CSC 412/2506:

Probabilistic Learning and Reasoning

Week 4-1/2: Message Passing

Michal Malyska

University of Toronto

Overview

- Trueskill latent variable model
- Message passing

Latent variables

- What to do when a variable z is unobserved?
- If we never condition on z when in the inference problem, then we can just integrate it out.
- However, in certain cases, we are interested in the latent variables themselves, e.g. the clustering problems.
- More on latent variables when we cover Gaussian mixtures.

The TrueSkill latent variable model

- TrueSkill model is a player ranking system for competitive games.
- The goal is to infer the skill of a set of players in a competitive game, based on observing who beats who.
- In the TrueSkill model, each player has a fixed level of skill, denoted z_{i}.
- We initially don't know anything about anyone's skill, but we assume everyone's skill is independent (e.g. an independent Gaussian prior).
- We never get to observe the players' skills directly, which makes this a latent variable model.

TrueSkill model

- Instead, we observe the outcome of a series of matches between different players.
- For each game, the probability that player i beats player j is given by

$$
p(i \text { beats } j)=\sigma\left(z_{i}-z_{j}\right)
$$

where sigma is the logistic function: $\sigma(y)=\frac{1}{1+\exp (-y)}$.

- We can write the entire joint likelihood of a set of players and games as:

$$
\begin{aligned}
& p\left(z_{1}, z_{2}, \ldots z_{N}, \text { game } 1, \text { game } 2, . . \text { game } \mathrm{T}\right) \\
& =\left[\prod_{i=1}^{N} p\left(z_{i}\right)\right]\left[\prod_{\text {games }} p\left(\mathrm{i} \text { beats } \mathrm{j} \mid z_{i}, z_{j}\right)\right]
\end{aligned}
$$

Posterior

- Given the outcome of some matches, the players' skills are no longer independent, even if they've never played each other.
- Computing the posterior over even two players' skills requires integrating over all the other players' skills:

$$
\begin{aligned}
& p\left(z_{1}, z_{2} \mid \text { game } 1, \text { game } 2, \ldots \text { game } \mathrm{T}\right) \\
= & \int \cdots \int p\left(z_{1}, z_{2}, z_{3} \ldots z_{N} \mid x\right) d z_{3} \ldots d z_{N}
\end{aligned}
$$

- Message passing can be used to compute posteriors!
- More on this model in Assignment 2.

Variable Elimination Order and Trees

- Last week: we can do exact inference by variable elimination: I.e. to compute $p(A \mid C)$, we can marginalize $p(A, B \mid C)$ over every variable in B, one at a time.
- Computational cost is determined by the graph structure, and the elimination ordering.
- Determining the optimal elimination ordering is hard.
- Even if we do, the resulting marginalization might also be unreasonably costly.
- Fortunately, for trees, any elimination ordering that goes from the leaves inwards towards any root will be optimal.
- You can think of trees as just chains which sometimes branch.

Inference in Trees

Inference in Trees

- A graph is $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ where \mathcal{V} is the set of vertices (nodes) and \mathcal{E} the set of edges
- For $i, j \in \mathcal{V}$, we have $(i, j) \in \mathcal{E}$ if there is an edge between the nodes i and j.
- For a node in graph $i \in \mathcal{V}, N(i)$ denotes the neighbors of i, i.e. $N(i)=\{j:(i, j) \in \mathcal{E}\}$.
$X_{4} \quad X_{5} \quad$ - Shaded nodes are observed, and denoted by $\bar{x}_{2}, \bar{x}_{4}, \bar{x}_{5}$.
The joint distribution in the general case is

$$
p\left(x_{1: n}\right)=\frac{1}{Z} \prod_{i \in \mathcal{V}} \psi\left(x_{i}\right) \prod_{(i, j) \in \mathcal{E}} \psi_{i j}\left(x_{i}, x_{j}\right)
$$

Inference in Trees

Inference in Trees

- Joint distribution is

$$
p\left(x_{1: n}\right)=\frac{1}{Z} \prod_{i \in \mathcal{V}} \psi\left(x_{i}\right) \prod_{(i, j) \in \mathcal{E}} \psi_{i j}\left(x_{i}, x_{j}\right)
$$

- Want to compute $p\left(x_{3} \mid \bar{x}_{2}, \bar{x}_{4}, \bar{x}_{5}\right)$.
- We have

$$
p\left(x_{3} \mid \bar{x}_{2}, \bar{x}_{4}, \bar{x}_{5}\right) \propto p\left(x_{3}, \bar{x}_{2}, \bar{x}_{4}, \bar{x}_{5}\right)
$$

$p\left(x_{3} \mid \bar{x}_{2}, \bar{x}_{4}, \bar{x}_{5}\right)=\frac{1}{Z^{E}} \sum_{x_{1}} \psi_{1}\left(x_{1}\right) \psi_{3}\left(x_{3}\right) \psi_{2}\left(\bar{x}_{2}\right) \psi_{4}\left(\bar{x}_{4}\right) \psi_{5}\left(\bar{x}_{5}\right) \psi_{12}\left(\bar{x}_{2}, x_{1}\right) \psi_{34}\left(\bar{x}_{4}, x_{3}\right) \psi_{35}\left(\bar{x}_{5}, x_{3}\right) \psi_{13}\left(x_{1}, x_{3}\right)$

- Let's write the variable elimination.

Inference in Trees

$$
\begin{aligned}
p\left(x_{3} \mid \bar{x}_{2}, \bar{x}_{4}, \bar{x}_{5}\right) & =\frac{1}{Z^{E}} \sum_{x_{1}} \psi_{1}\left(x_{1}\right) \psi_{3}\left(x_{3}\right) \psi_{2}\left(\bar{x}_{2}\right) \psi_{4}\left(\bar{x}_{4}\right) \psi_{5}\left(\bar{x}_{5}\right) \psi_{12}\left(\bar{x}_{2}, x_{1}\right) \psi_{34}\left(\bar{x}_{4}, x_{3}\right) \psi_{35}\left(\bar{x}_{5}, x_{3}\right) \psi_{13}\left(x_{1}, x_{3}\right) \\
& =\frac{1}{Z^{E}} \underbrace{\psi_{4}\left(\bar{x}_{4}\right) \psi_{34}\left(\bar{x}_{4}, x_{3}\right)}_{m_{43}\left(x_{3}\right)} \underbrace{\psi_{5}\left(\bar{x}_{5}\right) \psi_{35}\left(\bar{x}_{5}, x_{3}\right)}_{m_{53}\left(x_{3}\right)} \psi_{3}\left(x_{3}\right) \sum_{x_{1}} \psi_{1}\left(x_{1}\right) \psi_{13}\left(x_{1}, x_{3}\right) \underbrace{\psi_{2}\left(\bar{x}_{2}\right) \psi_{12}\left(\bar{x}_{2}, x_{1}\right)}_{m_{21}\left(x_{1}\right)} \\
& =\frac{1}{Z^{E}} \psi_{3}\left(x_{3}\right) m_{43}\left(x_{3}\right) m_{53}\left(x_{3}\right) \underbrace{\sum_{x_{1}} \psi_{1}\left(x_{1}\right) \psi_{13}\left(x_{1}, x_{3}\right) m_{21}\left(x_{1}\right)}_{m_{13}\left(x_{3}\right)} \\
& =\frac{1}{Z^{E}} \psi_{3}\left(x_{3}\right) m_{43}\left(x_{3}\right) m_{53}\left(x_{3}\right) m_{13}\left(x_{3}\right)=\frac{\psi_{3}\left(x_{3}\right) m_{43}\left(x_{3}\right) m_{53}\left(x_{3}\right) m_{13}\left(x_{3}\right)}{\sum_{x_{3}} \psi_{3}\left(x_{3}\right) m_{43}\left(x_{3}\right) m_{53}\left(x_{3}\right) m_{13}\left(x_{3}\right)}
\end{aligned}
$$

Slide credit: S. Ermon

Message Passing on Trees

We perform variable elimination from leaves to root, which is the sum product algorithm to compute all marginals. Belief propagation is a message-passing between neighboring vertices of the graph.

- The message sent from variable j to $i \in N(j)$ is

$$
m_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j}} \psi_{j}\left(x_{j}\right) \psi_{i j}\left(x_{i}, x_{j}\right) \prod_{k \in N(j) / i} m_{k \rightarrow j}\left(x_{j}\right)
$$

- If x_{j} is observed, the message is

$$
m_{j \rightarrow i}\left(x_{i}\right)=\psi_{j}\left(\bar{x}_{j}\right) \psi_{i j}\left(x_{i}, \bar{x}_{j}\right) \prod_{k \in N(j) / i} m_{k \rightarrow j}\left(\bar{x}_{j}\right)
$$

- Once the message passing stage is complete, we can compute our beliefs as

$$
b\left(x_{i}\right) \propto \psi_{i}\left(x_{i}\right) \prod_{j \in N(i)} m_{j \rightarrow i}\left(x_{i}\right)
$$

- Once normalized, beliefs are the marginals we want to compute!

Message Passing on Trees

The message sent from variable j to $i \in N(j)$ is

$$
m_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j}} \psi_{j}\left(x_{j}\right) \psi_{i j}\left(x_{i}, x_{j}\right) \prod_{k \in N(j) / i} m_{k \rightarrow j}\left(x_{j}\right)
$$

Each message $m_{j \rightarrow i}\left(x_{i}\right)$ is a vector with one value for each state of x_{i}.

Inference in Trees: Compute $p\left(x_{1} \mid \bar{x}_{2}, \bar{x}_{4}, \bar{x}_{5}\right)$

$$
\begin{aligned}
m_{j \rightarrow i}\left(x_{i}\right) & =\sum_{x_{j}} \psi_{j}\left(x_{j}\right) \psi_{i j}\left(x_{i}, x_{j}\right) \prod_{k \in N(j) / i} m_{k \rightarrow j}\left(x_{j}\right) \\
b\left(x_{i}\right) & \propto \psi_{i}\left(x_{i}\right) \prod_{j \in N(i)} m_{j \rightarrow i}\left(x_{i}\right) .
\end{aligned}
$$

Inference in Trees: Compute $p\left(x_{1} \mid \bar{x}_{2}, \bar{x}_{4}, \bar{x}_{5}\right)$

$$
\begin{aligned}
m_{j \rightarrow i}\left(x_{i}\right) & =\sum_{x_{j}} \psi_{j}\left(x_{j}\right) \psi_{i j}\left(x_{i}, x_{j}\right) \prod_{k \in N(j) / i} m_{k \rightarrow j}\left(x_{j}\right) \\
b\left(x_{i}\right) & \propto \psi_{i}\left(x_{i}\right) \prod_{j \in N(i)} m_{j \rightarrow i}\left(x_{i}\right) .
\end{aligned}
$$

This is the same as variable elimination, so

$$
p\left(x_{3} \mid \bar{x}_{2}, \bar{x}_{4}, \bar{x}_{5}\right)=b\left(x_{3}\right)
$$

Belief Propagation on Trees

Belief Propagation Algorithm on Trees

Belief Propagation on Trees

Belief Propagation Algorithm on Trees

- Choose root r arbitrarily
- Pass messages from leafs to r
- Pass messages from r to leafs
- These two passes are sufficient on trees!
- Compute beliefs (marginals)

$$
b\left(x_{i}\right) \propto \psi_{i}\left(x_{i}\right) \prod_{j \in \mathcal{N}(i)} m_{j \rightarrow i}\left(x_{i}\right), \forall_{i}
$$

One can compute them in two steps:

- Compute unnormalized beliefs $\tilde{b}\left(x_{i}\right)=\propto=\psi_{i}\left(x_{i}\right) \prod_{j \in \mathcal{N}(i)} m_{j \rightarrow i}\left(x_{i}\right)$
- Normalize them $b\left(x_{i}\right)=\tilde{b}\left(x_{i}\right) / \sum_{x_{i}} \tilde{b}\left(x_{i}\right)$.

Loopy Belief Propagation

- What if the graph (MRF) we have is not a tree and have cycles?
- Keep passing messages until convergence.
- This is called Loopy Belief Propagation.
- This is like when someone starts a rumour and then hears the same rumour from someone else, making them more certain it's true.
- We won't get the exact marginals, but an approximation.
- But turns out it is still very useful!

Loopy Belief Propagation

Loopy BP:

- Initialize all messages uniformly:

$$
m_{i \rightarrow j}\left(x_{j}\right)=[1 / k, \ldots, 1 / k]^{\top}
$$

where k is the number of states x_{j} can take.

- Keep running BP updates until it "converges":

$$
m_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j}} \psi_{j}\left(x_{j}\right) \psi_{i j}\left(x_{i}, x_{j}\right) \prod_{k \in N(j) \neq i} m_{k \rightarrow j}\left(x_{j}\right)
$$

and normalize for stability.

- It will generally not converge, but that's generally ok.
- Compute beliefs

$$
b\left(x_{i}\right) \propto \psi_{i}\left(x_{i}\right) \prod_{j \in \mathcal{N}(i)} m_{j \rightarrow i}\left(x_{i}\right)
$$

This algorithm is still very useful in practice, without any theoretical guarantee (other than trees).

Sum-product vs. Max-product

- The algorithm we learned is called sum-product BP and approximately computes the marginals at each node.
- For MAP inference, we maximize over x_{j} instead of summing over them. This is called max-product BP.
- BP updates take the form

$$
m_{j \rightarrow i}\left(x_{i}\right)=\max _{x_{j}} \psi_{j}\left(x_{j}\right) \psi_{i j}\left(x_{i}, x_{j}\right) \prod_{k \in N(j) \neq i} m_{k \rightarrow j}\left(x_{j}\right)
$$

- After BP algorithm converges, the beliefs are max-marginals

$$
b\left(x_{i}\right) \propto \psi_{i}\left(x_{i}\right) \prod_{j \in \mathcal{N}(i)} m_{j \rightarrow i}\left(x_{i}\right)
$$

- MAP inference:

$$
\hat{x}_{i}=\arg \max _{x_{i}} b\left(x_{i}\right) .
$$

Summary

- This algorithm is still very useful in practice, without any theoretical guarantee (other than trees).
- Loopy BP multiplies the same potentials multiple times. It is often over-confident.
- BP can oscillate, but may be still useful.
- It often works better if we normalize messages, and use momentum.
- The algorithm we learned is called sum-product BP. If we are interested in MAP inference, we can maximize over x_{j} instead of summing over them. This is called max-product BP.

