ML4 B&I: Introduction to Machine Learning

Lecture 4- Linear Models for Classification

Murat A. Erdogdu

Vector Institute, Fall 2022

Intro ML (Vector) ML4 B&I-Lec4 1/44



Outline

@ Binary Linear Classification

© Logistic Regression

@ Linear Classifiers vs. KNN

@ Softmax Regression

Intro ML (Vector) ML4 B&I-Lec4

2 /44



Introducing Binary Linear Classification

o Is this a spam email or not?

e classification: predict a discrete-valued target
given a D-dimensional input x € R?
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@ linear: prediction y is a linear function of x,
followed by a threshold r:
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1 ifz>r
y= 0 ifz<r

Intro ML (Vector) ML4 B&I-Lec4 3/44



Introducing Binary Linear Classification

Is this a spam email or not?

e classification: predict a discrete-valued target
given a D-dimensional input x € R?

@ linear: prediction y is a linear function of x,
followed by a threshold r:

z:wa+b

1 ifz>r
y= 0 ifz<r

binary: predict a binary target ¢t € {0,1}
» t=1isclass 1
» t =0 is class 2.
» t €{0,1} or t € {—1,+1} is for notational convenience.
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Simplified Model

o Trainable parameters: w,b,r.
e Eliminating the threshold r (i.e. » =0):

W x+b>r < w x+b—1r>0.
—~—

Ly
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Simplified Model

o Trainable parameters: w,b,r.
e Eliminating the threshold r (i.e. » =0):

W x+b>r < w x+b—1r>0.
—~—
Ly

e Further simplifying the notation:

Add a dummy feature g = 1. The weight wy = b is equivalent to
a bias (same as linear regression)

Simplified model

Z:WTX

1 ifz>0
Y10 ifz<o
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Modeling Simple Logical Functions

o Examples: NOT, AND.
@ Next lecture: XOR
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Modeling NOT (Negation)

NOT
o T |t zZ = wWoZo + W11
1 0|1 1,6t 2>0
1170 Y7o, itz <0

@ Derive two sets of values for wg,w; to classify NOT.

@ Which conditions on wg,w; guarantee perfect classification?
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Modeling NOT - Solutions

NOT

2 = WoIg + W1x1
= wy >0

= wo +wi <0 or w; < —wp
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Visualizing NOT in Data Space

e Each training example is a point in data space.

e Data is linearly separable if a linear decision rule
can perfectly separate the training examples.
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Visualizing NOT in Weight Space

wo 2 0
wo +wy <0

e Each point is a set of values for the weights w.

e Each training example x specifies a half-space that w must lie in
to guarantee correct classification.

e The feasible region satisfies all the constraints.
The problem is feasible if the feasible region is nonempty.
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Modeling AND

AND
Trog X1 xI9 t
1 0 110 1 ifz>0
1 1 010 Yo, if 2 <0
1 1 1 |1
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Modeling AND - Solutions

AND

rog x1 X2 |t Z = woTo + w11 + waks

1 0 0 0 = wo < 0

1 0 110 0

1 1 0 lo = wo + wy <

1 1 1 1 = wy+w; <0

= wo + wi + we >0

Example solution: wg = —1.5, wy =1, wy =1
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Visualizing AND in Data and Weight Spaces

Let’s look at a 2-D slice of the 3-D data and weight spaces for AND.

Data Space

Z2

-+

o Fixzp=1

e Example Solution:
w0:—1.5, wlzl, w2:1

@ Decision Boundary:
woTo+w1x1 +wowe =0
— —1.5+21+22=0
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Visualizing AND in Data and Weight Spaces

Let’s look at a 2-D slice of the 3-D data and weight spaces for AND.

Data Space

Z2

-+

o Fixzp=1

e Example Solution:
w0:—1.5, wlzl, w2:1

@ Decision Boundary:
woTo+w1x1 +wowe =0
— —1.5+21+22=0

Intro ML (Vector)

Weight Space

¢w2

%

w1
<

o Fix wg=—1.5
o The constraints:
wo < 0
wo + we < 0
wo +wy <0
wo + wyp + wg >0
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Learning the Weights for Linearly Separable Data

Binary Linear Classification

2=w x
1 ifz>0
10 ifz<0

If data is linearly separable, we can learn the weights
@ using linear programming, or
e using the perceptron algorithm (primarily of historical interest).

Unfortunately, in real life, data is almost never linearly separable.
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© Logistic Regression
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Data Isn’t Linearly Separable

What if the data-set isn’t linearly separable?
o We follow the standard ML pipeline:
@ Define a loss function.

o Find weights that minimize the average loss over the training
examples.
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First Try: 0-1 Loss

Binary linear classification with 0-1 loss:

Z:WTX

1 ifz>0
Y10 ifz<o

Coatr={ | H15) —Ty A

The cost J is the misclassification rate over data {x(@, () N

1 N
T =y LW+
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Problems with 0-1 loss

@ We need to minimize the cost with gradient descent.

e But, the gradient is zero almost everywhere!
Changing the weights has no effect on the loss.

@ Also, 0-1 loss is discontinuous at z = 0,
where the gradient is undefined.
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Second Try: Squared Loss for Linear Regression

@ Choose an easier to optimize loss function.

e How about the squared loss for linear regression?

Z:WTX

Lon(z,1) = %(z )2
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Second Try: Squared Loss for Linear Regression

@ Choose an easier to optimize loss function.

e How about the squared loss for linear regression?

Z:WTX

Lon(z,1) = %(z )2

o Treat the binary targets as continuous values.
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Second Try: Squared Loss for Linear Regression

Choose an easier to optimize loss function.

e How about the squared loss for linear regression?

Z:WTX

Lon(z,1) = %(z )2

Treat the binary targets as continuous values.

Make final predictions y by thresholding z at %
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Problems with Squared Loss

e If t =1, a greater loss for z = 10 than z = 0.

e Making a correct prediction with high confidence should be good,
but incurs a large loss.

large
residual
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Third Try: Logistic Activation Function

For binary targets, no reason to predict values outside [0, 1].

Let’s squash predictions y into [0, 1].
The logistic function is a sigmoid (S-shaped) function.
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Third Try: Logistic Activation Function

For binary targets, no reason to predict values outside [0, 1].
Let’s squash predictions y into [0, 1].

The logistic function is a sigmoid (S-shaped) function.
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This results in a linear model with a logistic non-linearity:

T

Z=W X
y=o0(2)
1
Lsg(y,t) = 2(1/ — 1)
o is called an activation function.
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Problems with Logistic Activation Function

Suppose that ¢t = 1 and z is very negative (z < 0).
Then, the prediction y ~ 0 is really wrong.

However, the weights appears to be at a critical point:
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Final Try: Cross-Entropy Loss

e Interpret y € [0, 1] as the estimated probability that ¢ = 1.

e Heavily penalize the extreme mis-classification cases when
t=0,y=1lort=1y=0.
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Final Try: Cross-Entropy Loss

e Interpret y € [0, 1] as the estimated probability that ¢ = 1.

e Heavily penalize the extreme mis-classification cases when
t=0,y=1lort=1y=0.

e Cross-entropy loss (a.k.a. log loss) captures this intuition:

5

4

23
[ —logy ift=1 £ \( t=0
ECE(yyt)—{ —log(1—y) ift=0 Ez
= —tlogy — (1 —t)log(l —y) °,
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Logistic Regression

Z2=W X

1
v=0l) ==

Lcg = —tlogy — (1 —1t)log(1l —y)

3.07
N —— logistic + CE

251

2.0

1.0

0.5

0.0

Figure: Cross-Entropy Loss w.r.t z, assuming ¢t = 1
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Numerical Instabilities

e Implementing logistic regression naively can cause numerical
instabilities.

@ Suppose that ¢t =1 and z < 0.

o If y is small enough, it may be numerically zero.
This can cause very subtle and hard-to-find bugs.

2 0=>y=0(2)=0
Lcg = —tlogy — (1 —t)log(1 —y) = —1log0
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Numerically Stable Version

e Instead, we combine the logistic activation function and the
cross-entropy loss into a single logistic-cross-entropy function.

Licn(,t) = Lor(o(2),1) = tlog(1 + %) + (1 — ) log(1 + ¢7)

e Numerically stable computation:

E = t * np.logaddexp(0, -z) + (1-t) * np.logaddexp(0, z)
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Comparing Loss Functions for t = 1

— Zzero-one
- |east squares
—— logistic + LS
—— logistic + CE
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Gradient Descent for Logistic Regression

e How do we minimize the cost J for logistic regression?
Unfortunately, no direct solution.

@ Use gradient descent
> initialize the weights to something reasonable and

repeatedly adjust them in the direction of steepest descent.

» A standard initialization is w = 0.
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Gradient of Logistic Loss

Back to logistic regression:

Lcog(y,t) = —tlog(y) — (1 —t)log(1 —y)
y=1/(1+e7?%) and z= w'x

Therefore

OLcp  OLce Oy 0z (_

ow; Oy 0z Ow;
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Gradient of Logistic Loss
Back to logistic regression:

Lcog(y,t) = —tlog(y) — (1 —t)log(1 —y)
y=1/(1+e7?%) and z= w'x

Therefore

OLcg _ OLcg Oy 0z ([
ow; Oy 0z 8wj N

Gradient descent update for logistic regression:

27
ow;

o N
wj NZ: _t(l

Wj = Wj — o
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Comparing Gradient Descent Updates

o Linear regression:

N
_e i) _ (1)) (@)
W W ;1 (y® — ) x
o Logistic regression:
0
_ = i) _ (D)) (@)
W W NiEZI(y( t") x

They are both examples of generalized linear models.
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Main Takeaways on Logistic Regression 1/2

What is the main motivation for using logistic regression?
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Main Takeaways on Logistic Regression 1/2

What is the main motivation for using logistic regression?
e When data isn’t linearly separable, cannot classify data perfectly.

@ Use a loss function and minimize average loss.

Why did we try 0-1 loss first? What’s the problem with it?
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Main Takeaways on Logistic Regression 1/2

What is the main motivation for using logistic regression?

e When data isn’t linearly separable, cannot classify data perfectly.

@ Use a loss function and minimize average loss.

Why did we try 0-1 loss first? What’s the problem with it?
@ Natural choice for classification.

e Gradient zero almost everywhere. Has a discontinuity.

Why did we try squared loss next? What’s the problem with it?

o Easier to optimize.

e Large penalty for a correct prediction with high confidence.
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Main Takeaways on Logistic Regression 2/2

Why did we try logistic activation function next? What’s the problem
with it?
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Main Takeaways on Logistic Regression 2/2

Why did we try logistic activation function next? What’s the problem
with it?

e Prediction € [0, 1].

e An extreme mis-classification case appears optimal.

Why did we try cross-entropy loss next?
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Main Takeaways on Logistic Regression 2/2

Why did we try logistic activation function next? What’s the problem
with it?

e Prediction € [0, 1].

e An extreme mis-classification case appears optimal.

Why did we try cross-entropy loss next?

e Heavily penalizes extreme mis-classification.

How do we apply gradient descent to logistic regression?

@ Derive the update rule.
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@ Linear Classifiers vs. KNN

Intro ML (Vector) ML4 B&I-Lec4 32 /44



Linear Classifiers vs. KNN

Linear classifiers and KNN have very different decision boundaries:

Linear Classifier K Nearest Neighbours

I e i r/\\
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Parametric v.s. Non-Parametric Algorithms

e A parametric algorithm:
the hypothesis space H is defined using a finite set of parameters.
» Examples: linear regression, logistic regression.

» Other examples: neural networks, Gaussian mixture models.
» Work better in high-dimensions.

e A non-parametric algorithm:
the hypothesis space H is defined in terms of the data.
» Examples: k-nearest neighbors, decision trees.
» Other examples: Gaussian processes, kernel density estimation
» Suffers from curse of dimensionality
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Main Takeaways on Basic Concepts

Compare and contrast KNN and Linear Classifiers.
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Main Takeaways on Basic Concepts

Compare and contrast KNN and Linear Classifiers.

e kNN is a non-parametric model, logistic regression is parametric.

@ kNN has nonlinear decision boundary, that of logistic regression is
linear.

o We expect logistic regression to work better in high-dimensions.

o It is harder to train logistic regression.
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Main Takeaways on Basic Concepts

Compare and contrast KNN and Linear Classifiers.

e kNN is a non-parametric model, logistic regression is parametric.

@ kNN has nonlinear decision boundary, that of logistic regression is
linear.

o We expect logistic regression to work better in high-dimensions.

o It is harder to train logistic regression.

Define parametric and non-parametric algorithms. Give examples.

e A parametric algorithm has parameters (weights).
Examples: linear regression, logistic regression.

@ A non-parametric algorithm has no parameter is defined in terms
of the data, and certain set of rules.
Examples: k-nearest-neighbours, decision trees.
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@ Softmax Regression
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Multi-class Classification

Task is to predict a discrete(> 2)-valued target.

cl0wi N (4A 12

puzen 1233

216294977659

AT IAWA RS

8378409497
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Targets in Multi-class Classification

o Targets form a discrete set {1,..., K}.

o Represent targets as one-hot vectors or one-of-K encoding;:

t=(0,...,0,1,0,...,0) e RE

entry k is 1
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Linear Function of Inputs

Vectorized form:

z=Wx+bor
z = Wx with dummy x¢ = 1

Non-vectorized form:
D
2L = Zwkjl'j + b, for k=1,2,.... K
j=1

o W: K x D matrix.
e x: D x 1 vector.
e b: K x 1 vector.

e z: K x 1 vector.
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Generating a Prediction

Interpret z; as how much the model prefers the k-th prediction.

{1, if ¢ = arg max z,
yi = k

0, otherwise

How does the K = 2 case relate to the binary linear classifiers?
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Softmax Regression

@ Soften the predictions for optimization.

e A natural activation function is the softmax function,
a generalization of the logistic function:

ek

Yk = SOftmaX(Zl, ey ZK)k' — W
k!
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Softmax Regression

@ Soften the predictions for optimization.

e A natural activation function is the softmax function,
a generalization of the logistic function:

ek

TS e

yr = softmax(z1, ..., 2K )k

o Inputs z; are called the logits.

Interpret outputs as probabilities.

o If z; is much larger than the others,
then softmax(z); ~ 1 and it behaves like argmax.

What does the K = 2 case look like?
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Cross-Entropy as Loss Function

Use cross-entropy as the loss function.

K

Lep(y,t) ==Y trlogys = —t' (logy),
k=1

where the log is applied element-wise.
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Gradient Descent Updates for Softmax Regression

Softmax Regression:
z = Wx
y = softmax(z)

Lo = —t ' (logy)
Gradient Descent Updates:

6LCE_8£0E.8Z;€_( —t)'X
6Wk B azk 8Wk = \Yk k

N
1 () _ 405 (i
Wi € Wi — o ;(yk — 1t )x®
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Conclusions

o Introduced logistic regression, a linear classification algorithm.
e Exemplified some recurring themes

» Can define a surrogate loss function if the one we care about is
intractable.

» Think about whether a loss function penalizes certain mistakes too
much or too little.

» Can be useful to view the classfier’s output as probabilities.

o Easily generalizes to multiclass classification.
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