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Recall: Visualizing NOT

x0 x1 t

1 0 1
1 1 0

Data is linearly separable if a linear decision rule
can perfectly separate the training examples.
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XOR is Not Linearly Separable

Some datasets are not linearly separable, e.g. XOR.

x1 x2 t

0 0 0
0 1 1
1 0 1
1 1 0
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Classifying XOR Using Feature Maps

Sometimes, we can overcome this limitation using feature maps,
e.g., for XOR.

ψ(x) =

 x1
x2
x1x2


x1 x2 ψ1(x) ψ2(x) ψ3(x) t

0 0 0 0 0 0
0 1 0 1 0 1
1 0 1 0 0 1
1 1 1 1 1 0

This is linearly separable. (Try it!)

Designing feature maps can be hard. Can we learn them?
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Neurons in the Brain

Neurons receive input signals and accumulate voltage.
After some threshold, they will fire spiking responses.

[Pic credit: www.moleculardevices.com]
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A Simpler Neuron

For neural nets, we use a much simpler model for neuron, or unit:

Same as logistic regression: y = σ(w>x + b)

By throwing together lots of these simple neuron-like processing
units, we can do some powerful computations!
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A Feed-Forward Neural Network

A directed acyclic graph

Units are grouped into
layers
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Multilayer Perceptrons

A multi-layer network consists of fully connected layers.

In a fully connected layer, all input units are connected to
all output units.

The outputs are a function of the input units:

y = f(x) = φ (Wx + b)

φ is applied component-wise.
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Some Activation Functions

Identity

y = z

Rectified Linear Unit
(ReLU)

y = max(0, z)

Soft ReLU

y = log 1 + ez
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More Activation Functions

Hard Threshold

y =

{
1 if z > 0
0 if z ≤ 0

Logistic

y =
1

1 + e−z

Hyperbolic
Tangent
(tanh)

y =
ez − e−z

ez + e−z

Intro ML (Vector) ML4 B&I-Lec5 12 / 49



Computation in Each Layer

Each layer computes a function.

h(1) = f (1)(x) = φ(W(1)x + b(1))

h(2) = f (2)(h(1)) = φ(W(2)h(1) + b(2))

...

y = f (L)(h(L−1))

If task is regression: choose
y = f (L)(h(L−1)) = (w(L))>h(L−1) + b(L)

If task is binary classification: choose
y = f (L)(h(L−1)) = σ((w(L))>h(L−1) + b(L))
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A Composition of Functions

The network computes
a composition of functions.

y = f (L) ◦ · · · ◦ f (1)(x).

Modularity: We can implement each layer’s
computations as a black box.
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Feature Learning

Neural nets can be viewed as a way of learning features:

The goal:
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Feature Learning

Suppose we’re trying to classify images of handwritten digits.

Each image is represented as a vector of 28× 28 = 784 pixel values.

Each hidden unit in the first layer acts as a feature detector.

We can visualize w by reshaping it into an image.
Below is an example that responds to a diagonal stroke.
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Features for Classifying Handwritten Digits

Features learned by the first hidden layer of a handwritten digit
classifier:

Unlike hard-coded feature maps (e.g., in polynomial regression),
features learned by neural networks adapt to patterns in the data.
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Expressive Power of Linear Networks

Consider a linear layer: the activation function was the identity.
The layer just computes an affine transformation of the input.

Any sequence of linear layers is equivalent to a single linear layer.

y = W(3)W(2)W(1)︸ ︷︷ ︸
,W′

x

Deep linear networks can only represent linear functions
— no more expressive than linear regression.
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Expressive Power of Non-linear Networks

Multi-layer feed-forward neural networks
with non-linear activation functions

Universal Function Approximators:
They can approximate any function arbitrarily well.

True for various activation functions
(e.g. thresholds, logistic, ReLU, etc.)
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Designing a Network to Classify XOR

Assume a hard threshold activation function.
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Designing a Network to Classify XOR

h1 is computed as x1 ∨ x2

h1 = I[x1 + x2 − 0.5 > 0]

h2 is computed as x1 ∧ x2

h2 = I[x1 + x2 − 1.5 > 0]

y computes

y =I[h1 − h2 − 0.5 > 0]

= x1 XOR x2
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Expressivity of the Logistic Activation Function

What about the logistic activation function?

Approximate a hard threshold by scaling up w and b.

y = σ(x) y = σ(5x)

Logistic units are differentiable, so we can learn weights with
gradient descent.
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What is Expressivity Good For?

May need a very large network to represent a function.

Non-trivial to learn the weights that represent a function.

If you can learn any function, over-fitting is potentially
a serious concern!

For the polynomial feature mappings, expressivity increases with
the degree M , eventually allowing multiple perfect fits to the
training data. This motivated L2 regularization.

Do neural networks over-fit and how can we regularize them?
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Regularization and Over-fitting for Neural Networks

The topic of over-fitting (when & how it happens, how to
regularize, etc.) for neural networks is not well-understood, even
by researchers!

I In principle, you can always apply L2 regularization.

A common approach is early stopping, or stopping training early,
because over-fitting typically increases as training progresses.
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Learning Weights in a Neural Network

Goal is to learn weights in a multi-layer neural network
using gradient descent.

Weight space for a multi-layer neural net: one set of weights for
each unit in every layer of the network

Define a loss L and compute the gradient of the cost dJ /dw,
the average loss over all the training examples.

Let’s look at how we can calculate dL/dw.
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Example: Two-Layer Neural Network
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Figure: Two-Layer Neural Network
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Computations for Two-Layer Neural Network

A neural network computes a composition of functions.

z
(1)
1 = w

(1)
01 · 1 + w

(1)
11 · x1 + w

(1)
21 · x2

h1 = σ(z1)

z
(2)
1 = w

(2)
01 · 1 + w

(2)
11 · h1 + w

(2)
21 · h2

y1 = z1

z
(1)
2 =

h2 =

z
(2)
2 =

y2 =

L =
1

2

(
(y1 − t1)2 + (y2 − t2)2

)
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Simplified Example: Logistic Least Squares

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

x

b
w

z y
t

L
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Computation Graph

The nodes represent the inputs and computed quantities.

The edges represent which nodes are computed directly
as a function of which other nodes.

x

b
w

z y
t

L
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Uni-variate Chain Rule

Let z = f(y) and y = g(x) be uni-variate functions.
Then z = f(g(x)).

dz

dx
=

dz

dy

dy

dx
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Logistic Least Squares: Gradient for w

Computing the loss:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Computing the gradient for w:

∂L
∂w

=
∂L
∂y

∂y

∂w

=
∂L
∂y

∂y

∂z

∂z

∂w

= (y − t) σ′(z) x
= (σ(wx+ b)− t)σ′(wx+ b)x
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Logistic Least Squares: Gradient for b

Computing the loss:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Computing the gradient for b:

∂L
∂b

=

=

=

=
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Logistic Least Squares: Gradient for b

Computing the loss:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Computing the gradient for b:

∂L
∂b

=
∂L
∂y

∂y

∂b

=
∂L
∂y

∂y

∂z

∂z

∂b

= (y − t) σ′(z) 1

= (σ(wx+ b)− t)σ′(wx+ b)1
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Comparing Gradient Computations for w and b

Computing the loss:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Computing the gradient for w:

∂L
∂w

=
∂L
∂y

∂y

∂z

∂z

∂w

= (y − t) σ′(z) x

Computing the gradient for b:

∂L
∂b

=
∂L
∂y

∂y

∂z

∂z

∂b

= (y − t) σ′(z) 1
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Structured Way of Computing Gradients

Computing the loss:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Computing the gradients:

∂L
∂y

= (y − t)

∂L
∂z

=
∂L
∂y

σ′(z)

∂L
∂w

=
dL
dz

dz

dw
=

dL
dz

x
∂L
∂b

=
dL
dz

dz

db
=

dL
dz

1
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Error Signal Notation

Let y denote the derivative dL/dy, called the error signal.

Error signals are just values our program is computing
(rather than a mathematical operation).

Computing the loss:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Computing the derivatives:

y = (y − t)
z = y σ′(z)

w = z x b = z
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Computation Graph has a Fan-Out > 1

L2-Regularized Regression

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

R =
1

2
w2

Lreg = L+ λR
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Computation Graph has a Fan-Out > 1

Softmax Regression

z` =
∑
j

w`jxj + b`

yk =
ezk∑
` e

z`

L = −
∑
k

tk log yk
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Multi-variate Chain Rule

Suppose we have functions f(x, y), x(t), and y(t).

d

dt
f(x(t), y(t)) =

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

Example:

f(x, y) = y + exy

x(t) = cos t

y(t) = t2

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

= (yexy) · (− sin t) + (1 + xexy) · 2t
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Multi-variate Chain Rule

In the context of back-propagation:

In our notation:

t = x
dx

dt
+ y

dy

dt
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Backpropagation for Regularized Logistic Least Squares

Forward pass:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

R =
1

2
w2

Lreg = L+ λR

Backward pass:

Lreg = 1

R = Lreg
dLreg
dR

= Lreg λ

L = Lreg
dLreg
dL

= Lreg

y = L dL
dy

= L (y − t)

z = y
dy

dz
= y σ′(z)

w= z
∂z

∂w
+RdR

dw
= z x+Rw

b = z
∂z

∂b
= z
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Computational Cost

Computational cost of forward pass:
one add-multiply operation per weight

zi =
∑
j

w
(1)
ij xj + b

(1)
i

Computational cost of backward pass:
two add-multiply operations per weight

w
(2)
ki = yk hi

hi =
∑
k

ykw
(2)
ki

One backward pass is as expensive as two forward passes.
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Backpropagation

The algorithm for efficiently computing gradients in neural nets.

Gradient descent with gradients computed via backprop is used to
train the overwhelming majority of neural nets today.

Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the
gradients.
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Auto-Differentiation

Autodifferentiation performs backprop in a completely mechanical
and automatic way.

Many autodiff libraries: PyTorch, Tensorflow, Jax, etc.

Although autodiff automates the backward pass for you, it’s still
important to know how things work under the hood.

In the assignment, you will use an autodiff framework to build
complex neural networks.
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Conclusions

Introduced Neural Networks

Discuss their expressive power.
I Can approximate any function.

Introduced backpropagation.
I In the appendix, we also work out the updates for a two-layer

neural network.

Intro ML (Vector) ML4 B&I-Lec5 46 / 49



Appendix: Full Backpropagation Algorithm:

Let v1, . . . , vN be an ordering of the computation graph where parents
come before children.
vN denotes the variable for which we’re trying to compute gradients.

forward pass:

For i = 1, . . . , N ,
Compute vi as a function of Parents(vi).

backward pass:

For i = N − 1, . . . , 1,

v̄i =
∑

j∈Children(vi)

v̄j
∂vj
∂vi
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Appendix: Backpropagation for Two-Layer Neural
Network

Forward pass:

zi =
∑
j

w
(1)
ij xj + b

(1)
i

hi = σ(zi)

yk =
∑
i

w
(2)
ki hi + b

(2)
k

L =
1

2

∑
k

(yk − tk)2

Backward pass:

L = 1

yk = L (yk − tk)

w
(2)
ki = yk hi

b
(2)
k = yk

hi =
∑
k

ykw
(2)
ki

zi = hi σ
′(zi)

w
(1)
ij = zi xj

b
(1)
i = zi
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Appendix: Backpropagation for Two-Layer Neural
Network

In vectorized form:

Forward pass:

z = W(1)x + b(1)

h = σ(z)

y = W(2)h + b(2)

L =
1

2
‖t− y‖2

Backward pass:

L = 1

y = L (y − t)

W(2) = yh>

b(2) = y

h = W(2)>y

z = h ◦ σ′(z)

W(1) = zx>

b(1) = z
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