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Overview

Today:

Statistical decision theory

Graphical Models
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Decision making

We develop a small amount of theory that provides a framework for
understanding many of the models we consider.

Suppose we have a real-valued input vector x and a corresponding
target (output) value c with joint probability distribution: p(x, c).

Our goal is to predict the output label c given a new value for x.

For now, we focus on classification so c is a categorical variable,
but the same reasoning applies to regression (continuous target).

The joint probability distribution p(x, c) provides a complete summary
of uncertainties associated with these random variables.

Inference

Estimating p(x, c) from training data is an example of inference.
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Example: Cancer screening from chest X-ray

Based on the X-ray image, we would like determine whether the
patient has cancer or not.

The input vector x is pixel intensities, and the output c represents
the presence of cancer, class C1, or absence of cancer, class C2.

C1 cancer present

C2 cancer absent

We can use an ”arbitrary” encoding for these classes C1 and C2, e.g.
choose c to be binary: c = 0 correspond to class C1, and c = 1
corresponds to C2.
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Inference

Inference Problem

Let’s assume we estimated the joint distribution p(x, c) using some ML
method. In the end, we must make a decision of whether to give
treatment to the patient or not.

Given a new X-ray image, our goal is to decide which of the two
classes that image should be assigned to. We could compute
conditional probabilities of the two classes, given the input image:

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
Bayes’ rule.

If we minimize the expected number of mistakes, we can minimize
the probability of assigning x to the wrong class.
This suggests we minimize the misclassification rate.
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Misclassification rate

Goal

Make as few misclassifications as possible. We need a rule that assigns
each value of x to one of the available classes.

Divide the input space into regions Rk (decision regions) such that all
points in Rk are assigned to class Ck.

Red + green regions: input belongs
to class C2, but is assigned to C1.
Blue region: input belongs to class
C1, but is assigned to C2.

p(mistake) =p(x ∈ R1, C2) + p(x ∈ R2, C1)

=

∫
R1

p(x, C2)dx+

∫
R2

p(x, C1)dx
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Misclassification rate

Compare the following two decision rules:

Blue + green area is always included in the p(mistake).

Therefore, we aim to reduce the red area by moving the threshold
x̂ to x0, which turns out to be optimal in this case.
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Misclassification error

Misclassification error:

p(mistake) =

∫
R1

p(x, C2)dx︸ ︷︷ ︸
red+green

+

∫
R2

p(x, C1)dx︸ ︷︷ ︸
blue

and the decision regions R1 and R2 are disjoint.

Therefore, for a particular input x, if p(x, C1) > p(x, C2), then we
assign x to class C1. I.e. R1 = {x : p(x, C1) > p(x, C2)}.

Minimizing misclassification

Since p(x, Ck) = p(Ck|x)p(x), in order to minimize the probability of
making mistake, we assign each x to the class for which the posterior
probability p(Ck|x) is largest. This minimizes the misclassification rate.
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Expected loss

How realistic is it to minimize the misclassification rate?

We want a loss function to measure the loss incurred by taking
any of the available decisions.

Suppose that for x, the true class is Ck, but we assign x to class Cj
and incur loss of Lkj ((k, j)-th element of a loss matrix).

Consider medical diagnosis example: example of a loss matrix:

Thus the expected loss is given by

E[L] =
∑
k

∑
j

∫
Rj

Lkj p(x, Ck)dx
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New goal: Minimize expected loss

New objective:

Choose regions Rj as to minimize expected loss.

In the above figure, the blue region corresponds to L12: the sample
comes from class C1 but we classified as C2.
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Minimize expected loss

Therefore, we want to minimize

E[L] =
∑
k

∑
j

∫
Rj

Lkj p(x, Ck)dx

=
∑
j

∫
Rj

∑
k

Lkj p(x, Ck)dx.

Define gj(x) =
∑

k Lkj p(x, Ck) and notice that gj(x) ≥ 0. Then, the
expected loss is equal to

E[L] =
∑
j

∫
Rj

gj(x)dx

Thus, minimizing E[L] is equivalent to choosing

Rj = {x : gj(x) < gi(x) for all i 6= j}.
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Simplifying further

We can also use the product rule p(x, C1) = p(C1|x)p(x) and reduce the
problem to:

Discriminant rules:

Find regions Rj such that the following is minimized:∑
k

Lkj p(Ck|x).

That is

Rj =
{
x :

∑
k

Lkj p(Ck|x) <
∑
k

Lki p(Ck|x) for all i 6= j
}
.
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Reject option

For the regions where we are relatively uncertain about class
membership, we don’t have to make a decision.

Here, notice that we have a threshold θ and the conditional class
probabilities fall below this threshold, we refuse to make a decision.
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Loss functions for regression

Now we consider an input/target setup (x, t) where the target
(output) is continuous t ∈ R, and the joint density is p(x, t).

Instead of decision regions, we aim to find a regression function
y(x) ≈ t which maps inputs to the outputs.

Consider the squared loss function L between y(x) and t to assess
the quality of our estimate L(y(x), t) = (y(x)− t)2.

Goal:

What is the best function y(x) that minimizes the expected loss?

E[L] =

∫ ∫
L(y(x), t)p(x, t)dxdt.
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Minimizing expected loss: Best regression function

We add and subtract E[t|x] and write

E[L] =
∫ ∫

(y(x)− t)2p(x, t)dxdt

=

∫ ∫
(y(x)− E[t|x] + E[t|x]− t)2p(x, t)dxdt

=

∫ ∫
(y(x)− E[t|x])2p(x, t)dxdt+

∫ ∫
(E[t|x]− t)2p(x, t)dxdt

+ 2

∫ ∫
(y(x)− E[t|x])(E[t|x]− t)p(x, t)dxdt

The last term is zero since∫ ∫
(y(x)− E[t|x])(E[t|x]− t)p(x, t)dxdt

=

∫ ∫
(y(x)− E[t|x])(E[t|x]− t)p(t|x)p(x)dxdt

=

∫
(y(x)− E[t|x])

{∫
(E[t|x]− t)p(t|x)dt︸ ︷︷ ︸

=0

}
p(x)dx = 0
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Best regression function

We showed that the expected loss is given by the sum of two
non-negative terms

E[L] =

∫ ∫
(y(x)−E[t|x])2p(x, t)dxdt+

∫ ∫
(E[t|x]−t)2p(x, t)dxdt.

The second term does not depend on y(x) thus choosing the best
regression function y(x) is equivalent to minimizing the first term
on the right hand side.

Since that term is always non-negative, we can make it zero by
choosing

y(x) = E[t|x].

The second term is the expectation of the conditional variance of
t|x. It represents the intrinsic variability of the target data and
can be regarded as noise.
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Summary: Decision making

Depending on the application, one needs to choose an appropriate
loss function.

Loss function can significantly change the optimal decision rule.

One can always use the reject option and not make a decision.

In case of regression, one can find the optimal map between x and
t if one knows the conditional distribution t|x. The optimal map
corresponds to the conditional expectation E[t|x].
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Next:

Graphical models notation

Conditional independence

Bayes Ball
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Joint distributions

The joint distribution of N random variables (x1, x2, ..., xN ) is a
very general way to encode knowledge about a system.

Assume xi ∈ {0, 1} are binary, then it requires 2N − 1 parameters
to specify the joint distribution

p(x1, x2, ..., xN ).

This can be also written as

p(x1, x2, . . . , xN ) =

N∏
j=1

p(xj |x1, x2, . . . , xj−1)

for any ordering of the variables, where p(x1|x0) = p(x1).

We can exploit dependencies among variables and reduce the
number of parameters! (e.g. Naive Bayes)
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Conditional Independence

Assume there are N random variables x1, x2, ..., xN .

For set A ⊂ {1, 2, ..., N}, we denote by xA = {xi : i ∈ A}.
Assume A,B,C are disjoint. In particular, we say that

xA⊥xB | xC

if random variables xA, xB are conditionally independent given xC .

We have
xA ⊥ xB|xC

iff
I ⇔ p(xA, xB |xC) = p(xA|xC)p(xB |xC)
I ⇔ p(xA|xB , xC) = p(xA|xC)
I ⇔ p(xB |xA, xC) = p(xB |xC)

These are all equivalent!
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Directed Acyclic Graphical Models (Bayes’ Nets)

A directed acyclic graphical model
(DAG) implies a factorization of the
joint distribution.

Variables are represented by nodes,
and edges represent dependence.

DAG induces the following factorization of the joint distribution of
random variables x1, x2, . . . , xN , we can write:

p(x1, . . . , xN ) =

N∏
i=1

p(xi|x1, . . . , xi−1) =

N∏
i=1

p(xi|parents(xi))

where parents(xi) is the set of nodes with edges pointing to xi.
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DAGs and Conditional Independence

In a directed acyclic graphical model (DAGs)

p(x1, x2, . . . , xN ) =

N∏
i=1

p(xi|parents(xi))

where parents(xi) is the set of nodes with edges pointing to xi.

This DAG corresponds to the
following factorization of the
joint distribution:

p(x1, x2, ..., x6) = p(x1)p(x2|x1)p(x3|x1)p(x4|x2)p(x5|x3)p(x6|x2, x5)
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Conditional Probability Tables (CPT)

Suppose each xi is a binary random variable. How many parameters
does it take to represent this joint distribution?

For example, 2x2 CPT for the
node x4 corresponds to
p(x4|x2) requires 2 parameters.

Each CPT with Ki parents
requires 2Ki parameters. In
total, ∼ N2maxKi parameters.

If we allow all possible
dependencies (fully-connected
DAG), which requires 2N − 1
parameters.

DAGs reduce the computational burden of making inferences by
introducing conditional independencies.
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Conditional Independence in DAGs

D-separation (directed-separation) is a notion of connectedness
in DAGs in which two (sets of) variables may or may not be
connected conditioned on a third (set of) variable(s).

D-separation implies conditional independence and vice versa.

For a set A ⊂ {1, 2, ..., N}, we denote by xA = {xi : i ∈ A}.
In particular, we say that

xA⊥xB | xC
if every variable in A is d-separated from every variable in B
conditioned on all the variables in C.
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DFS Algorithm for Checking Independence

Let A,B,C be disjoint subsets of {1, 2, ..., N}.
We cycle through each node in A, do a depth-first search to reach
every node in B, and examine the path between them.

If all of the paths have d-separated end points (i.e., conditionally
independent nodes), then

xA⊥xB | xC
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Causal Chain

p(z|x, y) =
p(x, y, z)

p(x, y)

=
p(x)p(y|x)p(z|y)

p(x)p(y|x)

= p(z|y) X and Z d-separated given Y .

image credit Abbeel & Klein
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Common Cause

Where we think of y as the ”common cause” of the two independent
effects x and z.

Question: When we condition on y, are x and z independent?
Answer: From the graph, we get

p(x, z|y) =
p(x, y, z)

p(y)
=
p(y)p(x|y)p(z|y)

p(y)
= p(x|y)p(z|y) yes!

image credit Abbeel & Klein
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Explaining Away (Common Effect)

Question: When we condition on y, are x and z independent?
Answer: From the graph, we get

p(z|x, y) =
p(x)p(z)p(y|x, z)

p(x)p(y|x)

=
p(z)p(y|x, z)

p(y|x)
6= p(z|y)

image credit Abbeel & Klein
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Bayes Ball Algorithm

An algorithm for determining conditional independence in a DAG is
the Bayes Ball algorithm.

To check if xA⊥xB|xC we need to check if every variable in A is
d-seperated from every variable in B conditioned on all variables
in C.

In other words, given that all the nodes in xC are ”clamped”,
when we ”wiggle” nodes xA can we change any of the nodes in xB?
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Bayes Ball: Rules

In general, the algorithm works as follows:

1. Shade all nodes xC (these are observed)

2. Place ”balls” at each node in xA (or xB)

3. Let the ”balls” ”bounce” around according to some rules
I - If any of the balls reach any of the nodes in xB from xA (or xA

from xB) then xA 6 ⊥xB |xC
I - Otherwise xA⊥xB |xC
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Bayes Ball: Rules for active/inactive triples

Arrows: paths the balls can
travel

Arrows with bars: paths the
balls cannot travel

Notice balls can travel
opposite to edge directions!

Pairs are boundary cases.
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Example I: Explaining Away

If y or any of its descendants is shaded, the ball passes through.
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Example II: Large DAG

In the following graph, is x1⊥x6|{x2, x3}?
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Example II: Solution

Yes, by the Bayes Ball algorithm.
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Example III:

In the following graph, is x2⊥x3|{x1, x6}?
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Example III:

No, by the Bayes Balls algorithm.
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Summary

DAGs are great for encoding conditional independencies.

They can reduce the number of parameters significantly.

Conditional independence between two sets of variables on a DAG
can be found using the Bayes ball method.

Next lecture: Markov Random Fields.
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