
STA 414/2104:
Probabilistic Machine Learning

Week 4: Message Passing

Murat A. Erdogdu

University of Toronto

Prob Learning (UofT) STA414-Week4 1 / 50

Announcements

Office hours for A1:

Instructor OH: M 5-7pm in person

TA OH 1: W 10-11am online (link on course webpage)

TA OH 2: Th 4-5pm in person at MY480

Prob Learning (UofT) STA414-Week4 2 / 50

Overview

Today:

Message passing

Decision theory

Prob Learning (UofT) STA414-Week4 3 / 50

Variable Elimination and Trees

Last week: we covered exact inference by variable elimination:
I We compute a conditional distribution like p(x3|x̄2, x̄4, x̄5) by

starting from the full joint p(x1, x̄2, x3, x̄4, x̄5, ...).

Graph structure determines:
I the computational cost,
I and the optimal elimination ordering,
I which is usually very hard to find anyways.

Fortunately, for trees, any elimination ordering that goes from the
leaves towards any root will be optimal.

Prob Learning (UofT) STA414-Week4 4 / 50

Inference in Trees (MRF with no cycles)

G = (V, E) is a graph where V is the set
of vertices and E the set of edges

For i, j ∈ V, we have (i, j) ∈ E if there is
an edge between i and j.

For a node in graph i ∈ V, N(i) denotes
the neighbors of i: N(i) = {j : (i, j) ∈ E}.

In the figure: V = {1, 2, 3, 4, 5} (or V = {x1, x2, x3, x4, x5}) and
E = {(1, 2), (1, 3), (3, 4), (3, 5)}. Shaded nodes are observed: x̄2, x̄4, x̄5.

Prob Learning (UofT) STA414-Week4 5 / 50

Inference in Trees

Joint distribution is

p(x1, ..., x5) =
1

Z

∏
i∈V

ψi(xi)
∏

(i,j)∈E

ψij(xi, xj).

We want to compute p(x3|x̄2, x̄4, x̄5)

We have

p(x3|x̄2, x̄4, x̄5) ∝ p(x3, x̄2, x̄4, x̄5) =
∑
x1

p(x1, x̄2, x3, x̄4, x̄5).

Let’s write the variable elimination algorithm.

Prob Learning (UofT) STA414-Week4 6 / 50

Inference in Trees

Slide credit: S. Ermon

Prob Learning (UofT) STA414-Week4 7 / 50

Message Passing on Trees

Belief propagation on trees:

The message sent from variable j to i ∈ N(j):
I If xj is not observed

mj→i(xi) =
∑
xj

ψj(xj)ψij(xi, xj)
∏

k∈N(j)\i

mk→j(xj)

I If xj is observed

mj→i(xi) = ψj(x̄j)ψij(xi, x̄j)
∏

k∈N(j)\i

mk→j(x̄j)

Once the message passing stage is complete, we can compute our
beliefs as

b(xi) ∝ ψi(xi)
∏

j∈N(i)

mj→i(xi).

In this example, beliefs are the marginals we wanted to compute!

b(xi) = p(xi|x̄j , x̄k, ...).
Prob Learning (UofT) STA414-Week4 8 / 50

Message Passing on Trees

The message sent from variable j to i ∈ N(j) is

mj→i(xi) =
∑
xj

ψj(xj)ψij(xi, xj)
∏

k∈N(j)\i

mk→j(xj)

Prob Learning (UofT) STA414-Week4 9 / 50

Inference in Trees: Compute p(x3|x̄2, x̄4, x̄5)

The message sent from variable j to i ∈ N(j):
If xj is not observed

mj→i(xi) =
∑
xj

ψj(xj)ψij(xi, xj)
∏

k∈N(j)\i

mk→j(xj)

If xj is observed

mj→i(xi) = ψj(x̄j)ψij(xi, x̄j)
∏

k∈N(j)\i

mk→j(x̄j)

m5→3(x3) = ψ5(x̄5)ψ35(x3, x̄5)

m2→1(x1) = ψ2(x̄2)ψ12(x1, x̄2)

m4→3(x3) = ψ4(x̄4)ψ34(x3, x̄4)

m1→3(x3) =
∑

x1
ψ1(x1)ψ13(x1, x3)m2→1(x1)

Prob Learning (UofT) STA414-Week4 10 / 50

Inference in Trees: Compute p(x3|x̄2, x̄4, x̄5)

Beliefs are calculated in the end, after passing all messages:

b(xi) ∝ψi(xi)
∏

j∈N(i)

mj→i(xi).

Now that we computed the messages we need
m5→3(x3),m2→1(x1),m4→3(x3),m1→3(x3),

b(x3) ∝ ψ3(x3)m1→3(x3)m4→3(x3)m5→3(x3)

This is the same as variable elimination, so

p(x3|x̄2, x̄4, x̄5) = b(x3)

Prob Learning (UofT) STA414-Week4 11 / 50

Inference in Trees: Compute p(x1|x̄2, x̄4, x̄5)

Single pass only gives us the correct marginal at the root node.

If we wanted to compute p(x1|x̄2, x̄4, x̄5),
we would also need m3→1(x1) =∑

x3
ψ3(x3)ψ13(x1, x3)m4→3(x3)m5→3(x3)

b(x1) ∝ ψ1(x1)m3→1(x1)m2→1(x1)

We would obtain
p(x1|x̄2, x̄4, x̄5) = b(x1)

Prob Learning (UofT) STA414-Week4 12 / 50

Belief Propagation on Trees

Belief Propagation Algorithm on Trees

Choose root r arbitrarily

Pass messages from leafs to r

Pass messages from r to leafs

These two passes are sufficient on trees!

Finally, compute the beliefs

One pass is enough to compute the marginal of the root node.

Two passes would give marginals of all the nodes.

Prob Learning (UofT) STA414-Week4 13 / 50

Loopy Belief Propagation

What if the graph (MRF) we have is not a tree and have cycles?

Keep passing messages until “convergence”.

This is called Loopy Belief Propagation.

We won’t get the exact marginals.

But turns out it is still a very good approximation!

Prob Learning (UofT) STA414-Week4 14 / 50

Loopy Belief Propagation

Loopy BP:

Initialize all messages uniformly:

mj→i(xi) = [1/k, ..., 1/k]>

where k is the number of states xj can take.

Keep running BP updates until they “converge”:

mj→i(xi) =
∑
xj

ψj(xj)ψij(xi, xj)
∏

k∈N(j)\i

mk→j(xj)

and (sometimes) normalized for stability.

It will generally not converge, but that’s ok.

Compute beliefs

b(xi) ∝ ψi(xi)
∏

j∈N (i)

mj→i(xi).

Prob Learning (UofT) STA414-Week4 15 / 50

Sum-product vs. Max-product

The algorithm we learned is called sum-product BP and
approximately computes the marginals at each node.

For MAP inference, we maximize over xj instead of summing over
them. This is called max-product BP.

BP updates take the form

mj→i(xi) = max
xj

ψj(xj)ψij(xi, xj) ∏
k∈N(j)\i

mk→j(xj)

After BP algorithm converges, the beliefs are max-marginals

b(xi) ∝ ψi(xi)
∏

j∈N (i)

mj→i(xi).

Prob Learning (UofT) STA414-Week4 16 / 50

Inference

Beliefs are approximations to marginals

b(xi) = p(xi|x̄j , x̄k, ...)

After computing all the beliefs, we can predict the value of each
variable as

x̂i = arg max
xi

b(xi)

or the same with max-product BP.

Prob Learning (UofT) STA414-Week4 17 / 50

Summary: Loopy BP

Loopy BP is not exact but it is still very useful in practice,
without much theoretical guarantee (other than tree-like graphs).

Loopy BP is often over-confident since it amplifies the effect of
each potential.

Loopy BP can oscillate, but this is generally ok.

Loopy BP often works better if we normalize messages, and use
momentum in the updates.

The algorithm we learned is called sum-product BP. If we are
interested in MAP inference, we can maximize over xj instead of
summing over them. This is called max-product BP.

Prob Learning (UofT) STA414-Week4 18 / 50

Image Denoising

A binary image is a
√
n×
√
n matrix where each entry is +1 or −1.

We vectorize this matrix and denote the image as x ∈ Rn.

For example, the Mona Lisa below is a 128× 128 image, vectorized
to be x ∈ R16384.

Prob Learning (UofT) STA414-Week4 19 / 50

An MRF for Mona Lisa

The set of nodes V = {1, 2, ..., 1282}
The set of edges E = {(i, j) : i and j has an edge based on grid}
xi ∈ {±1}

p(x1, ..., xn) ∝
∏

(i,j)∈E

ψij(xi, xj) = e
∑

(i,j)∈E Jxixj

Prob Learning (UofT) STA414-Week4 20 / 50

Noisy Image

Assume that the image has been sent through a noisy channel,
where each pixel is flipped with a small probability ε.
True pixels xi’s are unobserved, we only observe noisy pixels yi’s.

Prob Learning (UofT) STA414-Week4 21 / 50

An MRF for Denoising Mona Lisa

Prob Learning (UofT) STA414-Week4 22 / 50

Inference Task: Image Denoising

1. We have the joint over xi’s induced by the MRF:

p(x1, ..., xn) ∝
∏

(i,j)∈E

ψi,j(xi, xj) =
∏

(i,j)∈E

eJxixj .

2. We have a Bernoulli ε-noise model:

p(yi|xi) = (1− ε)
1+xiyi

2 ε
1−xiyi

2 := ψi(xi).

3. Inference task:

Compute p(xi|y1, ..., yn) for all i

Prob Learning (UofT) STA414-Week4 23 / 50

Image Denoising

p(yi|xi) =(1− ε)
1+yixi

2 ε
1−yixi

2 for all i.

= exp
{1 + yixi

2
log(1− ε) +

1− yixi
2

log(ε)
}

∝ exp
{
yixi

1

2
log
(1− ε

ε

)}
=eβyixi where β :=

1

2
log
(1− ε

ε

)

Prob Learning (UofT) STA414-Week4 24 / 50

Back to Ising Model

Therefore, we have

p(x1, ..., xn|y1, ..., yn) ∝p(x1, ..., xn, y1, ..., yn)

=p(x1, ..., xn)
∏
i∈V

p(yi|xi)

∝ exp
{
J
∑

(i,j)∈E

xixj + β
∑
i∈V

yixi

}
=
∏

(i,j)∈E

ψi,j(xi, xj)
∏
i∈V

ψi(xi)

Now, it is clear that node potentials are given by

ψi(xi) = exp(βyixi)

Prob Learning (UofT) STA414-Week4 25 / 50

Hyperparameters

The posterior looks like

p(x1, ..., xn|y1, ..., yn) ∝ exp
{
J
∑

(i,j)∈E

xixj + β
∑
i∈V

yixi

}
Parameters:

I J controls how similar each pixel should be compared to its
neighbors.

I β controls how similar each pixel should be to its noisy observation.

I Recall: β = 1
2 log

(
1−ε
ε

)
I so when ε is small, β should be large.

Prob Learning (UofT) STA414-Week4 26 / 50

Inference Task: Image Denoising

Recall Loopy BP

1. Choose an arbitrary root

2. Repeat:
I Pass messages from leaves to root
I Pass messages from root to leaves

3. Compute beliefs.

Prob Learning (UofT) STA414-Week4 27 / 50

Loopy BP: Message Passing step

We will vectorize the functions:

Function dimension is the same as the number of states its
argument takes.

Each message mj→i(xi) is stored as a 2-dimensional vector, where
its first and second coordinates are mj→i(+1) and mj→i(−1),
respectively.

Initialize all messages with

mj→i(xi) =

[
1/2
1/2

]

Prob Learning (UofT) STA414-Week4 28 / 50

Loopy BP: Message Passing step

1. Vectorize all potentials corresponding to edges and nodes:

ψi(xi) =

[
e+βyi

e−βyi

]
ψi,j(xi, xj) =

[
e+J e−J

e−J e+J

]
,

2. Message update

mj→i(xi) =
∑
xj

ψi,j(xi, xj)ψj(xj)
∏

k∈N(j)\i

mk→j(xj),

I Product: compute the elementwise product of ψj(xj) and mk→j(xj)
for all k ∈ N(j) \ {i}, which will be a vector.

I Summation: Multiple the matrix ψi,j(xi, xj) with the vector above.

Prob Learning (UofT) STA414-Week4 29 / 50

Loopy BP: Stability Improvements

After computing mnew
j→i(xi), we can improve stability via

normalization after each step:

mnew
j→i(xi)← mnew

j→i(xi)/
∑
xi

mnew
j→i(xi)

momentum in the message passing step: For some momentum
parameter η ∈ (0, 1),

mnew
j→i(xi)← η mnew

j→i(xi) + (1− η) mold
j→i(xi)

Prob Learning (UofT) STA414-Week4 30 / 50

Loopy BP: Message Passing step

1. For some number of iterations, keep passing messages. It will
generally not converge, but change in messages will be small.

2. Compute beliefs

b(xi) ∝ ψi(xi)
∏

j∈N(i)

mj→i(xi).

I Beliefs b(xi) are 2-dimensional vectors, with b(+1) and b(−1) being
the first and second coordinates.

I Compute the elementwise product of ψi(xi) and mj→i(xi) for all
j ∈ N(i).

I Normalize them so they are probabilities: b(xi)← b(xi)/
∑
xi
b(xi).

Prob Learning (UofT) STA414-Week4 31 / 50

Loopy BP for Image Denoising

While loopy BP may not converge, 10-20 iterations suffice to
perform approximate inference on the posterior.

The computed beliefs correspond to p(xi|y1, ..., yn).

One decision rule to estimate xi is

x̂i = argmaxxi b(xi).

The result is quite nice!

Prob Learning (UofT) STA414-Week4 32 / 50

Loopy BP: Issues

Convergence is always a problem.

Over-confident; thus, less accurate.

If the noise is not iid, results deteriorate fast.

There are advanced versions to remedy some of these, e.g.
Generalized Belief Propagation.

Prob Learning (UofT) STA414-Week4 33 / 50

Summary

Belief propagation (BP) is an exact variable elimination method
on trees.

I One pass is enough to get the marginal at the root node.
I Two passes would give the marginals at all nodes.

Loopy BP is the same algorithm applied iteratively on a general
graph, without any convergence guarantees.

I Message passing stage may seem unstable.
I We use momentum and normalization to improve stability.
I Beliefs will often provide overconfident estimates of marginals.

We worked with a single image so there was no learning from
data. In other words, we did not do ’machine learning’.

Prob Learning (UofT) STA414-Week4 34 / 50

Decision making

We develop a small amount of theory that provides a framework for
understanding many of the models we consider.

Suppose we have a real-valued input vector x and a corresponding
target (output) value c with joint probability distribution: p(x, c).

Our goal is to predict the output label c given a new value for x.

For now, we focus on classification so c is a categorical variable,
but the same reasoning applies to regression (continuous target).

The joint probability distribution p(x, c) provides a complete summary
of uncertainties associated with these random variables.

Inference

Estimating/approximating p(x, c) is an example of an inference task.

Prob Learning (UofT) STA414-Week4 35 / 50

Decision rule

In the Mona Lisa example, we used the following rule to predict pixel
values

x̂i = argmaxxi b(xi) = p(xi|y1, ..., yn).

This decision rule predicts xi = 1 in both cases below:

b(xi = +1) = 0.9

b(xi = +1) = 0.51

Prob Learning (UofT) STA414-Week4 36 / 50

Example: Cancer screening from chest X-ray

Based on the X-ray image, we would like determine whether the
patient has cancer or not.

The input vector x is pixel intensities, and the output c represents
the presence of cancer, class C1, or absence of cancer, class C2.

C1 cancer present

C2 cancer absent

We can use an ”arbitrary” encoding for these classes C1 and C2.

Prob Learning (UofT) STA414-Week4 37 / 50

Inference

Inference Problem

Let’s assume we estimated the joint distribution p(x, Ck) using some
ML method. In the end, we must make a decision of whether to give
treatment to the patient or not.

Given a new X-ray image, our goal is to decide which of the two
classes that image should be assigned to. We could compute
conditional probabilities of the two classes, given the input image:

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
Bayes’ rule.

If we minimize the expected number of mistakes, we can minimize
the probability of assigning x to the wrong class.
This suggests we minimize the misclassification rate.

Prob Learning (UofT) STA414-Week4 38 / 50

Misclassification rate

Goal

Make as few misclassifications as possible. We need a rule that assigns
each value of x to one of the available classes.

Divide the input space into regions Rk (decision regions) such that all
points in Rk are assigned to class Ck.

Red + green regions: input belongs
to class C2, but is assigned to C1.
Blue region: input belongs to class
C1, but is assigned to C2.

p(mistake) =p(x ∈ R1, C2) + p(x ∈ R2, C1)

=

∫
R1

p(x, C2)dx+

∫
R2

p(x, C1)dx

Prob Learning (UofT) STA414-Week4 39 / 50

Misclassification rate

Compare the following two decision rules:

Blue + green area is always included in the p(mistake).

Therefore, we aim to reduce the red area by moving the threshold
x̂ to x0, which turns out to be optimal in this case.

Prob Learning (UofT) STA414-Week4 40 / 50

Misclassification error

Misclassification error:

p(mistake) =

∫
R1

p(x, C2)dx︸ ︷︷ ︸
red+green

+

∫
R2

p(x, C1)dx︸ ︷︷ ︸
blue

and the decision regions R1 and R2 are disjoint.

Therefore, for a particular input x, if p(x, C1) > p(x, C2), then we
assign x to class C1. I.e. R1 = {x : p(x, C1) > p(x, C2)}.

Minimizing misclassification

In order to minimize the probability of making mistake, we assign each
x to the class for which the probability p(Ck, x) is largest. This
minimizes the misclassification rate.

Prob Learning (UofT) STA414-Week4 41 / 50

Expected loss

How realistic is it to minimize the misclassification rate?

We want a loss function to measure the loss incurred by taking
any of the available decisions.

Suppose that for x, the true class is Ck, but we assign x to class Cj
and incur loss of Lkj ((k, j)-th element of a loss matrix).

Consider medical diagnosis example: example of a loss matrix:

Thus the expected loss is given by

E[L] =
∑
k

∑
j

∫
Rj

Lkj p(x, Ck)dx

Prob Learning (UofT) STA414-Week4 42 / 50

New goal: Minimize expected loss

New objective:

Choose regions Rj as to minimize expected loss.

In the above figure, the blue region corresponds to L12: the sample
comes from class C1 but we classified as C2.

Prob Learning (UofT) STA414-Week4 43 / 50

Minimize expected loss

Therefore, we want to minimize

E[L] =
∑
k

∑
j

∫
Rj

Lkj p(x, Ck)dx

=
∑
j

∫
Rj

∑
k

Lkj p(x, Ck)dx.

Define gj(x) =
∑

k Lkj p(x, Ck): the overall cost of incorrectly assigning
x to class Cj . Then, the expected loss is equal to

E[L] =
∑
j

∫
Rj

gj(x)dx

Thus, minimizing E[L] is equivalent to choosing

Rj = {x : gj(x) < gi(x) for all i 6= j}.

Prob Learning (UofT) STA414-Week4 44 / 50

Simplifying further

We can also use the product rule p(x, C1) = p(C1|x)p(x) and reduce the
problem to:

Discriminant rules:

Find regions Rj such that the following is minimized:∑
k

Lkj p(Ck|x).

That is

Rj =
{
x :

∑
k

Lkj p(Ck|x) <
∑
k

Lki p(Ck|x) for all i 6= j
}
.

Prob Learning (UofT) STA414-Week4 45 / 50

Reject option

For the regions where we are relatively uncertain about class
membership, we don’t have to make a decision.

Here, notice that we have a threshold θ and the conditional class
probabilities fall below this threshold, we refuse to make a decision.

Prob Learning (UofT) STA414-Week4 46 / 50

Loss functions for regression

Now we consider an input/target setup (x, t) where the target
(output) is continuous t ∈ R, and the joint density is p(x, t).

Instead of decision regions, we aim to find a regression function
y(x) ≈ t which maps inputs to the outputs.

Consider the squared loss function L between y(x) and t to assess
the quality of our estimate L(y(x), t) = (y(x)− t)2.

Goal:

What is the best function y(x) that minimizes the expected loss?

E[L] =

∫ ∫
L(y(x), t)p(x, t)dxdt.

Prob Learning (UofT) STA414-Week4 47 / 50

Minimizing expected loss: Best regression function

We add and subtract E[t|x] and write

E[L] =
∫ ∫

(y(x)− t)2p(x, t)dxdt

=

∫ ∫
(y(x)− E[t|x] + E[t|x]− t)2p(x, t)dxdt

=

∫ ∫
(y(x)− E[t|x])2p(x, t)dxdt+

∫ ∫
(E[t|x]− t)2p(x, t)dxdt

+ 2

∫ ∫
(y(x)− E[t|x])(E[t|x]− t)p(x, t)dxdt

The last term is zero since∫ ∫
(y(x)− E[t|x])(E[t|x]− t)p(x, t)dxdt

=

∫ ∫
(y(x)− E[t|x])(E[t|x]− t)p(t|x)p(x)dxdt

=

∫
(y(x)− E[t|x])

{∫
(E[t|x]− t)p(t|x)dt︸ ︷︷ ︸

=0

}
p(x)dx = 0

Prob Learning (UofT) STA414-Week4 48 / 50

Best regression function

We showed that the expected loss is given by the sum of two
non-negative terms

E[L] =

∫ ∫
(y(x)−E[t|x])2p(x, t)dxdt+

∫ ∫
(E[t|x]−t)2p(x, t)dxdt.

The second term does not depend on y(x) thus choosing the best
regression function y(x) is equivalent to minimizing the first term
on the right hand side.

Since that term is always non-negative, we can make it zero by
choosing

y(x) = E[t|x].

The second term is the expectation of the conditional variance of
t|x. It represents the intrinsic variability of the target data and
can be regarded as noise.

Prob Learning (UofT) STA414-Week4 49 / 50

Summary: Decision making

Depending on the application, one needs to choose an appropriate
loss function.

Loss function can significantly change the optimal decision rule.

One can always use the reject option and not make a decision.

In case of regression, one can find the optimal map between x and
t if one knows the conditional distribution t|x. The optimal map
corresponds to the conditional expectation E[t|x].

Prob Learning (UofT) STA414-Week4 50 / 50

