ML4 B&I: Introduction to Machine Learning Lecture 3- Linear Models for Regression

Murat A. Erdogdu

Vector Institute, Fall 2022

Outline

- 1 Linear Regression
- 2 Vectorization
- Optimization
- 4 Stochastic Gradient Descent
- **6** Feature Mappings
- 6 Regularization

- 1 Linear Regression
- 2 Vectorization
- Optimization
- Stochastic Gradient Descent
- Feature Mappings
- 6 Regularization

Linear Regression

- Task: predict scalar-valued targets (e.g. stock prices)
- Architecture: linear function of the inputs

A Modular Approach to ML

- choose a model describing relationships between variables
- define a loss function quantifying how well the model fits the data
- choose a regularizer expressing preference over different models
- fit a model that minimizes the loss function and satisfies the regularizer's constraint/penalty, possibly using an optimization algorithm

Supervised Learning Setup

- Input $\mathbf{x} \in \mathcal{X}$ (a vector of features)
- Target $t \in \mathcal{T}$
- Data $\mathcal{D} = \{(\mathbf{x}^{(i)}, t^{(i)}) \text{ for } i = 1, 2, ..., N\}$
- Objective: learn a function $f: \mathcal{X} \to \mathcal{T}$ based on the data such that $t \approx y = f(\mathbf{x})$

Model

Model: a linear function of the features $\mathbf{x} = (x_1, \dots, x_D)^{\top} \in \mathbb{R}^D$ to make prediction $y \in \mathbb{R}$ of the target $t \in \mathbb{R}$:

$$y = f(\mathbf{x}) = \sum_{j} w_j x_j + b = \mathbf{w}^{\top} \mathbf{x} + b$$

- \bullet Parameters are weights **w** and the bias/intercept b
- Want the prediction to be close to the target: $y \approx t$.

Loss Function

Loss function $\mathcal{L}(y,t)$ defines how badly the algorithm's prediction y fits the target t for some example \mathbf{x} .

Squared error loss function: $\mathcal{L}(y,t) = \frac{1}{2}(y-t)^2$

- y-t is the residual, and we want to minimize this magnitude
- $\frac{1}{2}$ makes calculations convenient.

Cost function: loss function averaged over all training examples also called *empirical* or *average loss*.

$$\mathcal{J}(\mathbf{w}, b) = \frac{1}{2N} \sum_{i=1}^{N} \left(y^{(i)} - t^{(i)} \right)^2 = \frac{1}{2N} \sum_{i=1}^{N} \left(\mathbf{w}^{\top} \mathbf{x}^{(i)} + b - t^{(i)} \right)^2$$

- 1 Linear Regression
- 2 Vectorization
- Optimization
- 4 Stochastic Gradient Descent
- 5 Feature Mappings
- 6 Regularization

Loops v.s. Vectorized Code

• We can compute prediction for one data point using a for loop:

```
y = b
for j in range(M):
    y += w[j] * x[j]
```

- But, excessive super/sub scripts are hard to work with, and Python loops are slow.
- Instead, we express algorithms using vectors and matrices.

$$\mathbf{w} = (w_1, \dots, w_D)^{\top} \quad \mathbf{x} = (x_1, \dots, x_D)^{\top}$$

 $y = \mathbf{w}^{\top} \mathbf{x} + b$

• This is simpler and executes much faster:

$$y = np.dot(w, x) + b$$

Benefits of Vectorization

Why vectorize?

- The code is simpler and more readable. No more dummy variables/indices!
- Vectorized code is much faster
 - ▶ Cut down on Python interpreter overhead
 - ▶ Use highly optimized linear algebra libraries (hardware support)
 - ▶ Matrix multiplication is very fast on GPU

You will practice switching in and out of vectorized form.

- Some derivations are easier to do element-wise
- Some algorithms are easier to write/understand using for-loops and vectorize later for performance

Intro ML (Vector) ML4 B&I-Lec3 11/50

Predictions for the Dataset

- Put training examples into a design matrix X.
- Put targets into the target vector t.
- We can compute the predictions for the whole dataset.

$$\mathbf{X}\mathbf{w} + b\mathbf{1} = y$$

$$\begin{pmatrix} x_1^{(1)} & x_2^{(1)} & \dots & x_D^{(1)} \\ x_1^{(2)} & x_2^{(2)} & \dots & x_D^{(2)} \\ \vdots & \vdots & & \vdots \\ x_1^{(N)} & x_2^{(N)} & \dots & x_D^{(N)} \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_D \end{pmatrix} + b \begin{pmatrix} 1 \\ 1 \\ \vdots \\ y^{(N)} \end{pmatrix} = \begin{pmatrix} y^{(1)} \\ \vdots \\ y^{(N)} \end{pmatrix}$$

Computing Squared Error Cost

We can compute the squared error cost across the whole dataset.

$$\mathbf{y} = \mathbf{X}\mathbf{w} + b\mathbf{1}$$
$$\mathcal{J} = \frac{1}{2N} \|\mathbf{y} - \mathbf{t}\|^2$$

Sometimes we may use $\mathcal{J} = \frac{1}{2} ||\mathbf{y} - \mathbf{t}||^2$, without a normalizer. This would correspond to the sum of losses, and not the averaged loss. The minimizer does not depend on N (but optimization might!).

Combining Bias and Weights

We can combine the bias and the weights and add a column of 1's to design matrix.

Our predictions become

$$y = Xw$$
.

$$\mathbf{X} = \begin{bmatrix} 1 & [\mathbf{x}^{(1)}]^{\top} \\ 1 & [\mathbf{x}^{(2)}]^{\top} \\ 1 & \vdots \end{bmatrix} \in \mathbb{R}^{N \times (D+1)} \text{ and } \mathbf{w} = \begin{bmatrix} b \\ w_1 \\ w_2 \\ \vdots \end{bmatrix} \in \mathbb{R}^{D+1}$$

- 1 Linear Regression
- 2 Vectorization
- 3 Optimization
- Stochastic Gradient Descent
- Feature Mappings
- 6 Regularization

Solving the Minimization Problem

Goal is to minimize the cost function $\mathcal{J}(\mathbf{w})$.

Recall: the minimum of a smooth function (if it exists) occurs at a critical point, i.e. point where the derivative is zero.

$$\nabla_{\mathbf{w}} \mathcal{J} = \frac{\partial \mathcal{J}}{\partial \mathbf{w}} = \begin{pmatrix} \frac{\partial \mathcal{J}}{\partial w_1} \\ \vdots \\ \frac{\partial \mathcal{J}}{\partial w_D} \end{pmatrix}$$

Solutions may be direct or iterative.

- Direct solution: set the gradient to zero and solve in closed form
 directly find provably optimal parameters.
- Iterative solution: repeatedly apply an update rule that gradually takes us closer to the solution.

16 / 50

Minimizing 1D Function

- Consider $\mathcal{J}(w)$ where w is 1D.
- Seek $w = w^*$ to minimize $\mathcal{J}(w)$.
- The gradients point to the direction of increase.
- Strategy: Write down an algebraic expression for $\nabla_w \mathcal{J}(w)$. Set $\nabla_w \mathcal{J}(w) = 0$. Solve for w.

Direct Solution for Linear Regression

- Seek w to minimize $\mathcal{J}(\mathbf{w}) = \frac{1}{2} \|\mathbf{X}\mathbf{w} \mathbf{t}\|^2$
- ullet Taking the gradient with respect to ullet and setting it to $oldsymbol{0}$, we get:

$$\nabla_{\mathbf{w}} \mathcal{J}(\mathbf{w}) = \mathbf{X}^{\top} \mathbf{X} \mathbf{w} - \mathbf{X}^{\top} \mathbf{t} = \mathbf{0}$$

Can be derived using matrix derivatives.

• Optimal weights:

$$\mathbf{w}^* = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{t}$$

• Few models (like linear regression) permit direct solution.

Iterative Solution: Gradient Descent

- Many optimization problems don't have a direct solution.
- A more broadly applicable strategy is gradient descent.
- Gradient descent is an iterative algorithm, which means we apply an update repeatedly until some criterion is met.
- We initialize the weights to something reasonable (e.g. all zeros) and repeatedly adjust them in the direction of steepest descent.

Deriving Update Rule

Observe:

- if $\partial \mathcal{J}/\partial w_j > 0$, then decreasing \mathcal{J} requires decreasing w_j .
- if $\partial \mathcal{J}/\partial w_j < 0$, then decreasing \mathcal{J} requires increasing w_j .

The following update always decreases the cost function for small enough α (unless $\partial \mathcal{J}/\partial w_j = 0$):

$$w_j \leftarrow w_j - \alpha \frac{\partial \mathcal{J}}{\partial w_j}$$

Setting Learning Rate

Gradient descent update rule:

$$w_j \leftarrow w_j - \alpha \frac{\partial \mathcal{J}}{\partial w_j}$$

 $\alpha > 0$ is a learning rate (or step size).

- The larger α is, the faster **w** changes.
- Values are typically small, e.g. 0.01 or 0.0001.
- If minimizing total loss rather than average loss, needs a smaller learning rate $(\alpha' = \alpha/N)$.

Finding a Good Learning Rate

- Good values are typically between 0.001 and 0.1.
- Do a grid search for good performance (i.e. try $0.1, 0.03, 0.01, \ldots$).
- Diagnose optimization problems using a training curve.

Impact of Learning Rate on Gradient Descent

What could go wrong when setting the learning rate?

 α too small: slow progress

 α too large: oscillations

 α much too large: instability

Gradient Descent Intuition

• Gradient descent gets its name from the gradient, the direction of fastest *increase*.

$$\nabla_{\mathbf{w}} \mathcal{J} = \frac{\partial \mathcal{J}}{\partial \mathbf{w}} = \begin{pmatrix} \frac{\partial \mathcal{J}}{\partial w_1} \\ \vdots \\ \frac{\partial \mathcal{J}}{\partial w_D} \end{pmatrix}$$

• Update rule in vector form:

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}}$$

Update rule for linear regression:

$$\mathbf{w} \leftarrow \mathbf{w} - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) \mathbf{x}^{(i)}$$

24 / 50

- Gradient descent updates **w** in the direction of fastest decrease.
- Once it converges, we get a critical point, i.e. $\frac{\partial \mathcal{J}}{\partial \mathbf{w}} = \mathbf{0}$.

Why Use Gradient Descent?

- Applicable to a much broader set of models.
- Easier to implement than direct solutions.
- More efficient than direct solution for regression in high-dimensional space.
 - ▶ The linear regression direction solution $(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{t}$ requires matrix inversion, which is $\mathcal{O}(D^3)$, and matrix multiplication $\mathcal{O}(ND^2)$.
 - ▶ Gradient descent update costs $\mathcal{O}(ND)$ or even less with stochastic gradient descent.
 - ightharpoonup Huge difference if D is large.

- Linear Regression
- 2 Vectorization
- Optimization
- Stochastic Gradient Descent
- **6** Feature Mappings
- 6 Regularization

(Batch) Gradient Descent for a Large Data-set

Computing the gradient for a large data-set is computationally expensive!

Computing the gradient requires summing over all training examples since the cost function is the average loss over all the training examples.

Cost function:
$$\mathcal{J}(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(y(\mathbf{x}^{(i)}, \mathbf{w}), t^{(i)}).$$

Gradient: $\frac{\partial \mathcal{J}}{\partial \mathbf{w}} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \mathcal{L}^{(i)}}{\partial \mathbf{w}}.$

where \mathbf{w} denotes the parameters.

Stochastic Gradient Descent

Updates the parameters based on the gradient for one training example

Repeat

- (1) Choose example i uniformly at random,
- (2) Perform update: $\mathbf{w} \leftarrow \mathbf{w} \alpha \frac{\partial \mathcal{L}^{(i)}}{\partial \mathbf{w}}$

Properties of Stochastic Gradient Descent

Benefits:

- Cost of each update is independent of N!
- Make significant progress before seeing all the data!
- Stochastic gradient is an unbiased estimate of the batch gradient given sampling each example uniformly at random.

$$\mathbb{E}\left[\frac{\partial \mathcal{L}^{(i)}}{\partial \mathbf{w}}\right] = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \mathcal{L}^{(i)}}{\partial \mathbf{w}} = \frac{\partial \mathcal{J}}{\partial \mathbf{w}}.$$

Problems:

• High variance in the estimate

A Compromise: Mini-Batch Gradient Descent

- Compute each gradient on a subset of examples.
- Mini-batch: a randomly chosen medium-sized subset of training examples \mathcal{M} .
- In theory, sample examples independently and uniformly with replacement.
- In practice, permute the training set and then go through it sequentially. Each pass over the data is called an epoch.

30 / 50

Tradeoff for Mini-Batch Gradient Descent

Trade-off for different mini-batch sizes:

Large mini-batch size:

• more computation time

• estimates accurate

Small mini-batch size:

- faster updates
- estimates noisier

How should we set the mini-batch size $|\mathcal{M}|$?

- $|\mathcal{M}|$ is a hyper-parameter.
- A reasonable value might be $|\mathcal{M}| = 100$.

Visualizing Batch v.s. Stochastic Gradient Descent

Batch GD moves downhill at each step.

Stochastic GD moves in a noisy direction, but downhill on average.

Setting Learning Rate for Stochastic GD

The learning rate influences the noise in the parameters from the stochastic updates.

Typical strategy:

- Start with a large learning rate to get close to the optimum
- Gradually decrease the learning rate to reduce the fluctuations

- 1 Linear Regression
- 2 Vectorization
- Optimization
- Stochastic Gradient Descent
- **6** Feature Mappings
- 6 Regularization

34 / 50

Feature Mapping

Can we use linear regression to model a non-linear relationship?

- Map the input features to another space $\psi(\mathbf{x}) : \mathbb{R}^D \to \mathbb{R}^d$.
- Treat the mapped feature (in \mathbb{R}^d) as the input of a linear regression procedure.

Modeling a Non-Linear Relationship

Polynomial Feature Mapping

Fit the data using a degree-M polynomial function of the form:

$$y = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{i=0}^{M} w_i x^i$$

- The feature mapping is $\psi(x) = [1, x, x^2, ..., x^M]^{\top}$.
- $y = \psi(x)^{\top} \mathbf{w}$ is linear in $w_0, w_1, ...$
- \bullet Use linear regression to find \mathbf{w} .

Polynomial Feature Mapping with M=0

[Pattern Recognition and Machine Learning, Christopher Bishop.]

Polynomial Feature Mapping with M=1

[Pattern Recognition and Machine Learning, Christopher Bishop.]

Polynomial Feature Mapping with M=3

[Pattern Recognition and Machine Learning, Christopher Bishop.]

Intro ML (Vector) ML4 B&I-Lec3 40 / 50

Polynomial Feature Mapping with M = 9

[Pattern Recognition and Machine Learning, Christopher Bishop.]

Intro ML (Vector) ML4 B&I-Lec3 41/50

Model Complexity and Generalization

Under-fitting (M=0): Model is too simple, doesn't fit data well. Good model (M=3): Small test error, generalizes well. Over-fitting (M=9): Model is too complex, fits data perfectly.

Model Complexity and Generalization

Model Complexity and Generalization

	M = 0	M = 1	M = 3	M = 9	
w_0^{\star}	0.19	0.82	0.31	0.35	M = 9
w_1^{\star}		-1.27	7.99	232.37	
w_2^{\star}			-25.43	-5321.83	
w_3^{\star}			17.37	48568.31	
w_4^{\star}				-231639.30	\\ /\/
w_5^{\star} w_6^{\star} w_7^{\star}				640042.26	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
w_6^{\star}				-1061800.52	_1
w_7^{\star}				1042400.18	
w_8^{\star}				-557682.99	
w_9^{\star}				125201.43	0 x 1

- As M increases, the magnitude of coefficients gets larger.
- For M=9, the coefficients have become finely tuned to the data.
- Between data points, the function exhibits large oscillations.

Intro ML (Vector) ML4 B&I-Lec3 44/50

- 1 Linear Regression
- 2 Vectorization
- Optimization
- 4 Stochastic Gradient Descent
- Feature Mappings
- 6 Regularization

Controlling Model Complexity

How can we control the model complexity?

- A crude approach: restrict # of parameters / basis functions. For polynomial expansion, tune M using a validation set.
- Another approach: regularize the model.

 Regularizer is a function that quantifies how much we prefer one hypothesis vs. another.

L^2 (or ℓ_2) Regularization

• Encourage the weights to be small by choosing the L^2 penalty as our regularizer.

$$\mathcal{R}(\mathbf{w}) = \frac{1}{2} ||\mathbf{w}||_2^2 = \frac{1}{2} \sum_j w_j^2.$$

• The regularized cost function makes a trade-off between the fit to the data and the norm of the weights.

$$\mathcal{J}_{\text{reg}}(\mathbf{w}) = \mathcal{J}(\mathbf{w}) + \lambda \mathcal{R}(\mathbf{w}) = \mathcal{J}(\mathbf{w}) + \frac{\lambda}{2} \sum_{j} w_{j}^{2}.$$

- If the model fits training data poorly, \mathcal{J} is large. If the weights are large in magnitude, \mathcal{R} is large.
- Large λ penalizes weight values more.
- Tune hyperparameter λ with a validation set.

L^2 Regularized Least Squares: Ridge regression

For the least squares problem, we have $\mathcal{J}(\mathbf{w}) = \frac{1}{2} ||\mathbf{X}\mathbf{w} - \mathbf{t}||^2$.

• When $\lambda > 0$ (with regularization), regularized cost gives

$$\mathbf{w}_{\lambda}^{\text{Ridge}} = \underset{\mathbf{w}}{\operatorname{argmin}} \, \mathcal{J}_{\text{reg}}(\mathbf{w}) = \underset{\mathbf{w}}{\operatorname{argmin}} \, \frac{1}{2} \|\mathbf{X}\mathbf{w} - \mathbf{t}\|_{2}^{2} + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2}$$
$$= (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^{\top} \mathbf{t}$$

• $\lambda = 0$ (no regularization) reduces to least squares solution!

Gradient Descent under the L^2 Regularization

• Gradient descent update to minimize \mathcal{J} :

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\partial}{\partial \mathbf{w}} \mathcal{J}$$

• The gradient descent update to minimize the L^2 regularized cost $\mathcal{J} + \lambda \mathcal{R}$ results in weight decay:

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\partial}{\partial \mathbf{w}} (\mathcal{J} + \lambda \mathcal{R})$$

$$= \mathbf{w} - \alpha \left(\frac{\partial \mathcal{J}}{\partial \mathbf{w}} + \lambda \frac{\partial \mathcal{R}}{\partial \mathbf{w}} \right)$$

$$= \mathbf{w} - \alpha \left(\frac{\partial \mathcal{J}}{\partial \mathbf{w}} + \lambda \mathbf{w} \right)$$

$$= (1 - \alpha \lambda) \mathbf{w} - \alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}}$$

Conclusions

Linear regression exemplifies recurring themes of this course:

- choose a model and a loss function
- formulate an optimization problem
- solve the minimization problem using direction solution or gradient descent.
- vectorize the algorithm, i.e. represent in terms of linear algebra
- make a linear model more powerful using feature mappings
- improve the generalization by adding a regularizer

50 / 50