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Today’s lecture

Summary of the content:

Exact inference on graphical models

Variable elimination

Intro to approximate inference

Some announcements:

Assignment 1 is released this week.

TA office hours next week.
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Example

This describes a probability
distribution over 8 variables.

In general, we are only interested in
the conditional distribution of few.

For example, ..

What is the probability of a getting a job given you have 3.1 GPA?
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Inference as Conditional Distribution

We explore inference in probabilistic graphical models (PGMs).

− xE = The observed evidence

− xF = The unobserved variable we want to infer

− xR = x− {xF , xE} = Remaining variables, extraneous to query.

Focus on computing the conditional probability distribution

p(xF |xE) =
p(xF , xE)

p(xE)
=

p(xF , xE)∑
xF
p(xF , xE)

for which, we marginalize out these extraneous variables, focussing
on the joint distribution over evidence and subject of inference:

p(xF , xE) =
∑
xR

p(xF , xE , xR)
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Variable elimination

Order in which we marginalize affects the computational cost!

Our main tool is variable elimination:

A simple and general exact inference algorithm in any
probabilistic graphical model (DAGMs or MRFs).

Computational complexity depends on the graph structure.

Dynamic programming avoids enumerating all variable
assignments.
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Example: Simple chain

Lets start with the example of a simple chain

A→ B → C → D

where we want to compute p(D), with no evidence variables.

We have
xF = {D}, xE = {}, xR = {A,B,C}

We saw last lecture that this graphical model describes the
factorization of the joint distribution as:

p(A,B,C,D) = p(A)p(B|A)p(C|B)p(D|C)

Assume each variable can take on k different values.
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Example: Simple chain

The goal is to compute the marginal p(D):

p(D) =
∑

A,B,C

p(A,B,C,D)

However, if we do this sum naively, cost is exponential O(kn=4) :

p(D) =
∑

A,B,C

p(A,B,C,D)

=
∑
C

∑
B

∑
A

p(A)p(B|A)p(C|B)p(D|C)

Instead, choose an elimination ordering:

p(D) =
∑

C,B,A

p(A,B,C,D)

=
∑
C

p(D|C)

(∑
B

p(C|B)
(∑

A

p(A)p(B|A)
))

.
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Example: Simple chain

This reduces the complexity by first computing terms that appear
across the other sums.

p(D) =
∑
C

p(D|C)
∑
B

p(C|B)
∑
A

p(A)p(B|A)

p(D) =
∑
C

p(D|C)
∑
B

p(C|B)
∑
A

p(A)p(B|A)

=
∑
C

p(D|C)
∑
B

p(C|B)p(B)

=
∑
C

p(D|C)p(C)

The cost of performing inference on the chain in this manner is
O(nk2). In comparison, generating the full joint distribution and
marginalizing over it has complexity O(kn)!
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Best Elimination Ordering

The complexity of variable elimination depends on the elimination
ordering!

Unfortunately, finding the best elimination ordering is NP-hard.
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Intermediate Factors

The same algorithm both for DAGMs and MRFs:

Introduce nonnegative factors φ (like for MRFs).

e.g. in a simple DAG model:

p(A,B,C) =
∑
X

p(X)p(A|X)p(B|A)p(C|B,X)

=
∑
X

φ1(X)φ2(A,X)φ3(A,B)φ4(X,B,C)

= φ3(A,B)
∑
X

φ1(X)φ2(A,X)φ4(X,B,C)

= φ3(A,B)τ(A,B,C)

Marginalizing over X we introduce a new factor, denoted by τ .
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Sum-Product Inference

Abstractly, computing p(xF |xE) is given by the sum-product
algorithm:

p(xF |xE) ∝ τ(xF , xE) =
∑
xR

∏
C∈F

ψC(xC)

where F is a set of potentials or factors.

For DAGMs, F is given by the the sets of the form

{i} ∪ parents(i) for all nodes i.

For MRFs, F is given by the set of maximal cliques.
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Example

This describes a factorization:

p(C,D, I,G, S, L,H, J) = p(C)p(D|C)p(I)

× p(G|D, I)p(L|G)p(S|I)p(J |S,L)p(H|J,G)

We have

F =
{
{C}, {C,D}, {I}, {G,D, I}, {L,G}, {S, I}, {J, S, L}, {H,J,G)}

}
We are interested in the probability of getting a job, p(J).

We perform exact inference as follows.
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Example (F =
{
{C}, {C,D}, {I}, {G,D, I}, {L,G}, {S, I}, {J, S, L}, {H, J,G)}

})
Elimination Ordering ≺ {C,D, I,H,G, S, L}

p(J) =
∑
L

∑
S

ψ(J, L, S)
∑
G

ψ(L,G)
∑
H

ψ(H,G, J)
∑
I

ψ(S, I)ψ(I)
∑
D

ψ(G,D, I)
∑
C

ψ(C)ψ(C,D)

︸ ︷︷ ︸
τ(D)

=
∑
L

∑
S

ψ(J, L, S)
∑
G

ψ(L,G)
∑
H

ψ(H,G, J)
∑
I

ψ(S, I)ψ(I)
∑
D

ψ(G,D, I)τ(D)

︸ ︷︷ ︸
τ(G,I)

=
∑
L

∑
S

ψ(J, L, S)
∑
G

ψ(L,G)
∑
H

ψ(H,G, J)
∑
I

ψ(S, I)ψ(I)τ(G, I)

︸ ︷︷ ︸
τ(S,G)

=
∑
L

∑
S

ψ(J, L, S)
∑
G

ψ(L,G)τ(S,G)
∑
H

ψ(H,G, J)

︸ ︷︷ ︸
τ(G,J)

=
∑
L

∑
S

ψ(J, L, S)
∑
G

ψ(L,G)τ(S,G)τ(G, J)

︸ ︷︷ ︸
τ(J,L,S)

=
∑
L

∑
S

ψ(J, L, S)τ(J, L, S)

︸ ︷︷ ︸
τ(J,L)

=
∑
L

τ(J, L)

︸ ︷︷ ︸
τ(J)

= τ(J) Do we need to normalize the final τ?
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Complexity of Variable Elimination Ordering

We discussed previously that variable elimination ordering
determines the computational complexity. This is due to how
many variables appear inside each sum.

Different elimination orderings will involve different number of
variables appearing inside each sum.

The complexity of the VE algorithm is (roughly)

O(mkNmax)

where
I m is the number of initial factors.
I k is the number of states each random variable takes (assumed to

be equal here).
I Ni is the number of random variables inside each sum

∑
i.

I Nmax = maxiNi is the number of variables inside the largest sum.
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Example

Elimination Ordering ≺ {C,D, I,H,G, S, L}
Here are all the initial factors:

F =
{
{C}, {C,D}, {I}, {G,D, I}, {L,G}, {S, I}, {J, S, L}, {H,J,G)}

}
=⇒ m = |Φ| = 8

Here are the sums, and the number of variables that appear in
them ∑

C

ψ(C)ψ(C,D)

︸ ︷︷ ︸
NC=2

∑
D

ψ(G,D, I)τ(D)

︸ ︷︷ ︸
ND=3

∑
I

ψ(S, I)ψ(I)τ(G, I)

︸ ︷︷ ︸
NI=3∑

H

ψ(H,G, J)

︸ ︷︷ ︸
NH=3

∑
G

ψ(L,G)τ(S,G)τ(G, J)

︸ ︷︷ ︸
NG=4

∑
S

ψ(J, L, S)τ(J, L, S)

︸ ︷︷ ︸
NS=3∑

L

τ(J, L)

︸ ︷︷ ︸
NL=2

=⇒ the largest sum is NG = 4.

For simplicity, assume all variables take on k states. So the complexity of the
variable elimination under this ordering is O(8 · k4).
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Summary

Variable elimination:

Variable elimination can be used for exact inference in PGMs.

The ordering in variable elimination can significantly reduce the
computational complexity.

The overall complexity of the variable elimination algorithm can
be computed.
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Approximate Inference: Overview

In general, we do not have access to any (or some) of the
(conditional) distributions, say p(x).

For this reason, we need tools to approximate them with p̂(x)
when performing inference!

Two common approaches:
I Generate samples xi ∼ p(x) and use them for estimation.
I Directly approximate p̂(x), e.g. with neural networks.
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Sampling approach

A sample from a distribution p(x) is a single realization x whose
probability distribution is p(x). Here, x can be high-dimensional
or simply real valued.

We assume the density from which we wish to draw samples, p(x),
can be evaluated to within a multiplicative constant. That is, we
can evaluate a function p̃(x) such that

p(x) =
p̃(x)

Z
.

Prob Learning (UofT) STA414-Week3 19 / 38



Warm up: Ancestral Sampling

Given a DAGM, and the ability to sample from each of its factors
given its parents, we can sample from the joint distribution over
all the nodes by ancestral sampling, which simply means
sampling in a topoplogical order.

At each step, sample from any conditional distribution that you
haven’t visited yet, whose parents have all been sampled.

For this algorithm, we assume that we can sample from
conditional distributions.
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Ancestral Sampling Example

The graph factorizes according to the
local conditional probabilities

p(x1,...,N ) =

N∏
i

p(xi|parents(xi))

=p(x1)p(x2|x1)p(x3|x1)p(x4|x2, x3)p(x5|x3)

Start by sampling from p(x1).

Then sample from p(x2|x1) and p(x3|x1).
Then sample from p(x4|x2, x3).
Finally, sample from p(x5|x3).
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Main objectives of sampling

We will be using Monte Carlo methods to solve one or both of the
following problems.

Problem 1: To generate samples {x(r)}Rr=1 from a given
probability distribution p(x).

Problem 2: To estimate expectations of functions, φ(x), under
this distribution p(x)

Φ = E
x∼p(x)

[φ(x)] =

∫
φ(x)p(x)dx

φ is called a test function.
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Example

Examples of test functions φ(x):

the mean of a function f under p(x) by finding the expectation of
the function φ1(x) = f(x).

the variance of f under p(x) by finding the expectations of the
functions φ1(x) = f(x) and φ2(x) = f(x)2

φ1(x) = f(x)⇒ Φ1 = E
x∼p(x)

[φ1(x)]

φ2(x) = f(x)2 ⇒ Φ2 = E
x∼p(x)

[φ2(x)]

⇒ var(f(x)) = Φ2 − (Φ1)
2
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Estimation problem

We start with the estimation problem using simple Monte Carlo:

Simple Monte Carlo: Given {x(r)}Rr=1 ∼ p(x) we can estimate
the expectation E

x∼p(x)
[φ(x)] using the estimator Φ̂:

Φ := E
x∼p(x)

[φ(x)] ≈ 1

R

R∑
r=1

φ(x(r)) := Φ̂

The fact that Φ̂ is a consistent estimator of Φ follows from the
Law of Large Numbers (LLN).
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Basic properties of Monte Carlo estimation

Unbiasedness: If the vectors {x(r)}Rr=1 are generated
independently from p(x), then the expectation of Φ̂ is Φ.

E[Φ̂] =E
[

1

R

R∑
r=1

φ(x(r))

]
=

1

R

R∑
r=1

E
[
φ(x(r))

]
=

1

R

R∑
r=1

E
x∼p(x)

[
φ(x)

]
=
R

R
E

x∼p(x)

[
φ(x)

]
=Φ
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Simple properties of Monte Carlo estimation

Variance: As the number of samples of R increases, the variance
of Φ̂ will decrease with rate 1

R

var[Φ̂] =var

[
1

R

R∑
r=1

φ(x(r))

]

=
1

R2
var

[ R∑
r=1

φ(x(r))

]

=
1

R2

R∑
r=1

var

[
φ(x(r))

]
=
R

R2
var[φ(x)]

=
1

R
var[φ(x)]

Accuracy of the Monte Carlo estimate depends on the variance of φ.
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Normalizing constant

Assume we know the density p(x) up to a multiplicative constant

p(x) =
p̃(x)

Z

There are two difficulties:
I We do not generally know the normalizing constant, Z. The main

diffuculty is computing it

Z =

∫
p̃(x)dx

which requires computing a high-dimensional integral.
I Even if we did know Z, the problem of drawing samples from p(x)

is still a challenging one, especially in high-dimensional spaces.
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Bad Idea: Lattice Discretization

Imagine that we wish to draw samples from the density p(x) = p̃(x)
Z

given in figure (a).

How to compute Z?
We could discretize the variable x and sample from the discrete
distribution (figure (b)).
In figure (b) there are 50 uniformly spaced points in one
dimension. If our system had, D = 1000 dimensions say, then the
corresponding number of points would be 50D = 501000. Thus, the
cost is exponential in dimension!
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An analogy

Imagine the tasks of drawing random water samples from a lake and
finding the average plankton concentration. Let

p̃(x) = the depth of the lake at x = (x, y)
φ(x) = the plankton concentration as a function of x
Z = the volume of the lake =

∫
p̃(x)dx

The average concentration of plankton is therefore

Φ =
1

Z

∫
φ(x)p̃(x)dx.
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An analogy

You can take the boat to any desired location x on the lake, and can
measure the depth, p̃(x), and plankton concentration, φ(x), at that
point. Therefore,

Problem 1 is to draw water samples at random such that each
sample is equally likely to come from any point within the lake.

Problem 2 is to find the average plankton concentration.

To correctly estimate Φ, our
method must implicitly discover the
canyons and find their volume
relative to the rest of the lake.
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Estimation tool: Importance Sampling

Importance sampling is a method for estimating the expectation of
a function φ(x).

The density from which we wish to
draw samples, p(x), can be
evaluated up to normalizing
constant, p̃(x)

p(x) =
p̃(x)

Zp

There is a simpler density, q(x)
from which it is easy to sample. It
is also easy to evaluate up to
normalizing constant (i.e. q̃(x))

q(x) =
q̃(x)

Zq
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Estimation tool: Importance Sampling

In importance sampling, we generate R samples from q(x)

{x(r)}Rr=1 ∼ q(x)

If these points were samples from p(x) then we could estimate Φ by

Φ = E
x∼p(x)

[φ(x)] ≈ 1

R

R∑
r=1

φ(x(r)) = Φ̂

That is, we could use a simple Monte Carlo estimator.

But we sampled from q. We need to correct this!

Values of x where q(x) is greater than p(x) will be
over-represented in this estimator, and points where q(x) is less
than p(x) will be under-represented. Thus, we introduce weights.
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Introduce weights: w̃r = p̃(x(r))

q̃(x(r))
and notice that

1

R

R∑
r=1

w̃r ≈ E
x∼q(x)

[ p̃(x)

q̃(x)

]
=

∫
p̃(x)

q̃(x)
q(x)dx =

Zp

Zq

Finally, we rewrite our estimator under q

Φ =

∫
φ(x)p(x)dx =

∫
φ(x)·p(x)

q(x)
·q(x)dx ≈ 1

R

R∑
r=1

φ(x(r))
p(x(r))

q(x(r))
= (∗)

However, the estimator relies on p. It can only rely on p̃ and q̃.

(∗) =
Zq

Zp

1

R

R∑
r=1

φ(x(r)) · p̃(x
(r))

q̃(x(r))
=
Zq

Zp

1

R

R∑
r=1

φ(x(r)) · w̃r

≈
1
R

∑R
r=1 φ(x(r)) · w̃r

1
R

∑R
r=1 w̃r

=

R∑
r=1

φ(x(r)) · wr = Φ̂iw

where wr = w̃r∑R
r=1 w̃r

and Φ̂iw is our importance weighted estimator.
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Sampling tool: Rejection sampling

We want expectations under p(x) = p̃(x)/Zp which is a very
complicated one-dimensional density.

Assume that we have a simpler proposal density q(x) which we
can evaluate (within a multiplicative factor Zq, as before), and
from which we can generate samples, i.e. q̃(x) = Zq · q(x).

Further assume that we know the value of a constant c such that

cq̃(x) > p̃(x) ∀x
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Sampling tool: Rejection sampling

The procedure is as follows:

1. Generate two random numbers.

1.1 The first, x, is generated from the proposal density q(x).
1.2 The second, u is generated uniformly from the interval [0, cq̃(x)]

(see figure (b) above: book’s notation P ∗ = p̃, Q∗ = q̃).

2. Accept or reject the sample x by comparing the value of u with
the value of p̃(x)

2.1 If u > p̃(x), then x is rejected
2.2 Otherwise x is accepted; x is added to our set of samples {x(r)} and

the value of u discarded.

Prob Learning (UofT) STA414-Week3 35 / 38



Why does rejection sampling work?

1. x ∼ q(x)

2. u|x ∼ Unif[0, cq̃(x)]

3. x is accepted if u ≤ p̃(x).

For any set A

Px∼p(x ∈ A) =

∫
A
p(x)dx =

∫
1{x∈A}p(x)dx = Ex∼p[1{x∈A}].

Px∼q(x ∈ A|u ≤ p̃(x)) =Px∼q(x ∈ A, u ≤ p̃(x))
/
Ex∼q[P(u ≤ p̃(x)|x)]

=Ex∼q[1{x∈A}P(u ≤ p̃(x)|x)]
/
Ex∼q[

p̃(x)

cq̃(x)
]

=Ex∼q[1{x∈A}
p̃(x)

cq̃(x)
]
/ Zp

cZq

=Px∼p(x ∈ A)
Zp

cZq

/ Zp

cZq

=Px∼p(x ∈ A)
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Rejection sampling in many dimensions

In high-dimensional problems, the requirement that cq̃(x) ≥ p̃(x)
will force c to be huge, so acceptances will be very rare.

Finding such a value of c may be difficult too, since we don’t know
where the modes of p̃ are located nor how high they are.

In general c grows exponentially with the dimensionality, so the
acceptance rate is expected to be exponentially small in dimension

acceptance rate =
area under p̃

area under cq̃
=

Zp

cZq
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Summary

Estimating expectations is an important problem, which is in
general hard. We learned 3 sampling-based tools for this task:

I Simple Monte Carlo
I Importance Sampling
I Rejection Sampling

Next lecture, message passing!
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