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Exam reminders:

Fill out your name and student number on the top of this page.

e Do not begin writing the actual exam until the announcements have ended and the Exam

Facilitator has started the exam.

e Write all answers in the provided answer booklets.
e Blank scrap paper is provided at the back of the exam.

If you possess an unauthorized aid during an exam, you may be charged with an academic
offence.

Turn off and place all cell phones, smart watches, electronic devices, and unauthorized study
materials in your bag under your desk. If it is left in your pocket, it may be an academic
offence.

When you are done your exam, raise your hand for someone to come and collect your exam.
Do not collect your bag and jacket before your exam is handed in.

If you are feeling ill and unable to finish your exam, please bring it to the attention of an
Exam Facilitator so it can be recorded before leaving the exam hall.

In the event of a fire alarm, do not check your cell phone when escorted outside.

This practice exam contains more questions than the actual exam.



1. Decision theory (10 points). Imagine you are writing a quiz that has a true or false
section. To discourage random guessing, the quiz awards x points for a correct answer, y points
for a false answer, and z points for no answer.

1. (8 points) You think you know the correct answer with probability §. How high must 6 be,
as a function of z, y, and z, before the expected number of points is higher for choosing the
most likely answer, versus leaving the question blank?

Answer: If the question is answered, the expected reward is 6z + (1 — 6)y and if not then it

2. (2 points) How high must 6 be_, before the expected number of points is higher for guessing
the correct answer, when x = 2, y = —2, and z = 07
Answer: 1/2

2. Graphical model analysis (20 points).
1. (5 points) Consider the graphical model shown below, a 2nd-order hidden Markov model:

Write the factorization of the JOlnt distribution over p( zl, 29, ..., 27, T1, T2, ..., o) implied

by this model. Answer: p(z1) thz p(zt|ze—1)p(x1]21) th? p(:ct]zt, Zt—1)
2. (10 points) Consider another graphical model:

OO0
(2

Answer true or false, no need to show your work:

(a) A L B Answer: yes

(b) B 1L G Answer: no

(¢) F 1 G Answer: no

(d) A 1L B|C Answer: no

(e) A1 B|D Answer: no

(f) A 1L B|G Answer: no
)

(g) F 1 G|E Answer: yes



(h) F 1 G|A Answer: no
3. (b points) Draw the graphical model for

N

p(-Tl, L2y ee ey TN YL,Y2y -+ - YN, R1, 225y ZN, 9777) = p(e)p(ﬂ-) Hp(yl|xla Zis g)p(xl|zl)p(zl|7r)
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Answer: This is the graph: Ll

3. Variational Inference (10 points). Hint for this section: Jensen’s inequality states that
when f is concave, f(E[z]) > E[f(z)].

1. (5 points) For the joint distribution p(zx, z), suppose we are trying to approximate a con-
ditional distribution p(z|z) using distribution ¢(z|x). Show that for any distribution ¢, the
“evidence lower bound”

£(¢) = Eq(z\x) [lng(:L‘, Z) — log Q(Z’x)]

will be less than or equal to the log marginal likelihood log p(x). You can assume p and ¢
are positive everywhere. Answer: This was done in the lecture.

2. (5 points) If a training set 1, xa, . .., 2 are drawn i.i.d. from p(z]@) and the parameter 6 is
estimated from the data, show that the expected log-probability of the data under 6 will be
smaller in expectation on a validation set of data drawn from the same distribution p(x|f)
than it will be on the training set. That is, show that, for all é,

Ep(slo) [10g p(e10)] < Eyopp)log pl216)].

You can assume p and g are positive everywhere. Answer: Note that

A p(x|0
E,(216)[log p(z]0)] — Ep (40 {10gp(l'|9)} = E, (20 log [pgm:é;

= KL(p(z]0), p(z]0)) > 0

which implies the desired inequality.



4. Monte Carlo Estimators (10 points). Recall the Simple Monte Carlo estimator:

S
1 ) )
é(r1,wo,...,x5) = g g F(z®), where each () ~ p(z) independently.
i=1

1. (2 points) Show that this is an unbiased estimator of E,,)[f(z)]. Answer: See the lecture.

2. (4 points) Find the variance of this estimator as a function of S.Answer: See the lecture.

3. (4 points) Imagine you have a distribution p(z) whose normalized density you can evaluate,
but which it is difficult to sample from. You also have another distribution g(z), that you
can sample from, and also evaluate its density. Using these two distributions, write an
unbiased estimator of E,)[f(z)] that can be computed without access to samples from
p(x). Answer: Since we do not know how ¢ relates to p, we cannot use rejection sampling.
We can use however the importance sampling. In the lecture we discussed how to get an
unbiased estimator of E,,[f(x)] in this case.

5. Bayesian Linear Regression (15 pts). Recall the multivariate Gaussian density

1

Nwp, ) exp{ — i(w —p) 'Y (w— u)}

In a linear regression problem, suppose that you are given a dataset y € RY and X € RV*P

where N > D and assume X " X is invertible. We assume that target has the following distribution
p(ylX,w, %) = N(y[Xw, X).
(a) (5 pts) Find a closed form solution for ordinary least squares solution defined as
Wis = argmin [ly — Xwl?.

For which class of covariance matrices X, the MLE w for the above distribution would
coincide with wy,g?
Answer: This is a standard calculation. Suppose ¥ = ¢2I. The likelihood is

1
plyX,w,0%) = 75/ det(G5Iy) exp{—5,2(y — Xw) (y — Xw)}.

(2m)

Thus, the log-likelihood function, up to the irrelevant additive constants, is
2 2

—210g(02) — 5 ly — Xw]>

Irrespective of what o is, the optimal w is the one minimizing ||y — Xwf||?. This is the least
squares solution. The explicit formula can be found by vector differentiation. If X has full

column rank it is given by
wis = (XTX)"!'X Ty



(b) (5 pts) Now assume ¥ = oI for some scalar o, and we use the following prior for the
weights

p(w) = N(w|g,I).

Derive the posterior distribution p(w|y, X, 3) by explicitly showing each step.
Answer: Since p(w|y) o< p(w)p(y|w) we can recycle calculations from above to write that

logp(wly) = const — g|lw — ul|* — 5y — Xw|?,

202
where all terms that do not depend on w are in the first term. We can expand this and get
logp(wly) = const — tw' (I + 5X " X)w+ (p+ 5X "y)Tw.

Using the multivariate completion of squares introduced in the lecture, we get that the
posterior is Gaussian with covariance matrix

I+ 5XxTx)™
and mean

T+ EX"X) 7 p+ 5Xy) = (0P T+ X' X) (o?u+XTy)

(c) (5 pts) If the features are orthogonal, i.e. XX = I, show that the posterior mean is a
weighted average between the prior mean g and the ordinary least squares solution wrg.
Answer: By the previous exercise the posterior mean is

(0% + XTX) (o + X Ty)
If X" X =TI then @y = X "y and this expression simplifies to

W(UQM -+ @LS) = (1 — )\),LL + )\ﬁ}\LS,

_ 1
where \ = o7

6. Principle Component Analysis (20 points). Suppose that you are given a centered
dataset of n samples, i.e., z; € R? for i = 1,2,...,n such that Yo yx; = 0. For a given unit
direction u (||ull2 = 1), we denote by P, (z) the Euclidean projection of x on u. That is,

(6.1) Pu(x) = argmin ||z — v|3.

v=au:a€R

1. (2 points) Projected data mean: Show that the projected data in any unit direction w is still
centered. That is show,

(6.2) > Pulai) =0.
i=1

Answer: We have

Tu—20u"z = 0o — 20u" z + ||z|2,

5

|z — oul? =2z + o?u



T

which is a simple quadratic with the minimum o* = ' x and so

Pulz) = (u' z)u.

‘We have

ZPU(@) :z(uTacl U = sz u = 0.

7

. (4 points) Mazimum variance: Show that the unit direction u that maximizes the variance

of the projected data corresponds to the first principle component for the data.
show,

(6.3) argmax Z ‘

w:||ul2=1 i=1

corresponds to the first principle component.
Answer: Using the previous exercise, we have

2{ TSI ST A

|, = <u z:)? ull§ = ( Zm

That is

This expression is maximized precisely when u is the unit eigenvector of the matrix S =
>ohy xeZT) corresponding to the maximal eigenvalue. To see this we simply solve the

Lagrangian
w'Su—Au'u—1).

The optimality condition is then Su = Au (u must be an eigenvector with eigenvalue \) and
the optimal value is A (so the maximum is attained if A is the maximal eigenvalue).

. (4 points) Minimum error: Show that the unit direction u that minimizes the mean squared
error between projected data points and the original points corresponds to the first principal

component for the data. That is show,

(6.4) argmin Z i — Pulzs)||3
willulla=13=4

corresponds to the first principle component.
Answer: We have

n

ZHCL‘Z— ()3 = Z[x;rxz ZIE T — Z (u' ;)
=1

i=1

:gxxz Euxa:u—gxxb—u

Now we use the same argument as above to conclude that the minimizer is the unit eigen-

vector corresponding to the maximal eigenvalue again.



4. (5 points) Probabilistic PCA: Now, assume the following model

z~N(0,%)
x|z ~MNWz+p, I).

Find the marginal distribution of x.
Answer: As in the lecture, we observe first that we can alternatively write © = Wz 4 p + €,
where € ~ N (0, I) is independent of z. Thus we get

E(z) = p
and
cov(z) = cov(Wz+ pu+€) = WEW ' +1.
5. (5 points) When does the above formulation reduce to classical PCA? Show your derivation.
Answer: We have p(z|z) o« p(z)p(z|z) and so
logp(z|z) = 32" 27 e —L|la—pu—Wz|P4const = — 32T (ST +W T W)z+(2—p) " Wz+const
By completing squares, it follows that z given x has a gaussian distribution with covariance
Etewiw)!

and mean
4+ wwW) W (& — ).

If ¥=! = ¢%I and o — 0 then in the limit this conditional mean corresponds to the orthog-
onal projection of x — p on the space spanned by the columns of W, which is the classical

PCA.

7. Bayesian Linear Regression (10 points). In a linear regression problem, suppose that
you are given a dataset y € R” and X € R™ ¢ where n > d. We assume that target has the
following distribution

py|X, w, ) = N(y|Xw, 57').
We use the following prior for the weights

p(w) =N(wlp, ).
Derive the posterior distribution p(w|y, X, 3) by explicitly showing each step.
Answer: This derivation was given in the lecture: The logarithm of the posterior satisfies

log p(w | D) = log p(w) + log p(D | w)



The likelihood term was computed as follows

N N
> logp(y'? [xVsw, 8) = > logN(yswx™, 07

i=1 i=1
a o o2
= lo exp| ——(yW —w'x® 2)}
; g[ = p( 5 (v )
2 N

_ _9 (1) _ w1 x(9)2
= const 5 ;(y w x")

0_2
= const — ?Hy — Xw|?
For the given prior we have

log p(w) = log (QW)D}Q’E‘I/Q eXp(—%(W — ) 'S (w — M))}

=—3(w-— 1) 'S H(w — ) + const

Putting this together we get

2
_ o
logp(w|D) = —L(w — p) "= (w — ) — ?Hy — Xw||? + const.

It is clear that the posterior will be Gaussian. To find its parameters explicitly we try to complete
the squares

log p(w|D) = f%WT(E_l + %QXTX)W + (MTE_I + yTX>W.
Thus, the posterior is gaussian with covariance
_ 2 _
S+ oXTX)!

and mean

T
(Z_1+ gXTX)—l(MTE—I +yTX) _ (E_l + %ZXTX>_1(E_1M+XTy)

8. Gaussian Processes - 15 pts. We recall the following properties of the multivariate
Gaussian vectors:

1. For a multivariate Gaussian vector y ~ M, X) and a matrix A, we have
Ay ~ N(Ap, AZAT)
2. For any split,
y1 73 Y1 X2
8.1 = ~N ,
8.1) Y [Y2] ([uz][zm 222})
we have the conditional distribution again Gaussian

(8.2) yal(y1 = a) ~N(po+Za1%1](a— ), Boz — T X1 o).
8



Suppose we have a linear model
ylz~N(G(x), 0®)  §(x) = w ()

and an isotropic prior on the weights w ~ N (0,a~'I). We observe N data points and write them

in vector form yy = (yV,y®, ..., y™)7T and y = $w where each row of ¥ is 1p(x®)7.

(a) (2 pts) Find the distribution of the vector y. Simplify notation by defining the scaled Gram
matrix Ky = é\II\IIT.

(b) (5 pts) Find the marginal distribution of y,. Simplify notation by defining the matrix
Cn =Ky +0°I.

(c) (8 pts) After observing a new test input ™+ and using the above result for N + 1, find
the distribution of p(y™N*tY |y ).
Answer: All these derivations appeared in the lecture.

9. Decision theory - 15 pts. Recall the density of the normal distribution N (u, 0?)

i) = <= exp{ — 55— )7}

Suppose we have a classification problem with two classes ¢t € {0,1} and input = is 1-dimensional
satisfying

IL‘|t =0~ N(M0,0%)

zlt =1~ N(u,01)

We assume that, a priori, both classes are equally likely. In each of the below scenarios, mathe-
matically derive

1. the optimal decision rule that minimizes the misclassification rate,
2. the resulting value of the misclassification rate.

Decision rule will be specified by two disjoint regions Rg and R; with R UR; = R. If z € Ry
we classify x as class 0, otherwise class 1. The misclassification rate is given by

p(z € Ro,t =1)+p(z € R1,t =0).

(a) (5 pts) Suppose pg # 1 and o9 = o71.
Answer: We know that in general the optimal decision is to classify z as 1 if N(x;pi,071) >
N (z; po, 00). If 09 = o1 this is equivalent to |z — pi| < |z — pol-

(b) (5 pts) Suppose po = p11 and og = o71.
Answer: In this case the misclassification rate is % irrespective of how we define the decision
regions (as long as they are disjoint and cover the whole R).

(c) (5 pts) Suppose pp = p1 and og # o71.
Answer: We have N(x;u,o01) > N(x;p,00) if and only if

2

1 1
logoy + = (x — p)® < logoo + —(z — p)
207 200



equivalently
11 od
2 0
r—u)N—5——=] < log—.
(=) = s
Suppose that o1 < og then we classify z as 1 if |z — u| is less than some threshold, given
explicitly as

1 1
log p log =
1 1
2 2
91 90

10. Word2vec (15 points). You are working with a dataset of M molecules built from some
combination of any number of 35 atoms. You are interested in creating vector representations of
the atoms to be used in downstream tasks. The data is represented as graphs with atoms being
nodes, and edges corresponding to there being a bond between the two atoms. Describe how you
could train a model to produce embeddings for atoms using this dataset, incorporating the idea
that "atoms A and B are similar if they often bond to the same atoms”. In your answer include
the following:

1. (5 points) What is your model? Answer: Tokenizer is 0 to 34 for each atom parts and
potentially. Training data would be sequences of atoms in some 1d projection. You then
predict either the surrounding atoms or the missing atom depending on CBOW or Skipgram
approach. Embedding W project to hidden embedding layer and W’ matrices back to one
hot encoded vectors.

2. (4 points) What is the loss function? Answer: Cross entropy, Softmax on the output one hot
encoded and substract from the predicted value. Answer: Predicting a sequence of atoms,
where each one hot encoded

3. (4 points) How is the data sampled in the training process? Answer: Real molecules that
exists feed them through in the 1d neighbor projection. If there are multiple bonds pass in
all the pairs, not just across 1d.

4. (2 points) Is negative sampling necessary in this case? Answer: Yes, there are many combi-
nations of atoms in molecules so we want to reduce some computational cost

End of exam

10



	Decision theory (10 points)
	Graphical model analysis (20 points)
	Variational Inference (10 points)
	Monte Carlo Estimators (10 points)
	Bayesian Linear Regression (15 pts)
	Principle Component Analysis (20 points)
	Bayesian Linear Regression (10 points)
	Gaussian Processes - 15 pts
	Decision theory - 15 pts
	Word2vec (15 points)

