Week 3: Tutorial

The intuition for how the Hammersley-Clifford theorem works

Consider a simple chain $X-Y-Z$. The corresponding graphical model is given by all distributions that factorize

$$
f(x, y, z)=\alpha(x, y) \beta(y, z) .
$$

We want to show that this is equivalent to $X \perp Z \mid Y$ as long as $\alpha(x, y)>0$ and $\beta(y, z)>0$ for all x, y, z.

We will use the characterization that $X \perp Z \mid Y$ if and only if $f(x \mid y, z)=f(x \mid y)$ does not depend on z.

For the left implication note that

$$
f(x, y, z)=f(y, z) f(x \mid y, z)=f(x \mid y) f(y, z) .
$$

So the statement works with $\alpha(x, y)=f(x \mid y)$ and $\beta(y, z)=f(y, z)$.
For the right implication note that

$$
f(y, z)=\left(\sum_{x} \alpha(x, y)\right) \beta(y, z) .
$$

and so

$$
f(x \mid y, z)=\frac{\alpha(x, y) \beta(y, z)}{\left(\sum_{x} \alpha(x, y)\right) \beta(y, z)}=\frac{\alpha(x, y)}{\sum_{x} \alpha(x, y)}
$$

which does not depend on z proving the conditional independence.

Gaussian log-likelihood

Suppose we observe some data from the m -variate Gaussian distribution $\mathbf{x}_{1: n}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$. For this calculation we will assume that the underlying mean is 0 . This is something that can be assumed without loss of generality by centering the data. Denote $K=\Sigma^{-1}$. Recall that the logarithm of the Gaussian density is

$$
\log f(\mathbf{x} ; K)=-\frac{m}{2} \log (2 \pi)+\frac{1}{2} \log \operatorname{det} K-\frac{1}{2} \mathbf{x}^{\top} K \mathbf{x} .
$$

Up to the obvious constants that do not depend on K, the log-likelihood is

$$
\ell_{n}\left(K ; \mathbf{x}_{1: n}\right)=\frac{n}{2} \log \operatorname{det}(K)-\frac{1}{2} \sum_{i=1}^{n} \mathbf{x}_{i}^{\top} K \mathbf{x}_{i} .
$$

Note that

$$
\sum_{i=1}^{n} \mathbf{x}_{i}^{\top} K \mathbf{x}_{i}=\sum_{i=1}^{n} \operatorname{tr}\left(\mathbf{x}_{i}^{\top} K \mathbf{x}_{i}\right)=\sum_{i=1}^{n} \operatorname{tr}\left(K \mathbf{x}_{i} \mathbf{x}_{i}^{\top}\right)=n \operatorname{tr}\left(K S_{n}\right)
$$

where

$$
S_{n}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x} \mathbf{x}^{\top}
$$

With this new notation

$$
\ell_{n}\left(K ; \mathbf{x}_{1: n}\right)=\frac{n}{2}\left(\log \operatorname{det}(K)-\operatorname{tr}\left(K S_{n}\right)\right)
$$

Some useful facts:

- $\log \operatorname{det}(K)$ is a strictly concave function of K.
- $\operatorname{tr}\left(K S_{n}\right)$ is linear in K.
- The gradients are $\nabla \log \operatorname{det}(K)=K^{-1}$ and $\nabla \operatorname{tr}\left(K S_{n}\right)=S_{n}$.

MRFs as exponential families

Consider a simple undirected graph $X_{1}-X_{2}-X_{3}$ where each variable is binary. Consider the following graphical model

$$
p\left(x_{1}, x_{2}, x_{3} \mid \theta\right)=\frac{1}{Z(\theta)} \psi_{1,2}\left(x_{1}, x_{2} \mid \theta_{1,2}\right) \psi_{2,3}\left(x_{2}, x_{3} \mid \theta_{2,3}\right)
$$

or equivalently

$$
p\left(x_{1}, x_{2}, x_{3} \mid \theta\right)=\exp \left\{\log \psi_{1,2}\left(x_{1}, x_{2} \mid \theta_{1,2}\right)+\log \psi_{2,3}\left(x_{2}, x_{3} \mid \theta_{2,3}\right)-\log Z(\theta)\right\}
$$

The vector $\left(x_{1}, x_{2}\right)$ takes four values $(0,0),(0,1),(1,0),(1,1)$. Take

$$
\theta_{1,2}:=\left[\begin{array}{l}
\log \psi_{1,2}(0,0) \\
\log \psi_{1,2}(0,1) \\
\log \psi_{1,2}(1,0) \\
\log \psi_{1,2}(1,1)
\end{array}\right] \in \mathbb{R}^{4} .
$$

and let $\psi_{1,2}\left(x_{1}, x_{2}\right)$ be the function that satisfies

$$
\phi_{1,2}(0,0)=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad \phi_{1,2}(0,1)=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], \quad \phi_{1,2}(1,0)=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right], \quad \phi_{1,2}(1,1)=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] .
$$

With these definitions $\log \psi_{1,2}\left(x_{1}, x_{2} \mid \theta_{1,2}\right)=\theta_{1,2}^{\top} \phi_{1,2}\left(x_{1}, x_{2}\right)$. We define $\theta_{2,3}$ and $\phi_{2,3}\left(x_{2}, x_{3}\right)$ in a similar way obtaining that

$$
p\left(x_{1}, x_{2}, x_{3} \mid \theta\right)=\exp \left\{\theta_{1,2}^{\top} \phi_{1,2}\left(x_{1}, x_{2}\right)+\theta_{2,3}^{\top} \phi_{2,3}\left(x_{2}, x_{3}\right)-\log Z(\theta)\right\}
$$

which forms an exponential family with sufficient statistics

$$
\phi_{1,2}\left(x_{1}, x_{2}\right)=\left[\begin{array}{c}
\left(1-x_{1}\right)\left(1-x_{2}\right) \\
\left(1-x_{1}\right) x_{2} \\
x_{1}\left(1-x_{2}\right) \\
x_{1} x_{2}
\end{array}\right], \quad \phi_{2,3}\left(x_{2}, x_{3}\right)=\left[\begin{array}{c}
\left(1-x_{2}\right)\left(1-x_{3}\right) \\
\left(1-x_{2}\right) x_{3} \\
x_{2}\left(1-x_{3}\right) \\
x_{2} x_{3}
\end{array}\right]
$$

and with $Z(\theta)=1$.

As a side comment we note that this exponential family is not minimal in the sense that the values of $\phi_{1,2}\left(x_{1}, x_{2}\right)$ and $\phi_{2,3}\left(x_{2}, x_{3}\right)$ lie in a hyperplane in the sense that

$$
\phi_{1,2}\left(x_{1}, x_{2}\right)^{\top}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=1 \quad \text { for all }\left(x_{1}, x_{2}\right) \in\{0,1\}^{2}
$$

Non-minimal exponential families do not satisfy the gradient equation $\nabla A(\theta)=\mathbb{E}_{\theta} T(X)$-indeed, here $A(\theta)=0$. An easy solution is to get rid of the first coordinate in $\phi_{1,2}\left(x_{1}, x_{2}\right)$ and replace it with the corresponding functions of the remaining entries of $\phi_{1,2}\left(x_{1}, x_{2}\right)$. This defines new natural parameters

$$
\bar{\theta}_{1,2}=\left[\begin{array}{l}
\log \psi_{1,2}(0,1)-\log \psi_{1,2}(0,0) \\
\log \psi_{1,2}(1,0)-\log \psi_{1,2}(0,0) \\
\log \psi_{1,2}(1,1)-\log \psi_{1,2}(0,0)
\end{array}\right], \quad \bar{\theta}_{2,3}=\left[\begin{array}{l}
\log \psi_{2,3}(0,1)-\log \psi_{2,3}(0,0) \\
\log \psi_{2,3}(1,0)-\log \psi_{2,3}(0,0) \\
\log \psi_{2,3}(1,1)-\log \psi_{2,3}(0,0)
\end{array}\right]
$$

and new sufficient statistics

$$
\bar{\phi}_{1,2}\left(x_{1}, x_{2}\right)=\left[\begin{array}{c}
\left(1-x_{1}\right) x_{2} \\
x_{1}\left(1-x_{2}\right) \\
x_{1} x_{2}
\end{array}\right], \quad \bar{\phi}_{2,3}\left(x_{2}, x_{3}\right)=\left[\begin{array}{c}
\left(1-x_{2}\right) x_{3} \\
x_{2}\left(1-x_{3}\right) \\
x_{2} x_{3}
\end{array}\right]
$$

Moreover,

$$
A(\bar{\theta})=\log \psi_{1,2}(0,0) \psi_{2,3}(0,0)
$$

which should be now be explicitly expressed in terms of $\bar{\theta}_{1,2}$ and $\bar{\theta}_{2,3}$.

Simple variable elimination example

Consider the following DAG

Suppose that we observe the variable $X_{6}=\bar{x}_{6}$. What is $p\left(X_{1} \mid \bar{x}_{6}\right)$?
The corresponding dAG model implies the factorization:

$$
p\left(x_{1}, \ldots, x_{6}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}\right) p\left(x_{4} \mid x_{2}\right) p\left(x_{5} \mid x_{3}\right) p\left(x_{6} \mid x_{2}, x_{5}\right)
$$

We have

$$
\begin{aligned}
x_{F}= & \left\{x_{1}\right\}, x_{E}=\left\{x_{6}\right\}, x_{R}=\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\} \\
& p\left(x_{F} \mid x_{E}\right)=\frac{\sum_{x_{R}} p\left(x_{F}, x_{E}, x_{R}\right)}{\sum_{x_{F}, x_{R}} p\left(x_{F}, x_{E}, x_{R}\right)} \\
\Rightarrow & p\left(x_{1} \mid \bar{x}_{6}\right)=\frac{p\left(x_{1}, \bar{x}_{6}\right)}{p\left(\bar{x}_{6}\right)}=\frac{p\left(x_{1}, \bar{x}_{6}\right)}{\sum_{x \in x_{F}, x_{R}} p\left(x, \bar{x}_{6}\right)}
\end{aligned}
$$

To compute $p\left(x_{1}, \bar{x}_{6}\right)$, we use variable elimination in the order $2,3,4,5$

$$
\begin{aligned}
p\left(x_{1}, \bar{x}_{6}\right) & =p\left(x_{1}\right) \sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{5}} p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}\right) p\left(x_{4} \mid x_{2}\right) p\left(x_{5} \mid x_{3}\right) p\left(\bar{x}_{6} \mid x_{2}, x_{5}\right) \\
& =p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) \sum_{x_{3}} p\left(x_{3} \mid x_{1}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{2}\right) \sum_{x_{5}} p\left(x_{5} \mid x_{3}\right) p\left(\bar{x}_{6} \mid x_{2}, x_{5}\right) \\
& =p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) \sum_{x_{3}} p\left(x_{3} \mid x_{1}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{2}\right) p\left(\bar{x}_{6} \mid x_{2}, x_{3}\right)
\end{aligned}
$$

Note that $p\left(\bar{x}_{6} \mid x_{2}, x_{3}\right)$ does not need to participate in $\sum_{x_{4}}$.

$$
\begin{aligned}
& =p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) \sum_{x_{3}} p\left(x_{3} \mid x_{1}\right) p\left(\bar{x}_{6} \mid x_{2}, x_{3}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{2}\right) \\
& =p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) \sum_{x_{3}} p\left(x_{3} \mid x_{1}\right) p\left(\bar{x}_{6} \mid x_{2}, x_{3}\right) \\
& =p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) p\left(\bar{x}_{6} \mid x_{1}, x_{2}\right) \\
& =p\left(x_{1}\right) p\left(\bar{x}_{6} \mid x_{1}\right)
\end{aligned}
$$

Finally,

$$
p\left(x_{1} \mid \bar{x}_{6}\right)=\frac{p\left(x_{1}\right) p\left(\bar{x}_{6} \mid x_{1}\right)}{\sum_{x_{1}} p\left(x_{1}\right) p\left(\bar{x}_{6} \mid x_{1}\right)} .
$$

Restricted Boltzmann machines

A restricted Boltzmann machine (RBM) is a simple generative stochastic artificial neural network model. In the language of todays lecture, it is obtained from a special form of the Ising model with variables $\left(X_{1}, \ldots, X_{k}, H_{1}, \ldots, H_{l}\right) \in\{-1,1\}^{k+1}$. The underlying graph is the bipartite graph with all pairs $H_{i}-X_{j}$ connected but with no other edges. The Ising model is then given by all distributions

$$
p\left(x_{1}, \ldots, x_{k}, h_{1}, \ldots, h_{l}\right) \propto \exp \left\{\sum_{i} \alpha_{i} x_{i}+\sum_{i} \beta_{i} h_{i}+\sum_{i=1}^{k} \sum_{j=1}^{l} J_{i j} x_{i} h_{j}\right\}
$$

We can write it in terms of factors

$$
\psi_{X_{i}, H_{j}}\left(x_{i}, h_{j}\right)=\exp \left\{\frac{1}{l} \alpha_{i} x_{i}+\frac{1}{k} \beta_{j} h_{j}+J_{i j} x_{i} h_{j}\right\}
$$

so that

$$
p\left(x_{1}, \ldots, x_{k}, h_{1}, \ldots, h_{l}\right)=\frac{1}{Z} \prod_{i=1}^{k} \prod_{j=1}^{l} \psi_{X_{i}, H_{j}}\left(x_{i}, h_{j}\right)
$$

Note that computing Z may be computationally expensive but we will see that many quantities can be efficiently computed without knowing Z.

The corresponding RBM is given as the marginal distribution

$$
p(x)=\sum_{h \in\{-1,1\}^{l}} p(x, h)
$$

Note that both

$$
\sum_{h \in\{-1,1\}^{l}} \prod_{i=1}^{k} \prod_{j=1}^{l} \psi_{X_{i}, H_{j}}\left(x_{i}, h_{j}\right) \quad \text { and } \quad \sum_{x \in\{-1,1\}^{k}} \prod_{i=1}^{k} \prod_{j=1}^{l} \psi_{X_{i}, H_{j}}\left(x_{i}, h_{j}\right)
$$

can be computed very efficiently. This shows that both $p(x \mid h)$ and $p(h \mid x)$ are easy to obtain and this computation does not even require any knowledge of the normalizing constant Z.

This computation confirms what we know from the Hammersley-Clifford theorem that all H_{i} 's are mutually independent given the vector X. The individual activation functions are given by

$$
p\left(h_{j} \mid x\right)=\frac{\prod_{i=1}^{k} \psi_{i j}\left(x_{i}, h_{j}\right)}{\prod_{i=1}^{k} \psi_{i j}\left(x_{i},-1\right)+\prod_{i=1}^{k} \psi_{i j}\left(x_{i}, 1\right)}=\sigma\left(\beta_{j}+\sum_{i} J_{i j} x_{i}\right)
$$

with

$$
\sigma(y)=\frac{e^{y}}{e^{-y}+e^{y}}=\frac{1}{1+e^{-2 y}}
$$

called the sigmoid function.

