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Overview

Summary of the content:

Directed Graphical Models

Markov Random Fields
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Joint distributions

The joint distribution of N random variables (x1, x2, ..., xN ) is a
very general way to encode knowledge about a system.

Assume xi ∈ {0, 1} are binary, then it requires 2N − 1 parameters
to specify the joint distribution

p(x1, x2, ..., xN ).

This can be also written as

p(x1, x2, . . . , xN ) =

N∏
j=1

p(xj |x1, x2, . . . , xj−1)

for any ordering of the variables, where p(x1|x0) = p(x1).

We can exploit dependencies among variables and reduce the
number of parameters! (e.g. Naive Bayes)
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Conditional Independence

Assume there are N random variables x1, x2, ..., xN .

For set A ⊂ {1, 2, ..., N}, we denote by xA = {xi : i ∈ A}.
Assume A,B,C are disjoint. In particular, we say that

xA⊥xB | xC

if random variables xA, xB are conditionally independent given xC .

We have
xA ⊥ xB|xC

iff
I ⇔ p(xA, xB |xC) = p(xA|xC)p(xB |xC)
I ⇔ p(xA|xB , xC) = p(xA|xC)
I ⇔ p(xB |xA, xC) = p(xB |xC)

These are all equivalent!
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Directed Acyclic Graphical Models (Bayes’ Nets)

A directed acyclic graphical model
(DAG) implies a factorization of the
joint distribution.

Variables are represented by nodes,
and edges represent dependence.

DAG induces the following factorization of the joint distribution of
random variables x1, x2, . . . , xN , we can write:

p(x1, . . . , xN ) =

N∏
i=1

p(xi|x1, . . . , xi−1) =

N∏
i=1

p(xi|parents(xi))

where parents(xi) is the set of nodes with edges pointing to xi.
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DAGs and Conditional Independence

In a directed acyclic graphical model (DAGs)

p(x1, x2, . . . , xN ) =

N∏
i=1

p(xi|parents(xi))

where parents(xi) is the set of nodes with edges pointing to xi.

This DAG corresponds to the
following factorization of the
joint distribution:

p(x1, x2, ..., x6) = p(x1)p(x2|x1)p(x3|x1)p(x4|x2)p(x5|x3)p(x6|x2, x5)
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Conditional Probability Tables (CPT)

Suppose each xi is a binary random variable. How many parameters
does it take to represent this joint distribution?

For example, 2x2 CPT for the
node x4 corresponds to
p(x4|x2) requires 2 parameters.

Each CPT with Ki parents
requires 2Ki parameters. In
total, ∼ N2maxKi parameters.

If we allow all possible
dependencies (fully-connected
DAG), which requires 2N − 1
parameters.

DAGs reduce the computational burden of making inferences by
introducing conditional independencies.
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Conditional Independence in DAGs

D-separation (directed-separation) is a notion of connectedness
in DAGs in which two (sets of) variables may or may not be
connected conditioned on a third (set of) variable(s).

D-separation implies conditional independence and vice versa.

For a set A ⊂ {1, 2, ..., N}, we denote by xA = {xi : i ∈ A}.
In particular, we say that

xA⊥xB | xC
if every variable in A is d-separated from every variable in B
conditioned on all the variables in C.
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DFS Algorithm for Checking Independence

Let A,B,C be disjoint subsets of {1, 2, ..., N}.
We cycle through each node in A, do a depth-first search to reach
every node in B, and examine the path between them.

If all of the paths have d-separated end points (i.e., conditionally
independent nodes), then

xA⊥xB | xC
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Causal Chain

p(z|x, y) =
p(x, y, z)

p(x, y)

=
p(x)p(y|x)p(z|y)

p(x)p(y|x)

= p(z|y) X and Z d-separated given Y .

image credit Abbeel & Klein
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Common Cause

Where we think of y as the ”common cause” of the two independent
effects x and z.

Question: When we condition on y, are x and z independent?
Answer: From the graph, we get

p(x, z|y) =
p(x, y, z)

p(y)
=
p(y)p(x|y)p(z|y)

p(y)
= p(x|y)p(z|y) yes!

image credit Abbeel & Klein

Prob Learning (UofT) STA414-Week2 11 / 43



Explaining Away (Common Effect)

Question: When we condition on y, are x and z independent?
Answer: From the graph, we get

p(z|x, y) =
p(x)p(z)p(y|x, z)

p(x)p(y|x)

=
p(z)p(y|x, z)

p(y|x)
6= p(z|y)

image credit Abbeel & Klein
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How to check Conditional Independence?

An algorithm for determining conditional independence in a DAG can
be constructed based on the rules we discussed.

To check if xA⊥xB|xC we need to check if every variable in A is
d-seperated from every variable in B conditioned on all variables
in C.

In other words, given that all the nodes in xC are ”clamped”,
when we ”wiggle” nodes xA can we change any of the nodes in xB?
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Algorithm

In general, the algorithm works as follows:

1. Shade all nodes xC (these are observed)

2. Try to reach from node xA to node xB (or vice versa)

3. ... according to the rules we came up with
I - If we can reach any of the nodes in xB from xA (or xA from xB)

then xA 6 ⊥xB |xC
I - Otherwise xA⊥xB |xC
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Rules for active/inactive triples

Arrows: paths we can move
along

Arrows with bars: paths that
are blocked

Pairs are boundary cases.
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Example I: Explaining Away

If y or any of its descendants is shaded, we can travel through.
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Example II: Large DAG

In the following graph, is x1⊥x6|{x2, x3}?
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Example II: Solution

Yes.
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Example III:

In the following graph, is x2⊥x3|{x1, x6}?
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Example III:

No.
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Summary

DAGs are great for encoding conditional independencies.

They can reduce the number of parameters significantly.

Conditional independence between two sets of variables on a DAG
can be found using the Bayes ball method.

Next lecture: Markov Random Fields.
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Are DAGMs always useful?

Each node is conditionally independent of
its non-descendants given its parents

{Xi ⊥ non-desc(Xi) | parents(Xi)} ∀i.

For some problems, it is not clear how to
choose the edge directions in DAGMs.

Markov blanket (mb): the set of nodes that makes Xi conditionally
independent of all the other nodes.

In our example: mb(X8) = {X3, X4, X7, X9, X12, X13}.

One would expect X4 and X12 not to be in the Markov blanket
mb(X8), especially given X2 and X14 are not.
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Markov Random Fields

Undirected graphical models (aka Markov random fields
(MRFs)) are models with dependencies described by an
undirected graph.

The nodes in the graph represent random variables. However, in
contrast to DAGMs, edges represent probabilistic interactions
between neighbors (as opposed to conditional dependence).
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Cliques

A clique is a subset of nodes such that every two vertices in the subset
are connected by an edge.

A maximal clique is a clique that cannot be extended by including
one more adjacent vertex.
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Distributions Induced by MRFs

Let x = (x1, ..., xm) be the set of all random variables in our graph G.

Let C be the set of all maximal cliques of G.

The distribution p of X factorizes with respect to G if

p(x) ∝
∏
C∈C

ψC(xC)

for some nonnegative potential functions ψC , where xC = (xi)i∈C .

The MRF on G represents the distributions that factorize wrt G.

The factored structure of the distribution makes it possible to more
efficiently do the sums/integrals and is a form of dimension reduction.
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Hammersley-Clifford Theorem

If p(x) > 0 for all x, the following statements are equivalent:

p factorizes according to G, that is,

p(x) ∝
∏
C∈C

ψC(xC)

for some nonnegative potential functions ψC .

Global Markov Properties: XA⊥XB|XS if the sets A and B
are separated by S in G (every path from A to B crosses S).

In particular,

If i, j are not connected by an edge then Xi⊥Xj |Xrest.

The Markov blanket of Xi is given by its neighbors in G.
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Example:

How many maximal cliques are there?

What is the underlying factorization?

What are the induced conditional independence statements?
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Example:

Lets see how to factorize the undirected graph of our running example:

p(x) ∝ ψ1,2,3(x1, x2, x3)ψ2,3,5(x2, x3, x5)ψ2,4,5(x2, x4, x5)

× ψ3,5,6(x3, x5, x6)ψ4,5,6,7(x4, x5, x6, x7)
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Example:

e.g. (X1, X2) ⊥ (X6, X7)
∣∣ (X3, X4, X5)

X1 ⊥ X5 | (X2, X3)
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Image MRF
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Not all MRFs can be represented as DAGMs

Take the following MRF for example (a) and our attempts at encoding
this as a DAGM (b, c).

Two conditional independencies in (a):
I 1. A⊥C|D,B 2. B⊥D|A,C

In (b), we have the first independence, but not the second.

In (c), we have the first independency, but not the second. Also, B
and D are marginally independent.
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Not all DAGMs can be represented as MRFs

Not all DAGMs can be represented as MRFs.
E.g. explaining away:

An undirected model is unable to capture the marginal independence,
X⊥Y that holds at the same time as X 6⊥Y |Z.
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MRFs as Exponential Families

Consider a parametric family of factorized distributions

p(x|θ) =
1

Z(θ)

∏
C∈C

ψC(xC |θC), θ = (θC)C∈C .

We can write this in an exponential form:

p(x|θ) = exp
{∑
C∈C

logψC(xC |θC)− logZ(θ)︸ ︷︷ ︸
=A(θ)

}

Suppose the potentials have a log-linear form

logψC(xC |θC) = θ>C φC(xC)

we get the exponential family

p(x|θ) = exp
{∑
C∈C

θ>CφC(xC)− logZ(θ)︸ ︷︷ ︸
=A(θ)

}
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MRFs as Exponential Families

Question: When logψC(xC |θC) = θ>C φC(xC)?

Finite discrete case:

If X is finite discrete then xC takes a finite number of values and
so logψC takes a finite number of values.

Take θC as all these possible values, and let φC(xC) is a vector 1
on the entry correspond to xC and zeros otherwise.

Then logψC(xC |θC) = θ>CφC(xC) as required.

Multivariate Gaussian case will be covered later in the lecture.

We can find the expectation of the C-th feature

∂ logZ(θ)

∂θC
= E[φC(XC)].
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Representing potentials

If the variables are finite discrete, we can represent the potential
functions as tables of (non-negative) numbers.

e.f. consider a 4-cycle and binary random variables

p(x1, x2, x3, x4) =
1

Z
ψ1,2(x1, x2)ψ2,3(x2, x3)ψ3,4(x3, x4)ψ1,4(x1, x4)

4 3

21 ψ1,2(x1, x2) ψ2,3(x2, x3) ψ3,4(x3, x4) ψ1,4(x1, x4)

x1 x2 x2 x3 x3 x4 x1 x4
0 0 30 0 0 100 0 0 1 0 0 100
0 1 5 0 1 1 0 1 100 0 1 1
1 0 1 1 0 1 1 0 100 1 0 1
1 1 10 1 1 100 1 1 1 1 1 100

These potentials are not probabilities since we ignored the
normalization constant!
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Example: Ising model

The Ising model is an MRF that is
used to model magnets.

The nodes variables are spins, i.e., we
use xs ∈ {−1,+1}.

Define the pairwise clique potentials as

ψst(xs, xt) = eJstxsxt .

where Jst is the coupling strength between nodes s and t.

ψst(−1,−1) = ψst(1, 1) = eJst ; ψst(−1, 1) = ψst(1,−1) = e−Jst

If two nodes are not connected set Jst = 0.
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Ising model

We might want to add node potentials as well

ψs(xs) = ebsxs

The overall distribution becomes

p(x) ∝
∏
s∼t

ψst(xs, xt)
∏
s

ψs(xs) = exp
{∑
s∼t

Jstxsxt +
∑
s

bsxs

}
.

If Jst > 0 the model promotes same spins on neighboring spins.

Hammersley-Clifford theorem: Jij = 0 then Xi⊥Xj |Xrest.

Prob Learning (UofT) STA414-Week2 37 / 43



Prob Learning (UofT) STA414-Week2 38 / 43



Multivariate Gaussian distribution

Univariate Gaussian: f(x;µ, σ2) = 1√
2πσ

exp(− 1
2σ2 (x− µ)2).

Recall: Multivariate normal distribution, X = (X1, . . . , Xm):

Let µ ∈ Rm and Σ symmetric positive definite m×m matrix. We write
X ∼ Nm(µ,Σ) if the density of the vector X is

f(x;µ,Σ) = 1
(2π)m/2

(det Σ)−1/2 exp
(
−1

2(x− µ)TΣ−1(x− µ)
)
.

Positive definite: ∀u 6= 0 u>Σu > 0.

Moments:

mean vector: EX = µ,

covariance: var(X) = Σ.
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Recall: Marginal and conditional distributions

Split X into two blocks X = (XA, XB). Denote

µ = (µA, µB) and Σ =

[
ΣAA ΣAB

ΣBA ΣBB

]
.

Marginal distribution

XA ∼ N(µA,ΣAA)

Conditional distribution

XA|XB = xB ∼ N
(
µA + ΣABΣ−1BB(xB − µB),ΣAA − ΣABΣ−1BBΣBA

)
Note that the conditional covariance is constant.
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Some other properties

Linear transformations:

A ∈ Rm×p for m ≤ p and X ∼ Np(µ,Σ) then AX ∼ Nm(Aµ,AΣAT ).

Conditional independence:

Xi⊥Xj if and only if Σij = 0.

Xi⊥Xj |XC if and only if Σij − Σi,CΣ−1C,CΣC,j = 0

Let R = V \ {i, j}. The following are equivalent:
I Xi⊥Xj |XR

I Σij − Σi,RΣ−1
R,RΣR,j = 0

I (Σ−1)ij = 0
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Gaussian Graphical models

Denote K = Σ−1 then

p(x|µ,Σ) ∝
∏
s

e−
1
2Kss(xs−µs)

2∏
s<t

e−Kst(xs−µs)(xt−µt).

Important interpretation: Kij = 0 if and only if Xi⊥Xj |Xrest.

Show that this is an exponential family.
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Summary

Graphical models:

Directed graphical models

Undirected graphical models

.... and the conditional independence they induce

Next lecture: exact inference.
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