ML4 B&I: Introduction to Machine Learning

Lecture 5- Neural Networks

Murat A. Erdogdu

Vector Institute, Fall 2022

Intro ML (Vector) ML4 B&I-Lech 1/49

Outline

@ Limits of Linear Classification

© Introducing Neural Networks

© Backpropagation

Intro ML (Vector) ML4 B&I-Lech

2/49

Recall: Visualizing NOT

e Data is linearly separable if a linear decision rule
can perfectly separate the training examples.

Intro ML (Vector) ML4 B&I-Lech 3/49

XOR is Not Linearly Separable

Some datasets are not linearly separable, e.g. XOR.

T2

X1

Intro ML (Vector) ML4 B&I-Lech 4 /49

Classifying XOR Using Feature Maps

Sometimes, we can overcome this limitation using feature maps,
e.g., for XOR.

21 @y | (%) Pa(x) s(x) |t

0 0] 0 0 0 |0

1 0 1| 0 1 0 |1

Px)=| o 1 0| 1 0 0 |1
Tr1T2

1 1] 1 1 1 o

e This is linearly separable. (Try it!)
@ Designing feature maps can be hard. Can we learn them?

Intro ML (Vector) ML4 B&I-Lech 5/49

© Introducing Neural Networks

Intro ML (Vector) ML4 B&I-Lech 6 /49

Neurons in the Brain

Neurons receive input signals and accumulate voltage.

After some threshold, they will fire spiking responses.

Action potential

+40
Na® ions in
Sl 13 &
- At
S o 05 |z
£ 2 B K ions out
@ & =
o °
Q
= 3
g)
Threshold _ / Failed e
55— initiations
Resting state
70 [—

Hyperpolarization
0 1 2 3 4
Time (ms)

[Pic credit: www.moleculardevices.com]

Intro ML (Ve) ML4 B&I-Lech

7/49

A Simpler Neuron

For neural nets, we use a much simpler model for neuron, or unit:

Y output output weights bias

e X ylzqs(ivTxHﬂ)

inputs T \
1 T2 x3

activation function inputs

Intro ML (Vector) ML4 B&I-Lech 8 /49

A Simpler Neuron

For neural nets, we use a much simpler model for neuron, or unit:

Yy _ .
output output weights bias

e X ylzqﬁ(‘i?vTx—Hl))

inputs T \
1 T2 x3

activation function inputs

o Same as logistic regression: y = o(w'x + b)

e By throwing together lots of these simple neuron-like processing

units, we can do some powerful computations!

Intro ML (Vector) ML4 B&I-Lech

8 /49

A Feed-Forward Neural Network

an output
unit
1

output layer

second hidden layer

o A directed acyclic graph

e Units are grouped into

layers ahidden
unit

first hidden layer

input layer

a connection

depth an input

unit

Intro ML (Vector) ML4 B&I-Lech 9/49

Multilayer Perceptrons

o A multi-layer network consists of fully connected layers.

o In a fully connected layer, all input units are connected to
all output units.

Intro ML (Vector) ML4 B&I-Lech 10 /49

Multilayer Perceptrons

o A multi-layer network consists of fully connected layers.

o In a fully connected layer, all input units are connected to
all output units.

o The outputs are a function of the input units:
y = f(x) = ¢(Wx+Db)

¢ is applied component-wise.

Intro ML (Vector) ML4 B&I-Lech 10 /49

Some Activation Functions

Identity Rectified Linear Unit
(ReLU)
Yy==z
y = max(0, 2)

Intro ML (Vector) ML4 B&I-Lech

Soft ReLU

y=1logl+e*

11 /49

More Activation Functions

Hard Threshold

(1
Y=Y 0

Intro ML

if z>0
if 2<0

(Vector)

Logistic

1

V= Ty

ML4 B&I-Lech

Hyperbolic
Tangent
(tanh)

e —e *?

12 /49

Computation in Each Layer
Each layer computes a function.

hM = fD(x) = g(WHx +bM)
h® = f@OnM) = g(WBn® 4 p?)

y =P mE)

Intro ML (Vector) ML4 B&I-Lech

=
>
<~ |0= =
= G
O:
O

Qcetexe)

O O

»
ﬂ‘a

13 /49

Computation in Each Layer

Each layer computes a function.

b = 70(x) = o(Wx + b)) y [©OO O

h® = O HRMD) = pWnD 4 p®) f)

y : FE (RE-D) f(3)
h? O O O
£

o If task is regression: choose h(l) O OO

y = f) (h(L—l)) = (W<L))Th(L—1) + p)

f(l)
o If task is binary classification: choose
y = fORED) = o(wE)ThE-D 4 p0y X [eXeXe]

Intro ML (Vector) ML4 B&I-Lecb 13 /49

A Composition of Functions

The network computes
a composition of functions.

y=fHo...0 f(l)(x).

Modularity: We can implement each layer’s
computations as a black box.

Intro ML (Vector) ML4 B&I-Lech

f(l)
x| O OO

14 /49

Feature Learning

Neural nets can be viewed as a way of learning features:

linear regressor.
/ clasifier

The goal:

Intro ML (Vector) ML4 B&I-Lech 15 /49

Feature Learning

Y output output wewg‘hts bi‘as
wy connections [v '
wg W y=¢(w'x+b)
inputs 4 A

zy T2 T3 !
activation function inputs

Suppose we're trying to classify images of handwritten digits.
Each image is represented as a vector of 28 x 28 = 784 pixel values.

Each hidden unit in the first layer acts as a feature detector.

We can visualize w by reshaping it into an image.
Below is an example that responds to a diagonal stroke.

Intro ML (Vector) ML4 B&I-Lech 16 /49

Features for Classifying Handwritten Digits

Features learned by the first hidden layer of a handwritten digit
classifier:

Unlike hard-coded feature maps (e.g., in polynomial regression),
features learned by neural networks adapt to patterns in the data.

Intro ML (Vector) ML4 B&I-Lech 17 /49

Expressive Power of Linear Networks

o Consider a linear layer: the activation function was the identity.
The layer just computes an affine transformation of the input.

e Any sequence of linear layers is equivalent to a single linear layer.

y = WOWAWW
P A
AW/

@ Deep linear networks can only represent linear functions
— no more expressive than linear regression.

Intro ML (Vector) ML4 B&I-Lech 18 /49

Expressive Power of Non-linear Networks

e Multi-layer feed-forward neural networks
with non-linear activation functions

@ Universal Function Approximators:

They can approximate any function arbitrarily well.

@ True for various activation functions
(e.g. thresholds, logistic, ReLU, etc.)

Intro ML (Vector) ML4 B&I-Lech

19 /49

Designing a Network to Classify XOR

Assume a hard threshold activation function.

1

1 ‘@ 1

Intro ML (Vector) ML4 B&I-Lech

20/ 49

Designing a Network to Classify XOR

h1 is computed as x1 V x9

hy =1z + xz9 — 0.5 > 0]
ho is computed as x1 A x3

ho =1z + 23 — 1.5 > 0]
Yy computes

Yy :H[hl —hy — 0.5 > 0]
=T XOR xT9

Intro ML (Vector) ML4 B&I-Lech 21 /49

Expressivity of the Logistic Activation Function

e What about the logistic activation function?
e Approximate a hard threshold by scaling up w and b.

1

0.8,

06+

y = o(5x)

Intro ML (Vector) ML4 B&I-Lech

22 /49

Expressivity of the Logistic Activation Function

e What about the logistic activation function?
e Approximate a hard threshold by scaling up w and b.

1

0.8,

06+

04}

0.2

o.

=4 -3 -2 -1 o0 1 2 3 w4 -3 2 -

y=o(x) y = o(bx)

e Logistic units are differentiable, so we can learn weights with
gradient descent.

Intro ML (Vector) ML4 B&I-Lech 22 /49

What is Expressivity Good For?

e May need a very large network to represent a function.
e Non-trivial to learn the weights that represent a function.

e If you can learn any function, over-fitting is potentially
a serious concern!

For the polynomial feature mappings, expressivity increases with
the degree M, eventually allowing multiple perfect fits to the
training data. This motivated L? regularization.

50
25
00
-25

50
-50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50

@ Do neural networks over-fit and how can we regularize them?

Intro ML (Vector) ML4 B&I-Lech 23 /49

Regularization and Over-fitting for Neural Networks

e The topic of over-fitting (when & how it happens, how to
regularize, etc.) for neural networks is not well-understood, even

by researchers!

» In principle, you can always apply L? regularization.

@ A common approach is early stopping, or stopping training early,
because over-fitting typically increases as training progresses.

Prediction Error

Intro ML

(Vector)

Generalization error

N Early stopping " -

—

. Training error

Training lterations

ML4 B&I-Lech 24 /49

© Backpropagation

Intro ML (Vector) ML4 B&I-Lech 25 /49

Learning Weights in a Neural Network

e Goal is to learn weights in a multi-layer neural network
using gradient descent.

o Weight space for a multi-layer neural net: one set of weights for
each unit in every layer of the network

@ Define a loss £ and compute the gradient of the cost dJ/dw,
the average loss over all the training examples.

e Let’s look at how we can calculate dL/dw.

Intro ML (Vector) ML4 B&I-Lech 26 /49

Example: Two-Layer Neural Network

Figure: Two-Layer Neural Network

Intro ML (Vector) ML4 B&I-Lech 27 /49

Computations for Two-Layer Neural Network

A neural network computes a composition of functions.

N B O B
h1 = 0'(2’1)
252) :w(()21) . 1+w§) - hq —I—w() - ho

Intro ML (Vector) ML4 B&I-Lech 28 /49

Simplified Example: Logistic Least Squares

z=wx+b X t
:o‘(z) \
b—>2—>Y—> [
:i(y—t)z
w

Intro ML (Vector) ML4 B&I-Lech 29 /49

Computation Graph

@ The nodes represent the inputs and computed quantities.

@ The edges represent which nodes are computed directly
as a function of which other nodes.

x\ t\

b3z >y [

w

Intro ML (Vector) ML4 B&I-Lech 30 /49

Uni-variate Chain Rule

Let z = f(y) and y = g(z) be uni-variate functions.
Then z = f(g(x)).

dz dz %

a_dfy dz

Intro ML (Vector) ML4 B&I-Lech 31/49

Logistic Least Squares: Gradient for w

Computing the loss:

z=wx+b
y=o(z)
1 2
= —(y—t
2(?/)

Computing the gradient for w:

oL 0L oy

ow dy dw
0L Oy 0z
dy 9z dw

= (o(wx +b) — t)o’ (wx + b)x

ML4 B&I-Lec5 32 /49

Intro ML (Vector)

Logistic Least Squares: Gradient for b

Computing the loss:

z=wr+b

y=o0(2)
_1 2

ﬁ—i(y t)

Computing the gradient for b:

oL
0b

Intro ML (Vector) ML4 B&I-Lech 33 /49

Logistic Least Squares: Gradient for b

Computing the loss:

z=wx+b
y=o0(2)

1 2
L=5y—-1)

Computing the gradient for b:

oL OL dy

ob dy db
AL By 0=
Ty 0z Ob

=(y—1t) d'(2) 1
= (o’(wx + b) — t)a’(wm + b)l

Intro ML (Vector) ML4 B&I-Lech 34 /49

Comparing Gradient Computations for w and b

Computing the loss:

z=wx+b
y=o0(z2)
il 2

L=5ly—1)

Computing the gradient for w: Computing the gradient for b:

oL
ab
0L By 0=

~ Jy 0z Ob
=(y—1t)o'(2) 1

Intro ML (Vector) ML4 B&I-Lech 35 /49

Structured Way of Computing Gradients

Computing the loss:

z=wxr+b
y=o(z)
_ 1 2
L=5-1)
Computing the gradients:
oL
7= —t
9y (y—1)
oL oL
92 87y o'(z)
or_dcd: _dc oL _dcd: _de
w dedw dz b dzdb dz

Intro ML (Vector) ML4 B&I-Lech 36 /49

Error Signal Notation

e Let y denote the derivative d£/dy, called the error signal.

e Error signals are just values our program is computing
(rather than a mathematical operation).

Computing the loss: Computing the derivatives:
z=wzx+b y=(y—t)
y=o0(2) z=750(2)
1 w=zx b=z
L= §(y —t)°

Intro ML (Vector) ML4 B&I-Lech 37 /49

Computation Graph has a Fan-Out > 1

Lo-Regularized Regression
z=wxr+b

L t (2)
Y=oz
b>§z_>y—>£—>£reg L= %(y - t)Q

/L(_// »R/ R = %wg

Lrog = L+ AR

ML4 B&I-Lech 38 /49

Intro ML (Vector)

Computation Graph has a Fan-Out > 1

Softmax Regression

w11 W1
b, \
t zg:ng-:U-—i—bg
x]_ >Z >y1 K] I
e
X 24>Z2—>y2 / k Zz ezt
/ T t2 L:—Ztklogyk
b k
Wa1
22

Intro ML (Vector) ML4 B&I-Lech 39 /49

Multi-variate Chain Rule

Suppose we have functions f(x,y), z(t), and y(t).

d
a0 = 5o oy @

of dr 0f dy t< \
/'

Example:
x(t) = cost dt — drdt ' 9y dt
y(t) = +2 = (ye™) - (—sint) + (1 + ze™¥) - 2t

Intro ML (Vector) ML4 B&I-Lech 40 /49

Multi-variate Chain Rule

In the context of back-propagation:

Mathematical expressions
to be evaluated

df _ofdz fd
a o df—i_@y dg *t
N/ /

Values already computed
by our program

In our notation:

H~\
2&

de
dt Yy

Intro ML (Vector)

ML4 B&I-Lech 41 /49

Backpropagation for Regularized Logistic Least Squares

t
X
Qz—’y—’ﬁ_’ﬁrog

u/ > R/

Forward pass:

z=wr+b
y=o0(z)
L= 1y
R:%wa
Lrog =L+ AR

ML4 B&I-Lecb 42 /49

Intro ML (Vector)

Backpropagation for Regularized Logistic Least Squares

Backward pass:

X t

b

Z_’y_’ﬁ_’ﬁrog Ereg =1

u/ N R/ R-Tus dLyeg
Forward pass: dr
= Lreg A
z=wxr+b Y dLyeg
y=o0(2) oo
1 = Lreg
L= §(y - t)2 . _dc
1 V==L,
R _ *’11)2 B Yy
2 =L(y—t)
Lreg = L+ AR

Intro ML (Vector) ML4 B&I-Lecb 42 /49

Backpropagation for Regularized Logistic Least Squares

X t

b

Z_’y_’ﬁ_’ﬁrog »Creg =1

u/ N R/ R-Tus dgreg
Forward pass: R
= Lreg A
z=wxr+b Y dLyeg
y=o0(2) ;g dc
1 = Foreg
L= §(y - t)2 . _dc
1 V==L,
R _ *’11)2 B Yy
2 =L(y—t)
Lreg = L+ AR

Intro ML (Vector) ML4 B&I-Lech

Backward pass:

0z —dR
R
ow * dw

42 /49

Computational Cost

e Computational cost of forward pass:
one add-multiply operation per weight

Z w(l)x] + b

e Computational cost of backward pass:
two add-multiply operations per weight

EZZ?T (2)
k

@ One backward pass is as expensive as two forward passes.

Intro ML (Vector) ML4 B&I-Lech

43 /49

Backpropagation

o The algorithm for efficiently computing gradients in neural nets.

o Gradient descent with gradients computed via backprop is used to
train the overwhelming majority of neural nets today.

e Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the
gradients.

Intro ML (Vector) ML4 B&I-Lech 44 /49

Auto-Differentiation

o Autodifferentiation performs backprop in a completely mechanical
and automatic way.

e Many autodiff libraries: PyTorch, Tensorflow, Jax, etc.

e Although autodiff automates the backward pass for you, it’s still
important to know how things work under the hood.

o In the assignment, you will use an autodiff framework to build
complex neural networks.

Intro ML (Vector) ML4 B&I-Lech 45 /49

Conclusions

@ Introduced Neural Networks
@ Discuss their expressive power.

» Can approximate any function.
o Introduced backpropagation.

» In the appendix, we also work out the updates for a two-layer
neural network.

Intro ML (Vector) ML4 B&I-Lech 46 /49

Appendix: Full Backpropagation Algorithm:

Let v1,...,vn be an ordering of the computation graph where parents
come before children.
vy denotes the variable for which we're trying to compute gradients.

o forward pass:
Fori=1,...,N,
Compute v; as a function of Parents(v;).
e backward pass:
Fort=N-1,...,1,
0v;
Vi Z v BUZ

j€Children(v;)

Intro ML (Vector) ML4 B&I-Lech 47 /49

Appendix: Backpropagation for Two-Layer Neural

Network

w!}) 1) wyy 2

Y

X —»Zl—uhl—byl
$2——4>22——+h2~4-———>y2
/j;f t2
Wy W:

Wi)) l w. (,),) 71

Forward pass:

2; = Zw<1)x]~ + bgl)

hi = J(ZZ)
Yk = Zw(Q)h + b(2)

L= %Z(yk —ti)?

k

Intro ML (Vector)

Backward pass:

ML4 B&I-Lech

L=1
Uk = L (Yr — t)
w) = Tih

.
b =7

48 /49

Appendix: Backpropagation for Two-Layer Neural
Network

In vectorized form:

wv Wij) t Backward pass:
X—Z—h—Y—/[L=1
y=L(y—-t
b b® VV(Q})’ _ yli}T,)
Forward pass: 5@ — -
z=WWx 4+ bl h=WOTy
h =o0(z) Z=hoo/(z)
y=W®&h +p® WO = 2T
L=l b1 —7

Intro ML (Vector) ML4 B&I-Lech 49 /49

	Limits of Linear Classification
	Introducing Neural Networks
	Backpropagation

