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Overview

Summary of the content:
@ Directed Graphical Models
o Markov Random Fields
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Joint distributions

@ The joint distribution of N random variables (x1,x2,...,xx) is a
very general way to encode knowledge about a system.

o Assume z; € {0,1} are binary, then it requires 2 — 1 parameters
to specify the joint distribution

p($1,£L’2, ...,:L‘N).

@ This can be also written as

N
p(z1,2,...,2N) = Hp(acj]acl,a:g, Ce 1)
j=1
for any ordering of the variables, where p(x1|xo) = p(z1).

@ We can exploit dependencies among variables and reduce the
number of parameters! (e.g. Naive Bayes)
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Conditional Independence

o Assume there are N random variables x1, zo, ..., TN.
e Forset A C {1,2,..., N}, we denote by z4 = {z; : i € A}.
Assume A, B, C are disjoint. In particular, we say that

rxalep | zo

if random variables x4, xp are conditionally independent given x¢.
o We have
xg Laplze
iff
» < p(za,zplre) = p(zalze)p(zslzc)

» & p(xalzp,zc) = p(ralze)
» & p(eplra,zc) =p(rslrc)

These are all equivalent!
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Directed Acyclic Graphical Models (Bayes’ Nets)

o A directed acyclic graphical model
(DAG) implies a factorization of the
joint distribution.

o Variables are represented by nodes,
and edges represent dependence.

DAG induces the following factorization of the joint distribution of
random variables x1, 9, ..., TN, We can write:

N

N
p(x1,...,xN) = Hp(a:i|x1, Cey L) = Hp(xi|parents(x,’))
i=1 i=1
where parents(z;) is the set of nodes with edges pointing to ;.
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DAGs and Conditional Independence

In a directed acyclic graphical model (DAGs)

N

pler,aa,. .. an) = [ plaslpavents(z,)
i=1

where parents(z;) is the set of nodes with edges pointing to ;.

e This DAG corresponds to the
following factorization of the
joint distribution:

p(x1, 22, ..., 6) = p(x1)p(z2|21)p(ws|z1)p(Ta|22)p(T5]73)p(26 |22, 25)

Prob Learning (UofT) STA414-Week2 6 /43



Conditional Probability Tables (CPT)

Suppose each z; is a binary random variable. How many parameters
does it take to represent thls joint distribution?

o e For example, 2x2 CPT for the
o x° node x4 corresponds to
0 *_——  p(za|re) requires 2 parameters.

] @ 0 o Each CPT with K; parents

@ P requires 2% parameters. In
MTH @< @ X total, ~ N2™axKi parameters.
Q e ‘. o If we allow all possible
o 1 dependencies (fully-connected
0 xs° DAG), which requires 2V — 1
! parameters.

DAGs reduce the computational burden of making inferences by
introducing conditional independencies.
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Conditional Independence in DAGs

e D-separation (directed-separation) is a notion of connectedness
in DAGs in which two (sets of) variables may or may not be
connected conditioned on a third (set of) variable(s).

@ D-separation implies conditional independence and vice versa.
e Foraset A C {1,2,..., N}, we denote by x4 = {z; : i€ A}.

In particular, we say that
zalap | zo

if every variable in A is d-separated from every variable in B
conditioned on all the variables in C.
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DFS Algorithm for Checking Independence

Let A, B, C be disjoint subsets of {1,2,..., N}.

@ We cycle through each node in A, do a depth-first search to reach
every node in B, and examine the path between them.

o If all of the paths have d-separated end points (i.e., conditionally
independent nodes), then

zalap | xo
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Causal Chain

@ T asB
SR ]

_ p(z,y, Z)
p(Z‘.%‘,y) - p(x’y>

_ p(@)p(ylx)p(zly)
p(@)p(ylr)

=p(zly) X and Z d-separated given Y.

image credit Abbeel & Klein
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Common Cause

Where we think of y as the ”common cause” of the two independent
effects z and z.

Y Y Y: Project
due

7/

%@“@

=

X: Forums FHI

busy Z: Lab full

X Z X

Question: When we condition on y, are x and z independent?
Answer: From the graph, we get

plaaly) = PEEL  POREDIREI) 1)) yes
image credit Abbeel & Klein
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Explaining Away (Common Effect)

X: Raining Y: Ballgame

X VA X Z YW @
R - @ @
[;g
® g

7

Z: Traffic Yo )

Y 4 aal
Question: When we condition on y, are x and z independent?

Answer: From the graph, we get

p(x)p(z)p(y|z, 2)

p(zlz,y) =
’ p(@)p(ylz)
p(2)p(ylz, 2)
== #p(zly)
p(ylz)
image credit Abbeel & Klein
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How to check Conditional Independence?

An algorithm for determining conditional independence in a DAG can
be constructed based on the rules we discussed.

e To check if x g Lz p|xc we need to check if every variable in A is
d-seperated from every variable in B conditioned on all variables
in C.

@ In other words, given that all the nodes in x¢ are ”clamped”,
when we ”wiggle” nodes x4 can we change any of the nodes in g7
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Algorithm

In general, the algorithm works as follows:
1. Shade all nodes x¢ (these are observed)
2. Try to reach from node x4 to node zp (or vice versa)

3. ... according to the rules we came up with

» - If we can reach any of the nodes in xp from x4 (or x4 from xp)
then x4 Azplre
» - Otherwise x4 lzp|zc
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Rules for active/inactive triples

X Y VA X Y VA
OO0 O—-0—-0O

Inactive path Acti;;)aih

Y Y
B o Arrows: paths we can move
7N A
along
e Arrows with bars: paths that

Inactive path Active path

X z X z are blocked
X Active path Z X Inactive path Z ] Pairs are boundary cases.

N7, RANVAS

X Y X Y X Y X Y
e > > -

Inactive path Active path Active path Inactive path
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Example [: Explaining Away

If y or any of its descendants is shaded, we can travel through.
X Z X Z
N, / /
CK‘\o/ %@\/
Y Y

Prob Learning (UofT) STA414-Week2 16 /43




Example II: Large DAG

In the following graph, is z1 Lxg|{x2, x3}7
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Example II: Solution

Yes.
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Example III:

In the following graph, is xo Lzs|{z1,z6}?

X,
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Example III:

No.

X,
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Summary

@ DAGs are great for encoding conditional independencies.

They can reduce the number of parameters significantly.

Conditional independence between two sets of variables on a DAG
can be found using the Bayes ball method.

Next lecture: Markov Random Fields.
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Are DAGMs always useful?

4\71 - 4\72 @ 4\74 —> 4\},
| ' T ) | @ Each node is conditionally independent of

X X »@ X, its non-descendants given its parents

| R

Xy = X1 > \D—» Xu— X5 {X; L non-desc(X;) | parents(X;)} Vi.
V V V V

o For some problems, it is not clear how to
choose the edge directions in DAGMs.
Figure : Causal MRF or a Markov mesh

X1 = Xir = Xig = Xjg = Xy

Markov blanket (mb): the set of nodes that makes X; conditionally
independent of all the other nodes.

In our example: mb(Xg) = {Xg,X4,X7,X9,X12,X13}.

One would expect X4 and Xi2 not to be in the Markov blanket
mb(Xg), especially given X5 and X14 are not.
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Markov Random Fields

e Undirected graphical models (aka Markov random fields
(MRFs)) are models with dependencies described by an
undirected graph.

@ The nodes in the graph represent random variables. However, in
contrast to DAGMs, edges represent probabilistic interactions
between neighbors (as opposed to conditional dependence).

X, — X, X, — X
| |
&~ (O x.
| |
Xu — Xpo @ Xy — X

A\yl(i - A\VIT - ‘\'lb‘ - AYIQ - 4\720

Prob Learning (UofT) STA414-Week2 23 /43



Cliques

A clique is a subset of nodes such that every two vertices in the subset
are connected by an edge.

A maximal clique is a clique that cannot be extended by including
one more adjacent vertex.
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Distributions Induced by MRF's

Let x = (x1, ..., Tm) be the set of all random variables in our graph G.
Let C be the set of all maximal cliques of G.

The distribution p of X factorizes with respect to G if

p(x) o ] velwe)

ceC

for some nonnegative potential functions ¥ ¢, where zo = (z;)iec-

The MRF on G represents the distributions that factorize wrt G. J

The factored structure of the distribution makes it possible to more
efficiently do the sums/integrals and is a form of dimension reduction.
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Hammersley-Clifford Theorem

If p(x) > 0 for all «, the following statements are equivalent:

e p factorizes according to G, that is,

px) o ][] velze)
ceC
for some nonnegative potential functions ¥¢.
e Global Markov Properties: X4 Xp|Xg if the sets A and B
are separated by S in G (every path from A to B crosses S).
In particular,
e If i, j are not connected by an edge then X; L X;| X es.
e The Markov blanket of X; is given by its neighbors in G.
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Example:

e How many maximal cliques are there?
e What is the underlying factorization?

e What are the induced conditional independence statements?
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Example:

Lets see how to factorize the undirected graph of our running example:

p(x) o< P123(z1, 22, 23)0235(x2, 23, 25) V2.4 5(x2, T4, T5)

X 356(23, T5, T6)Va567(T4, T5, L6, T7)
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Example:

e.g. (X1,X2) L (X6, X7) | (X3, X4, X5)
X1 1L X5 (X2, X3)
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Image MRF

X, — X, @ Xy — X5

| T

O -
|

X1 — Xpp @ Xy — X5

Xig — X7 — Xig — X9 — Xy
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Not all MRF's can be represented as DAGMSs

Take the following MRF for example (a) and our attempts at encoding
this as a DAGM (b, c).

O

(a) (b) (c)

e Two conditional independencies in (a):
» 1. ALC|D,B 2. BLD|A,C

e In (b), we have the first independence, but not the second.

e In (c), we have the first independency, but not the second. Also, B
and D are marginally independent.
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Not all DAGMs can be represented as MRFs

Not all DAGMs can be represented as MRFs.
E.g. explaining away:

An undirected model is unable to capture the marginal independence,
X LY that holds at the same time as X YY|Z.
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MRF's as Exponential Families

o Consider a parametric family of factorized distributions

p(z|6) = de)cl;lcwc(l’d@c)v 0= (0c)cec.

@ We can write this in an exponential form:

p(xl0) = exp { S logvo(aclfc) - log 7(6) }
cec —A0)

e Suppose the potentials have a log-linear form

log o (zclbc) = 04 ¢olac)

we get the exponential family

p(x|0) = exp{ Z ngSc(a:c) —log Z(0) }
cec Ty
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MRF's as Exponential Families

Question: When log Yo (xc|0c) = Hg do(ze)?

Finite discrete case:

o If X is finite discrete then x¢ takes a finite number of values and
so log ¥ takes a finite number of values.

e Take O as all these possible values, and let ¢ (z¢) is a vector 1
on the entry correspond to x¢ and zeros otherwise.

o Then log Yo (zc|0c) = 0L ¢c(zc) as required.

Multivariate Gaussian case will be covered later in the lecture.

We can find the expectation of the C-th feature

0log Z(0)

P00 El¢c(Xc)]-
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Representing potentials

If the variables are finite discrete, we can represent the potential
functions as tables of (non-negative) numbers.

e.f. consider a 4-cycle and binary random variables

1
p(x1, T2, 23, T4) = 21111,2(:81,$2)¢2,3(SE2,$3)¢3,4(l‘379C4W1,4(901,$4)

1 2 P1,2(x1, 2) P2,3(x2,23) P3,4(x3,24) P1,4(z1,24)
T To To T3 x3 T4 T Tq
0 0 30 0 0 100 0 0 1 0 0 100
0 1 5 0 1 1 0 1 100 0 1 1
1 0 1 1 0 1 1 0 100 1 0 1
4 3 1 1 10 1 1 100 1 1 1 1 1 100
These potentials are not probabilities since we ignored the
normalization constant!
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Example: Ising model

o The Ising model is an MRF that is
used to model magnets.

@ The nodes variables are spins, i.e., we
use s € {—1,+1}.

@ Define the pairwise clique potentials as

Yst(ws, 1) = elHTo"t,

where Jg; is the coupling strength between nodes s and t.

o Y1, —1) = da(L,1) = €’ a(=1,1) = vhur(1, ~1) = e
e If two nodes are not connected set Jy = 0.
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I[sing model

We might want to add node potentials as well

Ps(xg) = ePeTs

The overall distribution becomes

OCstt Tsy Tt st -Ts —exp{zjt-%'s-rt‘FZb -Ts}'

s~t s~t

If Js; > 0 the model promotes same spins on neighboring spins.

o Hammersley-Clifford theorem: J;; = 0 then X; 1 X ;| Xyegt.
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protein network social network

" Applications
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connectome of Undirected finance
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Multivariate Gaussian distribution

Univariate Gaussian: f(z; u,02) = 217.'0' ("Xp(—#(.l‘ —1)?).

Recall: Multivariate normal distribution, X = (Xi,...,X,,):
Let 4 € R™ and ¥ symmetric positive definite m x m matrix. We write

X ~ Np(, X) if the density of the vector X is

J(@;1,5) = G (det £) 72 exp (—5(x — )

Positive definite: Yu # 0 u'Xu > 0.

Moments:
e mean vector: EX = p,
e covariance: var(X) = X.
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Recall: Marginal and conditional distributions

Split X into two blocks X = (X 4, Xp). Denote

2AA EAB]
YBa XBB|’

p=(pa,pp)  and EZ[

Marginal distribution
X4~ N(pa,Xaa)

Conditional distribution

XualXp =2~ N (pa+2aS5p(@s — 118), a4 — SaBE5pEB4)
@ Note that the conditional covariance is constant.
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Some other properties

Linear transformations:
A e R™P for m <pand X ~ Ny(u,%) then AX ~ Ny, (Ap, ASAT).

Conditional independence:
o X;1Xj; if and only if 3;; = 0.

o X;1X;|Xc ifand onlyif X;; — Ei,CEE}cEC,j =0

o Let R=V\{i,j}. The following are equivalent:
> leXJ‘XR
> Lij — SirER RER; =0
> (Z71)i; =0
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Gaussian Graphical models

Denote K = Y71 then

p(x|p, X) o« He 2KSS Ts—fs) He Kst(ws—ps)(@e—pt)
s<t

Important interpretation: K;; = 0 if and only if X; 1 X ;| Xrest.

—

S v € ¢

12 3 45

Show that this is an exponential family.
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Summary

Graphical models:

Directed graphical models

°
o .... and the conditional independence they induce

Undirected graphical models

Next lecture: exact inference.
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