linear algebra libraries (hardware support)
» Matrix multiplication is very fast on GPU

You will practice switching in and out of vectorized form.
@ Some derivations are easier to do element-wise

e Some algorithms are easier to write/understand using for-loops
and vectorize later for performance

Intro ML (Vector) ML4 B&I-Lec3 11 /50

Predictions for the Dataset

o Put training examples into a design matrix X.
@ Put targets into the target vector t.

@ We can compute the predictions for the whole dataset.

Xw+bl =y

1 1 1
£ AN CAN AT
T T wo 1

L v B R I I

3 1 (V)
Y
U ¥) \wp 1
Intro ML (Vector) ML4 B&I-Lec3

12/ 50

Computing Squared Error Cost

We can compute the squared error cost across the whole dataset.
y = Xw + b1
2
J = flly -t

Sometimes we may use J = 1|y — t||%, without a normalizer.
This would correspond to the sum of losses, and not the averaged loss.
The minimizer does not depend on N (but optimization might!).

Intro ML (Vector) ML4 B&I-Lec3 13 /50

Combining Bias and Weights

We can combine the bias and the weights and
add a column of 1’s to design matrix.

Our predictions become

y = Xw.
1 [X(l)]’l' b
w1
X = [1 XP]T] e RNXDHD apd w = wy| € RP+
1 .
Intro ML (Vector) ML4 B&I-Lec3

14 /50

@ Optimization

Intro ML r) ML4 B&I-Lec3 15 /50

Solving the Minimization Problem

Goal is to minimize the cost function J(w).

Recall: the minimum of a smooth function (if it exists) occurs at a
critical point, i.e. point where the derivative is zero.

887‘7

w
ij = 87‘-7 = :

ow o7

dwp

Solutions may be direct or iterative.

@ Direct solution: set the gradient to zero and solve in closed form
— directly find provably optimal parameters.

o Iterative solution: repeatedly apply an update rule that gradually
takes us closer to the solution.

Intro ML (Vector) ML4 B&I-Lec3 16 / 50

Minimizing 1D Function

Consider J(w) where w is 1D.
e Seek w = w* to minimize J(w).

e The gradients point to the direction of increase.

Strategy: Write down an algebraic expression for V,,J (w).
Set Vo J (w) = 0. Solve for w.

Intro ML (Vector) ML4 B&I-Lec3 17 /50

Direct Solution for Linear Regression

Seek w to minimize J(w) = 1| Xw — |2

Taking the gradient with respect to w and setting it to 0, we get:

VwJ (W) =X"Xw-X"t=0

Can be derived using matrix derivatives.

Optimal weights:
wh = (XTX)"1X Tt

Few models (like linear regression) permit direct solution.

Intro ML (Vector) ML4 B&I-Lec3 18 /50

[terative Solution: Gradient Descent

Many optimization problems don’t have a direct solution.

A more broadly applicable strategy is gradient descent.

Gradient descent is an iterative algorithm, which means we apply
an update repeatedly until some criterion is met.

We initialize the weights to something reasonable (e.g. all zeros)
and repeatedly adjust them in the direction of steepest descent.

Intro ML (Vector) ML4 B&I-Lec3 19 /50

Deriving Update Rule

Observe:
o if 0J/0w; > 0, then decreasing J requires decreasing w;.
e if 0T/ Ow; < 0, then decreasing J requires increasing w;.

The following update always decreases the cost function
for small enough « (unless 0.7 /0w; = 0):

N4

I(w)

g
. ‘ (=

>
wy
w wo

Intro ML (Vector) ML4 B&I-Lec3 20 /50

Setting Learning Rate

Gradient descent update rule:

— o7
wy w; —«
6wj
a > 0 is a learning rate (or step size).
@ The larger « is, the faster w changes.
@ Values are typically small, e.g. 0.01 or 0.0001.

o If minimizing total loss rather than average loss,
needs a smaller learning rate (o/ = a/N).

Intro ML (Vector) ML4 B&I-Lec3 21 /50

Finding a Good Learning Rate

e Good values are typically between 0.001 and 0.1.
e Do a grid search for good performance (i.e. try 0.1,0.03,0.01,...).

e Diagnose optimization problems using a training curve.

training
cost

Intro ML (Vector)

instability
(try @ smaller
learning rate)

convergence
(try a larger
learning rate)

convergence

iteration #

ML4 B&I-Lec3

22 /50

Impact of Learning Rate on Gradient Descent

What could go wrong when setting the learning rate?

« too small: « too large:
slow progress oscillations

a much too large:
instability

Intro ML (Vector) ML4 B&I-Lec3 23 /50

Gradient Descent Intuition

o Gradient descent gets its name from the gradient,
the direction of fastest increase.

8&7
Vg =2 |
ow 07
dwp
e Update rule in vector form:
0T

W W — —
ow

Update rule for linear regression:
N

a i i i
W%W_NZ(y()_t())x()

=1

o Gradient descent updates w in the direction of fastest decrease.
@ Once it converges, we get a critical point, i.e. g—g =0.
24 /50

Intro ML (Vector) ML4 B&I-Lec3

Why Use Gradient Descent?

e Applicable to a much broader set of models.

o Easier to implement than direct solutions.

@ More efficient than direct solution for regression in
high-dimensional space.

» The linear regression direction solution (X TX)~!X Tt
requires matrix inversion, which is O(D?), and matrix
multiplication O(N D?).

» Gradient descent update costs O(ND)
or even less with stochastic gradient descent.

» Huge difference if D is large.

Intro ML (Vector) ML4 B&I-Lec3

25 /50

@ Stochastic Gradient Descent

Intro ML (Vector) ML4 B&I-Lec3 26 / 50

(Batch) Gradient Descent for a Large Data-set

Computing the gradient for a large data-set is
computationally expensive!

Computing the gradient requires summing over all training examples
since the cost function is the average loss over all the training examples.

N
1 , .
‘o - (1) (#)
Cost function: J(w) N ;1 Ly(x'", w),t\").
0T 1 . oaLh

Gradient: =—)
radien S Ni:1 -

where w denotes the parameters.

Intro ML (Vector) ML4 B&I-Lec3 27 /50

Stochastic Gradient Descent

Updates the parameters based on the gradient for one training example

Repeat
(1) Choose example ¢ uniformly at random,
oL
(2) Perform update: w <+ w —a«
ow

Intro ML (Vector) ML4 B&I-Lec3 28 /50

Properties of Stochastic Gradient Descent

Benefits:
o Cost of each update is independent of N!

e Make significant progress before seeing all the data!

e Stochastic gradient is an unbiased estimate of the batch gradient

given sampling each example uniformly at random.

1oL ag

oL@
ow

1=

Problems:

e High variance in the estimate

Intro ML (Vector) ML4 B&I-Lec3

N,law_aiw'

29 /50

A Compromise: Mini-Batch Gradient Descent

e Compute each gradient on a subset of examples.

@ Mini-batch: a randomly chosen medium-sized subset of training
examples M.

o In theory, sample examples independently and uniformly with
replacement.

o In practice, permute the training set and then go through it
sequentially. Each pass over the data is called an epoch.

Intro ML (Vector) ML4 B&I-Lec3 30/ 50

Tradeoff for Mini-Batch Gradient Descent

Trade-off for different mini-batch sizes:

Large mini-batch size:

@ more computation time o faster updates

@ estimates accurate @ estimates noisier

How should we set the mini-batch size |M|?
e | M| is a hyper-parameter.
e A reasonable value might be | M| = 100.

Intro ML (Vector) ML4 B&I-Lec3

Small mini-batch size:

31 /50

Visualizing Batch v.s. Stochastic Gradient Descent

Stochastic GD
moves in a noisy direction,
but downhill on average.

Batch GD
moves downhill at each step.

Intro ML (Vector) ML4 B&I-Lec3 32 /50

Setting Learning Rate for Stochastic GD

The learning rate influences the noise in the parameters
from the stochastic updates.

Typical strategy:

e Start with a large learning rate to get close to the optimum

o Gradually decrease the learning rate to reduce the fluctuations

small learning rate

large learning rate

Intro ML (Vector)

ML4 B&I-Lec3 33 /50

© Feature Mappings

Intro ML (Vector) ML4 B&I-Lec3 34 /50

Feature Mapping

Can we use linear regression to model a non-linear relationship?
e Map the input features to another space 1 (x) : RP — R9.

o Treat the mapped feature (in R) as the input of a linear
regression procedure.

Intro ML (Vector) ML4 B&I-Lec3 35 /50

Modeling a Non-Linear Relationship

! o
a o
t
o
o
(o]
of o
° o
[5]
_1-
0 - 1

Intro ML (Vector) ML4 B&I-Lec3 36 /50

Polynomial Feature Mapping

Fit the data using a degree-M polynomial function of the form:

M
Yy = wo +wix + ngQ —+ ...+ wMa:M = Zwiazi
i=0
o The feature mapping is ¢ (z) = [1,z, 22, ..., 2M]T.

o y = (x)"w is linear in wo, w,

e Use linear regression to find w.

Intro ML (Vector) ML4 B&I-Lec3 37 /50

Polynomial Feature Mapping with M =0

Yy = wo

1 ° M =0
t

o o)
ot 7/ O\

o

_1.

0 1

[Pattern Recognition and Machine Learning, Christopher Bishop.]

Intro ML (Vector) ML4 B&I-Lec3 38 /50

Polynomial Feature Mapping with M =1

Y = wo + w1T

[Pattern Recognition and Machine Learning, Christopher Bishop.]

Intro ML (Vector) ML4 B&I-Lec3 39 /50

Polynomial Feature Mapping with M = 3

Y = wo + w1 + w2x2 + w3x3

[Pattern Recognition and Machine Learning, Christopher Bishop.]

Intro ML (Vector) ML4 B&I-Lec3 40 / 50

Polynomial Feature Mapping with M =9

y:wg+wlaz—|—w2x2—l—w3x3—|—...+w9x9

[Pattern Recognition and Machine Learning, Christopher Bishop.]

Intro ML (Vector) ML4 B&I-Lec3

41 /50

Model Complexity and Generalization

Under-fitting (M=0): Good model (M=3): Over-fitting (M=9):
Model is too simple, Small test error, Model is too complex,
doesn’t fit data well. generalizes well. fits data perfectly.

Intro ML (Vector) ML4 B&I-Lec3 42 /50

Model Complexity and Generalization

1 . .
—©— Training
—6— Test
2 05
£9)
0

Intro ML (Vector) ML4 B&I-Lec3 43 /50

Model Complexity and

Generalization

M=0 M=1 M=3 M=9

wy | 019 082 031 035
w} 2127 7.9 232.37

wh -25.43 -5321.83 !
w} 17.37 4856831
w} -231639.30

wh 640042.26

wi -1061800.52 _;
wk 1042400.18

wy -557682.99

wy

e As M increases, the magnitude of coefficients gets larger.

M =9

125201.43

x

1

e For M =9, the coefficients have become finely tuned to the data.

o Between data points, the function exhibits large oscillations.

Intro ML

ML4 B&I-Lec3

44 /50

@ Regularization

Intro ML r) ML4 B&I-Lec3 45 / 50

Controlling Model Complexity

How can we control the model complexity?

@ A crude approach: restrict # of parameters / basis functions.
For polynomial expansion, tune M using a validation set.

@ Another approach: regularize the model.
Regularizer is a function that quantifies how much we prefer one
hypothesis vs. another.

Intro ML (Vector) ML4 B&I-Lec3 46 / 50

L?* (or {3) Regularization

e Encourage the weights to be small
by choosing the L? penalty as our regularizer.

1
R(w) = %Hng =3 ijz
J

The regularized cost function makes a trade-off
between the fit to the data and the norm of the weights.

A
Jreg(W) = T (W) + AR(w) = T (W) + Zw?

If the model fits training data poorly, J is large.
If the weights are large in magnitude, R is large.

Large A\ penalizes weight values more.

@ Tune hyperparameter A with a validation set.

Intro ML (Vector) ML4 B&I-Lec3 47 / 50

L? Regularized Least Squares: Ridge regression

For the least squares problem, we have J(w) = [Xw — t||%.

e When A > 0 (with regularization), regularized cost gives

i . .1 A
Wihdge = argmin Jyeg (W) = argmin - | Xw — t||3 + =||w||3
w w2 2

=(X"X+A)7'XT¢

e A =0 (no regularization) reduces to
least squares solution!

Intro ML (Vector) ML4 B&I-Lec3 48 / 50

Gradient Descent under the L? Regularization
e Gradient descent update to minimize J:
W — W — aa—wj

o The gradient descent update to minimize the L? regularized cost
J + AR results in weight decay:

w(—w—ai(J+)\R)

ow
W—@(?i%—/\)
:(1—a)\)w—ag§

Intro ML (Vector) ML4 B&I-Lec3 49 / 50

Conclusions

Linear regression exemplifies recurring themes of this course:
@ choose a model and a loss function
e formulate an optimization problem

@ solve the minimization problem
using direction solution or gradient descent.

e vectorize the algorithm, i.e. represent in terms of linear algebra
e make a linear model more powerful using feature mappings

e improve the generalization by adding a regularizer

Intro ML (Vector) ML4 B&I-Lec3 50 / 50

	Linear Regression
	Vectorization
	Optimization
	Stochastic Gradient Descent
	Feature Mappings
	Regularization

