STA 414/2104:

Statistical Methods in Machine Learning II

Week 3: Markov Random Fields/Exact Inference

Murat A. Erdoğdu and Piotr Zwiernik

University of Toronto

Today's lecture

Summary of the content:

- Markov Random Fields (MRFs).
- Exact inference on graphical models
- Variable elimination

Some announcements:

- Assignment 1 is released this week.
- TA office hours next week.

Are DAGMs always useful?

- Each node is conditionally independent of its non-descendants given its parents
- (X_{12}) (X_{13}) X_{14} X_{15} $\{X_i \perp \text{non-desc}(X_i) \mid \text{parents}(X_i)\}$ $\forall i$.
 - For some problems, it is not clear how to choose the edge directions in DAGMs.

Figure: Causal MRF or a Markov mesh

Markov blanket (mb): the set of nodes that makes X_i conditionally independent of all the other nodes.

In our example: $mb(X_8) = \{X_3, X_4, X_7, X_9, X_{12}, X_{13}\}.$

One would expect X_4 and X_{12} not to be in the Markov blanket $mb(X_8)$, especially given X_2 and X_{14} are not.

Markov Random Fields

- Undirected graphical models (aka Markov random fields (MRFs)) are models with dependencies described by an undirected graph.
- The nodes in the graph represent random variables. However, in contrast to DAGMs, edges represent probabilistic interactions between neighbors (as opposed to conditional dependence).

Cliques

A **clique** is a subset of nodes such that every two vertices in the subset are connected by an edge.

A maximal clique is a clique that cannot be extended by including one more adjacent vertex.

Distributions Induced by MRFs

Let $X = (X_1, ..., X_m)$ be the set of all random variables in our graph G.

Let C be the set of all maximal cliques of G.

The distribution p of X factorizes with respect to G if

$$p(x) \propto \prod_{C \in \mathcal{C}} \psi_C(x_C)$$

for some nonnegative potential functions ψ_C , where $x_C = (x_i)_{i \in C}$.

The MRF on G represents the distributions that factorize wrt G.

The factored structure of the distribution makes it possible to more efficiently do the sums/integrals and is a form of dimension reduction.

Hammersley-Clifford Theorem

If p(x) > 0 for all x, the following statements are equivalent:

• p factorizes according to G, that is,

$$p(x) \propto \prod_{C \in \mathcal{C}} \psi_C(x_C)$$

for some nonnegative potential functions ψ_C .

• Global Markov Properties: $X_A \perp X_B | X_S$ if the sets A and B are separated by S in G (every path from A to B crosses S).

In particular,

- If i, j are not connected by an edge then $X_i \perp X_j | X_{\text{rest}}$.
- The Markov blanket of X_i is given by its neighbors in G.

Example:

- How many maximal cliques are there?
- What is the underlying factorization?
- What are the induced conditional independence statements?

Example:

Lets see how to factorize the undirected graph of our running example:

$$p(x) \propto \psi_{1,2,3}(x_1, x_2, x_3) \psi_{2,3,5}(x_2, x_3, x_5) \psi_{2,4,5}(x_2, x_4, x_5) \times \psi_{3,5,6}(x_3, x_5, x_6) \psi_{4,5,6,7}(x_4, x_5, x_6, x_7)$$

Example:

e.g.
$$(X_1, X_2) \perp (X_6, X_7) \mid (X_3, X_4, X_5)$$

$$X_1 \perp X_5 \mid (X_2, X_3)$$

Image MRF

Not all MRFs can be represented as DAGMs

Take the following MRF for example (a) and our attempts at encoding this as a DAGM (b, c).

- Two conditional independencies in (a):
 - ▶ 1. $A \perp C \mid D, B$

- 2. $B \perp D \mid A, C$
- In (b), we have the first independence, but not the second.
- In (c), we have the first independency, but not the second. Also, B and D are marginally independent.

Not all DAGMs can be represented as MRFs

Not all DAGMs can be represented as MRFs. E.g. explaining away:

An undirected model is unable to capture the marginal independence, $X \perp Y$ that holds at the same time as $X \not\perp Y | Z$.

MRFs as Exponential Families

• Consider a parametric family of factorized distributions

$$p(x|\theta) = \frac{1}{Z(\theta)} \prod_{C \in \mathcal{C}} \psi_C(x_C|\theta_C), \qquad \theta = (\theta_C)_{C \in \mathcal{C}}.$$

• We can write this in an exponential form:

$$p(x|\theta) = \exp\left\{\sum_{C \in \mathcal{C}} \log \psi_C(x_C|\theta_C) - \underbrace{\log Z(\theta)}_{=A(\theta)}\right\}$$

• Suppose the potentials have a log-linear form

$$\log \psi_C(x_C|\theta_C) = \theta_C^{\top} \phi_C(x_C)$$

we get the exponential family

$$p(x|\theta) = \exp\Big\{\sum_{C \in \mathcal{C}} \theta_C^{\top} \phi_C(x_C) - \underbrace{\log Z(\theta)}_{=A(\theta)}\Big\}$$

MRFs as Exponential Families

Question: When
$$\log \psi_C(x_C|\theta_C) = \theta_C^{\top} \phi_C(x_C)$$
?

Finite discrete case:

- If X is finite discrete then x_C takes a finite number of values and so $\log \psi_C$ takes a finite number of values.
- Take θ_C as all these possible values, and let $\phi_C(x_C)$ is a vector 1 on the entry correspond to x_C and zeros otherwise.
- Then $\log \psi_C(x_C|\theta_C) = \theta_C^{\top} \phi_C(x_C)$ as required.

Multivariate Gaussian case will be covered later in the lecture.

We can find the expectation of the C-th feature

$$\frac{\partial \log Z(\theta)}{\partial \theta_C} = \mathbb{E}[\phi_C(X_C)].$$

Representing potentials

If the variables are finite discrete, we can represent the potential functions as tables of (non-negative) numbers.

e.f. consider a 4-cycle and binary random variables

$$p(x_1, x_2, x_3, x_4) = \frac{1}{Z} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \psi_{3,4}(x_3, x_4) \psi_{1,4}(x_1, x_4)$$

These potentials are not probabilities. Even after normalization they will not, in general, correspond to marginal distributions.

Example: Ising model

- The Ising model is an MRF that is used to model magnets.
- The nodes variables are spins, i.e., we use $x_s \in \{-1, +1\}$.
- Define the pairwise clique potentials as

$$\psi_{st}(x_s, x_t) = e^{J_{st}x_sx_t}.$$

where J_{st} is the coupling strength between nodes s and t.

- $\psi_{st}(-1,-1) = \psi_{st}(1,1) = e^{J_{st}}; \quad \psi_{st}(-1,1) = \psi_{st}(1,-1) = e^{-J_{st}}$
- If two nodes are not connected set $J_{st} = 0$.

Ising model

• We might want to add node potentials as well

$$\psi_s(x_s) = e^{b_s x_s}$$

• The overall distribution becomes

$$p(x) \propto \prod_{s \sim t} \psi_{st}(x_s, x_s) \prod_s \psi_s(x_s) = \exp\Big\{\sum_{s \sim t} J_{st} x_s x_t + \sum_s b_s x_s\Big\}.$$

- Conditional log-odds ratio: $\log \frac{p(-1,-1,x_{\text{rest}})p(1,1,x_{\text{rest}})}{p(-1,1,x_{\text{rest}})p(1,-1,x_{\text{rest}})} = 4J_{st}$.
- If $J_{st} > 0$ the model promotes same spins on neighboring spins.
- Hammersley-Clifford theorem: $J_{ij} = 0$ then $X_i \perp X_j | X_{\text{rest}}$.

Multivariate Gaussian distribution

Univariate Gaussian: $f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{1}{2\sigma^2}(x-\mu)^2)$.

Multivariate normal distribution, $X = (X_1, ..., X_m)$:

Let $\mu \in \mathbb{R}^m$ and Σ symmetric positive definite $m \times m$ matrix. We write $X \sim N_m(\mu, \Sigma)$ if the density of the vector X is

$$f(x; \mu, \Sigma) = \frac{1}{(2\pi)^{m/2}} (\det \Sigma)^{-1/2} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right).$$

Positive definite: $\forall \boldsymbol{u} \neq \boldsymbol{0} \quad \boldsymbol{u}^{\top} \Sigma \boldsymbol{u} > 0$.

Moments:

- mean vector: $\mathbb{E}X = \mu$,
- covariance: $var(X) = \Sigma$.

Recall: Marginal and conditional distributions

Split X into two blocks $X = (X_A, X_B)$. Denote

$$\mu = (\mu_A, \mu_B)$$
 and $\Sigma = \begin{bmatrix} \Sigma_{AA} & \Sigma_{AB} \\ \Sigma_{BA} & \Sigma_{BB} \end{bmatrix}$.

Marginal distribution

$$X_A \sim N(\mu_A, \Sigma_{AA})$$

Conditional distribution

$$X_A|X_B = x_B \sim N\left(\mu_A + \Sigma_{AB}\Sigma_{BB}^{-1}(x_B - \mu_B), \Sigma_{AA} - \Sigma_{AB}\Sigma_{BB}^{-1}\Sigma_{BA}\right)$$

• Note that the conditional covariance is constant.

Some other properties

Linear transformations:

 $A \in \mathbb{R}^{m \times p}$ for $m \leq p$ and $X \sim N_p(\mu, \Sigma)$ then $AX \sim N_m(A\mu, A\Sigma A^T)$.

Conditional independence:

- $X_i \perp X_j$ if and only if $\Sigma_{ij} = 0$.
- $X_i \perp X_j | X_C$ if and only if $\Sigma_{ij} \Sigma_{i,C} \Sigma_{C,C}^{-1} \Sigma_{C,j} = 0$
- Let $R = V \setminus \{i, j\}$. The following are equivalent:
 - $ightharpoonup X_i \perp X_j | X_R$
 - $\Sigma_{ij} \Sigma_{i,R} \Sigma_{R,R}^{-1} \Sigma_{R,j} = 0$
 - $(\Sigma^{-1})_{ij} = 0$

Gaussian Graphical models

Denote $K = \Sigma^{-1}$ then

$$f(\mathbf{x}; \mu, \Sigma) \propto \prod_{s} e^{-\frac{1}{2}K_{ss}(x_s - \mu_s)^2} \prod_{s < t} e^{-K_{st}(x_s - \mu_s)(x_t - \mu_t)}.$$

Important interpretation: $K_{ij} = 0$ if and only if $X_i \perp X_j | X_{rest}$.

Show that this is an exponential family.

Inference as Conditional Distribution

- We explore inference in probabilistic graphical models (PGMs).
 - $-x_E$ = The observed evidence
 - $-x_F$ = The unobserved variable we want to infer
 - $-x_R = x \{x_F, x_E\}$ = Remaining variables, extraneous to query.
- Focus on computing the conditional probability distribution

$$p(x_F|x_E) = \frac{p(x_F, x_E)}{p(x_E)} = \frac{p(x_F, x_E)}{\sum_{x_F} p(x_F, x_E)}$$

• for which, we marginalize out these extraneous variables, focussing on the joint distribution over evidence and subject of inference:

$$p(x_F, x_E) = \sum_{x_R} p(x_F, x_E, x_R)$$

Variable elimination

Order in which we marginalize affects the computational cost!

Our main tool is variable elimination:

- A simple and general **exact inference** algorithm in any probabilistic graphical model (DAGMs or MRFs).
- Computational complexity depends on the graph structure.
- Dynamic programming avoids enumerating all variable assignments.

Example: Simple chain

• Lets start with the example of a simple chain

$$A \to B \to C \to D$$

where we want to compute p(D), with no evidence variables.

• We have

$$x_F = \{D\}, \ x_E = \{\}, \ x_R = \{A, B, C\}$$

 We saw last lecture that this graphical model describes the factorization of the joint distribution as:

$$p(A, B, C, D) = p(A)p(B|A)p(C|B)p(D|C)$$

• Assume each variable can take on k different values.

Example: Simple chain

• The goal is to compute the marginal p(D):

$$p(D) = \sum_{A,B,C} p(A,B,C,D)$$

• However, if we do this sum naively, cost is exponential $O(k^{n=4})$:

$$\begin{split} p(D) &= \sum_{A,B,C} p(A,B,C,D) \\ &= \sum_{C} \sum_{B} \sum_{A} p(A) p(B|A) p(C|B) p(D|C) \end{split}$$

• Instead, choose an elimination ordering:

$$p(D) = \sum_{C,B,A} p(A,B,C,D)$$
$$= \sum_{C} p(D|C) \left(\sum_{B} p(C|B) \left(\sum_{A} p(A)p(B|A) \right) \right).$$

Example: Simple chain

• This reduces the complexity by first computing terms that appear across the other sums.

$$p(D) = \sum_{C} p(D|C) \sum_{B} p(C|B) \sum_{A} p(A)p(B|A)$$

$$\begin{split} p(D) &= \sum_{C} p(D|C) \sum_{B} p(C|B) \sum_{A} p(A) p(B|A) \\ &= \sum_{C} p(D|C) \sum_{B} p(C|B) p(B) \\ &= \sum_{C} p(D|C) p(C) \end{split}$$

• The cost of performing inference on the chain in this manner is $\mathcal{O}(nk^2)$. In comparison, generating the full joint distribution and marginalizing over it has complexity $\mathcal{O}(k^n)$!

Best Elimination Ordering

- The complexity of variable elimination depends on the elimination ordering!
- Unfortunately, finding the best elimination ordering is NP-hard.

Intermediate Factors

The same algorithm both for DAGMs and MRFs:

- Introduce nonnegative factors ϕ (like for MRFs).
- e.g. in a simple DAG model:

$$p(A,B,C) = \sum_{X} p(X)p(A|X)p(B|A)p(C|B,X)$$

$$= \sum_{X} \phi_1(X)\phi_2(A,X)\phi_3(A,B)\phi_4(X,B,C)$$

$$= \phi_3(A,B)\sum_{X} \phi_1(X)\phi_2(A,X)\phi_4(X,B,C)$$

$$= \phi_3(A,B)\tau(A,B,C)$$

• Marginalizing over X we introduce a new factor, denoted by τ .

Sum-Product Inference

• Abstractly, computing $p(x_F|x_E)$ is given by the **sum-product** algorithm:

$$p(x_F|x_E) \propto \tau(x_F, x_E) = \sum_{x_R} \prod_{C \in \mathcal{F}} \psi_C(x_C)$$

where \mathcal{F} is a set of potentials or factors.

 \bullet For DAGMs, \mathcal{F} is given by the sets of the form

$$\{i\} \cup \text{parents}(i)$$
 for all nodes i .

 \bullet For MRFs, \mathcal{F} is given by the set of maximal cliques.

Example

We have

$$\mathcal{F} = \big\{ \{C\}, \{C, D\}, \{I\}, \{G, D, I\}, \{L, G\}, \{S, I\}, \{J, S, L\}, \{H, J, G)\} \big\}$$

We are interested in the probability of getting a job, p(J).

We perform exact inference as follows.

Example $(\mathcal{F} = \{\{C\}, \{C, D\}, \{I\}, \{G, D, I\}, \{L, G\}, \{S, I\}, \{J, S, L\}, \{H, J, G)\}\})$

Elimination Ordering $\prec \{C, D, I, H, G, S, L\}$

minimation of during
$$\forall \{C, D, I, H, G, S, D\}$$

$$p(J) = \sum_{L} \sum_{S} \psi(J, L, S) \sum_{G} \psi(L, G) \sum_{H} \psi(H, G, J) \sum_{I} \psi(S, I) \psi(I) \sum_{D} \psi(G, D, I) \underbrace{\sum_{C} \psi(C) \psi(C, D)}_{\tau(D)}$$

$$= \sum_{L} \sum_{S} \psi(J, L, S) \sum_{G} \psi(L, G) \sum_{H} \psi(H, G, J) \sum_{I} \psi(S, I) \psi(I) \underbrace{\sum_{D} \psi(G, D, I) \tau(D)}_{\tau(G, I)}$$

$$= \sum_{L} \sum_{S} \psi(J, L, S) \sum_{G} \psi(L, G) \sum_{H} \psi(H, G, J) \underbrace{\sum_{I} \psi(S, I) \psi(I) \tau(G, I)}_{\tau(S, G)}$$

$$= \sum_{L} \sum_{S} \psi(J, L, S) \underbrace{\sum_{G} \psi(L, G) \tau(S, G)}_{\tau(J, L, S)}$$

$$= \sum_{L} \sum_{S} \psi(J, L, S) \underbrace{\sum_{G} \psi(L, G) \tau(S, G) \tau(G, J)}_{\tau(J, L, S)}$$

$$= \sum_{L} \underbrace{\sum_{S} \psi(J, L, S) \tau(J, L, S)}_{\tau(J, L)}$$

$$= \underbrace{\sum_{L} \tau(J, L)}_{\tau(J, L)}$$

 $= \tau(J)$ Do we need to normalize the final τ ?

Complexity of Variable Elimination Ordering

- We discussed previously that variable elimination ordering determines the computational complexity. This is due to how many variables appear inside each sum.
- Different elimination orderings will involve different number of variables appearing inside each sum.
- The complexity of the VE algorithm is

$$O(mk^{N_{\max}})$$

where

- ightharpoonup m is the number of initial factors.
- \triangleright k is the number of states each random variable takes (assumed to be equal here).
- ▶ N_i is the number of random variables inside each sum \sum_i .
- $ightharpoonup N_{\max} = \max_i N_i$ is the number of variables inside the largest sum.

Example

Elimination Ordering $\prec \{C, D, I, H, G, S, L\}$

• Here are all the initial factors:

$$\mathcal{F} = \{\{C\}, \{C, D\}, \{I\}, \{G, D, I\}, \{L, G\}, \{S, I\}, \{J, S, L\}, \{H, J, G)\}\}$$

$$\implies m = |\Phi| = 8$$

• Here are the sums, and the number of variables that appear in them

$$\underbrace{\sum_{C} \psi(C) \psi(C,D)}_{N_{C}=2} \underbrace{\sum_{D} \psi(G,D,I) \tau(D)}_{N_{D}=3} \underbrace{\sum_{I} \psi(S,I) \psi(I) \tau(G,I)}_{N_{I}=3}$$

$$\underbrace{\sum_{H} \psi(H,G,J)}_{N_{H}=3} \underbrace{\sum_{G} \psi(L,G) \tau(S,G) \tau(G,J)}_{N_{G}=4} \underbrace{\sum_{S} \psi(J,L,S) \tau(J,L,S)}_{N_{S}=3}$$

$$\underbrace{\sum_{L} \tau(J,L)}_{N_{L}=2} \Longrightarrow \text{ the largest sum is } N_{G}=4.$$

• For simplicity, assume all variables take on k states. So the complexity of the variable elimination under this ordering is $O(8 \cdot k^4)$.

Summary

Undirected graphical models:

- MRFs are useful if there is no topological ordering in the graph.
- Cliques are key to parametrizing distributions induced by MRFs.
- Ising model and Gaussian graphical models are important example.

Variable elimination:

- Variable elimination can be used for exact inference in PGMs.
- The ordering in variable elimination can significantly reduce the computational complexity.
- The overall complexity of the variable elimination algorithm can be computed.