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Today’s lecture

Summary of the content:
e Markov Random Fields (MRFs).

o Exact inference on graphical models

@ Variable elimination

Some announcements:

o Assignment 1 is released this week.

o TA office hours next week.
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Are DAGMs always useful?

X1 = Xy @ /\74;» X5
| T | @ Each node is conditionally independent of
% +

Xg »,— X,y its non-descendants given its parents

\11 - \17»’— \14-»\1 {X; L non-desc(X;) | parents(X;)} Vi.

@ For some problems, it is not clear how to
choose the edge directions in DAGMs.

4\10 = Xi7 = Xig = X9 —> qu
Figure : Causal MRF or a Markov mesh

Markov blanket (mb): the set of nodes that makes X; conditionally
independent of all the other nodes.

In our example: mb(Xg) = {X3, X4, X7, Xo, X12, X13}.

One would expect X4 and Xi2 not to be in the Markov blanket
mb(X3), especially given X and X4 are not.
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Markov Random Fields

e Undirected graphical models (aka Markov random fields
(MRFs)) are models with dependencies described by an
undirected graph.

@ The nodes in the graph represent random variables. However, in
contrast to DAGMs, edges represent probabilistic interactions
between neighbors (as opposed to conditional dependence).

X, — X, X, — X
| |
Xs e - X @ Xio
| |
X — Xz —(Xigy— Xis — iy

Xig — Xi7 — Xig — Xjg — Xoo
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Cliques

A clique is a subset of nodes such that every two vertices in the subset
are connected by an edge.

A maximal clique is a clique that cannot be extended by including
one more adjacent vertex.
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Distributions Induced by MRF's

Let X = (X1, ..., X)) be the set of all random variables in our graph G.
Let C be the set of all maximal cliques of G.

The distribution p of X factorizes with respect to G if

p) o< ][] veolxe)

cec

for some nonnegative potential functions ¥ ¢, where zo = (z;)iec-

The MRF on G represents the distributions that factorize wrt G. )

The factored structure of the distribution makes it possible to more
efficiently do the sums/integrals and is a form of dimension reduction.
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Hammersley-Clifford Theorem

If p(z) > 0 for all z, the following statements are equivalent:

o p factorizes according to G, that is,

p(x) o« ] veleo)
ceC
for some nonnegative potential functions ¥¢.
e Global Markov Properties: X4 Xp|Xg if the sets A and B
are separated by S in G (every path from A to B crosses S).
In particular,
o If ¢, j are not connected by an edge then XZ-J_Xj]XreSt.
o The Markov blanket of X; is given by its neighbors in G.
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Example:

o How many maximal cliques are there?
o What is the underlying factorization?

o What are the induced conditional independence statements?
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Example:

Lets see how to factorize the undirected graph of our running example:

p(x) o< Y123(71, T2, T3)Y235(T2, T3, T5)2,4,5(72, T4, T5)

X 3 56(x3, T5, T6) V456 7(T4, T5, T6, T7)
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Example:

e.g. (X1,X2) L (X6, X7) | (X3, X4, X5)
X1 1L X5 (Xo,X3)
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Image MRF

X, — X, X, — X;
|

I 1
)3 ) o
| I

Xi — Xio @ Xiy— X5

X1 — X7 — Xis — X9 — Xy
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Not all MRF's can be represented as DAGMSs

Take the following MRF for example (a) and our attempts at encoding
this as a DAGM (b, c).

oée oio z’ ‘:

(a) (b) ()

e Two conditional independencies in (a):
» 1. ALC|D, B 2. BLD|A,C

e In (b), we have the first independence, but not the second.

e In (c), we have the first independency, but not the second. Also, B
and D are marginally independent.
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Not all DAGMs can be represented as MRF's

Not all DAGMs can be represented as MRF's.
E.g. explaining away:

An undirected model is unable to capture the marginal independence,
X LY that holds at the same time as X YY|Z.
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MRF's as Exponential Families

o Consider a parametric family of factorized distributions

p(x|0) = % 61;[C¢c($c|9c)a 0 = (0c)cec-

o We can write this in an exponential form:
plalt) = exp { 3" log ve(wclbo) — log 2(6) }
cec —
—A(6)
@ Suppose the potentials have a log-linear form
log Yo(zclfc) = 00 e(xc)

we get the exponential family

p(alt) = exp { 3~ 6dec(wc) ~ log 2(0) |
cecC —A(0)
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MRF's as Exponential Families

Question: When log ¥c(zc|0c) = 0/ ¢c(zc)?

Finite discrete case:

o If X is finite discrete then x takes a finite number of values and
so log ¢ takes a finite number of values.

e Take O as all these possible values, and let ¢c(x¢) is a vector 1
on the entry correspond to x¢ and zeros otherwise.

o Then log Yo (zclfc) = 0L ¢c(zc) as required.

Multivariate Gaussian case will be covered later in the lecture.

We can find the expectation of the C-th feature

0log Z(0)

P00 E[pc(Xc)]-
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Representing potentials

If the variables are finite discrete, we can represent the potential
functions as tables of (non-negative) numbers.

e.f. consider a 4-cycle and binary random variables

1
p(x1, T2, 23, T4) = 21/1172(5617$2)¢2,3($2,$3)¢3,4($3,174)1/11,4(961,$4)

1 2 ¥1,2(z1, z2) 2 3(x2, z3) ¥3,4(x3, T4) ¥1,4(z1, z4)
E Tz w3 z3 x4 Tl x4
0 0 30 0 0 100 0 0 1 0 0 100
0 1 5|1 0 1 1] o0 1 100 | 0 1 1
1 0 1] 1 0 1] 1 0 100 | 1 0 1
4 3 1 1 10| 1 1 100 | 1 1 1] 1 1 100

These potentials are not probabilities. Even after normalization they
will not, in general, correspond to marginal distributions. J
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Example: Ising model

o The Ising model is an MRF that is
used to model magnets.

@ The nodes variables are spins, i.e., we
use s € {—1,+1}.

@ Define the pairwise clique potentials as

Yot (T, 74) = eJat@aTt,

where Jg; is the coupling strength between nodes s and t.
° wst(_la _1) = Q;Z)st(lv 1) = eJSt; ¢St(_17 1) = %t(l, _1) =e st
o If two nodes are not connected set Jyu = 0.
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[sing model

We might want to add node potentials as well

Ys(zs) = ehste

The overall distribution becomes

ocH@ZJSt T, Ts H?,Z)s xg) = eXp{ZJst:le‘t—l-Zb xs}.

s~t s~

p( 1, l,xrest)p(1717$rest) — 4J
( 171’zrest)p(1:717xrest) st-

If Jg > 0 the model promotes same spins on neighboring spins.

Hammersley-Clifford theorem: J;; = 0 then X; L X;| X egt.

e Conditional log-odds ratio: log
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Multivariate Gaussian distribution

Univariate Gaussian: f(x;p,0?) = \/leg exp(— 2(172 (x — p)?).

Multivariate normal distribution, X = (X1,...,X,,):

Let © € R™ and ¥ symmetric positive definite m x m matrix. We write
X ~ Np(u, X) if the density of the vector X is

@5 1,5) = s (det )72 exp (-

Positive definite: Vu # 0 u'Xu > 0.

Moments:
@ mean vector: EX =
e covariance: var(X) = X.
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Recall: Marginal and conditional distributions

Split X into two blocks X = (X 4, Xp). Denote

2AA EAB]
Ypa XBB|’

p=(pa,pp)  and EZ[

Marginal distribution
X4~ N(pa,Xaa)

Conditional distribution

XualXp=2p~ N (pa+2aE55@8 — 18), a4 — SaBL5pEB4)
@ Note that the conditional covariance is constant.
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Some other properties

Linear transformations:
A€ R™P for m < pand X ~ Ny(u,%) then AX ~ Ny, (Ap, ASAT).

Conditional independence:
e X;1Xj if and only if ¥;; = 0.

o X;1X,|Xc ifandonlyif ;- E@CEE%ECJ =0

o Let R=V\{i,j}. The following are equivalent:
> XZJ_XJ‘XR
> Yy — 2SR rER; =0
> (Z71)i; =0
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Gaussian Graphical models

Denote K = X~! then

fl;p, %) o He 2Kss Ts—phs) H —Kst(@s—ps) (e —pe)
s<t

Important interpretation: K;; = 0 if and only if X; 1 X ;| Xrest.

I

g ¥ € ¢

12 3 45

Show that this is an exponential family.
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protein network social network

Applications

functional >
connectome of Undirected finance
€ )
Graphical
Models
natural
gene microarray language

processing
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Inference as Conditional Distribution

e We explore inference in probabilistic graphical models (PGMs).

— xp = The observed evidence
— 2 = The unobserved variable we want to infer

— xr = x — {zp,rp} = Remaining variables, extraneous to query.

o Focus on computing the conditional probability distribution

_plzr,xp)  plar,zE)
el = ey = S, plerap)

o for which, we marginalize out these extraneous variables, focussing
on the joint distribution over evidence and subject of inference:

p(zp,2p) = ZP(UCF, Tg, TR)

TR
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Variable elimination

Order in which we marginalize affects the computational cost!

Our main tool is variable elimination:

o A simple and general exact inference algorithm in any
probabilistic graphical model (DAGMs or MRFs).

o Computational complexity depends on the graph structure.

@ Dynamic programming avoids enumerating all variable
assignments.
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Example: Simple chain

o Lets start with the example of a simple chain

A—-B—->C-—=D

where we want to compute p(D), with no evidence variables.

o We have
xp={D}, zg ={}, xr ={A,B,C}

o We saw last lecture that this graphical model describes the
factorization of the joint distribution as:

p(A, B, C, D) = p(A)p(B|A)p(C|B)p(D|C)

o Assume each variable can take on k different values.
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Example: Simple chain

e The goal is to compute the marginal p(D):

p(D)= > p(A,B,C,D)
AB.C

e However, if we do this sum naively, cost is exponential O(k"=*) :

p(D) = Z p(A,B,C,D)
A,B,C

=353 p(A)p(BlA(C|B)p(DIC)

C B A
o Instead, choose an elimination ordering:

p(D)= > p(A,B,C,D)
C,B,A

=S p(DIC) <2p<0|B>(Zp<A>P<B|A>>> |
c B A
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Example: Simple chain

o This reduces the complexity by first computing terms that appear
across the other sums.

Zp D|C) Zp C|B) Zp p(B|A)

Zp D|C) Zp C|B) Zp p(B|A)
=Zp D|C) Zp C|B)p(B

C B
=S H(DIC)H(O)

C

@ The cost of performing inference on the chain in this manner is
O(nk?). In comparison, generating the full joint distribution and
marginalizing over it has complexity O(k™)!
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Best Elimination Ordering

@ The complexity of variable elimination depends on the elimination
ordering!

o Unfortunately, finding the best elimination ordering is NP-hard.
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Intermediate Factors

The same algorithm both for DAGMs and MRFs:
e Introduce nonnegative factors ¢ (like for MRF's).

@ e.g. in a simple DAG model:

p(A, B,C) Zp p(A|X)p(B|A)p(C|B, X)
— Z¢1 )92(A, X)¢3(A, B)pa(X, B, C)

= ¢3(A, B) Z¢1 )92(A, X)ou(X, B,C)

= ¢3(A, B)T(A, B,C)

o Marginalizing over X we introduce a new factor, denoted by 7.
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Sum-Product Inference

o Abstractly, computing p(zp|zrg) is given by the sum-product
algorithm:

pleplrg) < 7(zr,xe) = Y ] velze)

rr CeF

where F is a set of potentials or factors.
o For DAGMs, F is given by the the sets of the form

{i} U parents(7) for all nodes i.

o For MRFs, F is given by the set of maximal cliques.
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Example

( Coherence )

l

Oty  Erdigme> ® This describes a factorization:

Grade ) ( SAT D
| / p(C,D,I,G,S,L,H,J)=p(C)p(D|C)p(I)
( Letter )
x p(G|D, Ip(L|G)p(S|I)p(J|S, L)p(H|J, G)

>/( Job )
(_Happy

We have
F = {{C}{C, D} {1}.{G, D, I} ,{L,G}.{S,1},{J, S, L}, {H, J.G)}}

We are interested in the probability of getting a job, p(J).

We perform exact inference as follows.
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Example (7 = {{c},{C, D}, {1},{G, D, T}, {L, G}, {5, T}, {, S, L}, {H, J, G)}} )
Elimination Ordering < {C,D,I,H,G, S, L}
p(J) =D D WL, S) D (L, G) D (H, G, 1) > (S, Dy(I) Y %(G, D, 1) Y $(C)$(C, D)
L S G H I D C
(D)
=D WL L S) Do W(L, G) Y W(H, G, ) Y y(S, DY(D) D ¢(G, D, 1)T(D)
L S G H I D
T(G,I)
=D 3w L8 Y (L, G) D> Ww(H, G, J) > (S, DY(I)T(G, I)
L S G H I
7(S,G)

ST, L, S) S w(L, G)T(S,G) S w(H, G, J)
S G H

I
=1

T(G,J)

ST (I, L, 8) > w(L, G)T(S, G)T(G, )
L S G

7(J,L,S)
S>3 (I, L, 8$)T(J, L, S)
L S

(J,L)

=7(J) Do we need to normalize the final 77
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Complexity of Variable Elimination Ordering

o We discussed previously that variable elimination ordering
determines the computational complexity. This is due to how
many variables appear inside each sum.

e Different elimination orderings will involve different number of
variables appearing inside each sum.

@ The complexity of the VE algorithm is
O (mkNmax)

where
» m is the number of initial factors.
» k is the number of states each random variable takes (assumed to
be equal here).
» N; is the number of random variables inside each sum ).
» Nmax = max;N; is the number of variables inside the largest sum.
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Example

Elimination Ordering < {C,D,I,H,G,S, L}

o Here are all the initial factors:
F={{C},{C, D}, {I},{G, D, I},{L,G},{S,1},{J,S,L},{H, J,G)}}

== m=|P| =38

o Here are the sums, and the number of variables that appear in

them
STwC)w(C, D) S w(G,D, (D) > w(S, DyI)T(G, )
C D I

Ng=2 Np=3 Ny=3

STW(H,G, ) WL, AT(S,G)T(G, ) Y %(J, L, S)T(J, L, S)
H G S

Ng=3 Ng=4 Ng=3

Z‘r(]7 L) = the largest sum is Ng = 4.
L

Np =2

@ For simplicity, assume all variables take on k states. So the complexity of the
variable elimination under this ordering is O(8 - k*).
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Summary

Undirected graphical models:
e MRFs are useful if there is no topological ordering in the graph.
o Cliques are key to parametrizing distributions induced by MRFs.

o Ising model and Gaussian graphical models are important
example.

Variable elimination:
@ Variable elimination can be used for exact inference in PGMs.

@ The ordering in variable elimination can significantly reduce the
computational complexity.

@ The overall complexity of the variable elimination algorithm can
be computed.
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