STA 414/2104:
Statistical Methods of Machine Learning I1
Week 6: Neural Networks and Optimization

Murat A. Erdogdu

University of Toronto

Prob Learning (UofT) STA414-Week 6 1/50

Outline

@ Basics of Optimization in ML

© Limits of Linear Classification

@ Introducing Neural Networks

@ Backpropagation

Prob Learning (UofT) STA414-Week 6

2/50

Gradients

f(w):R¥ =R i

of(w)/0un |
vy = | OO 1
e Y
e, ¢
IR

Generalization of derivatives in multidimensions.

It is a vector representing the slope.

The direction of the gradient points to the greatest rate
of increase of the function.

Its magnitude is the slope of the graph in its direction.

source: wikipedia

What is optimization?

Typical setup (in machine learning, other areas):
e Formulate a problem
* Design a solution (usually a model)
* Use some quantitative measure to determine how good the solution is.

E.g., classification:
* Create a system to classify images
* Model is some classifier, like logistic regression
¢ Quantitative measure is misclassification error (lower is better in this case)

In almost all cases, you end up with a loss minimization problem of

the form .
minimizey F(w)

Ex: least squares

minimize E

N
Zx W—t

l\)l»—l

Error minimization

* Ultimately, training a machine learning model always reduces to solving an
optimization problem

minimizey F(w)
Equivalently, we are interested in finding ~ w™ = argmin, F(w)
by using an optimization method.
» Standard approach is Gradient descent with = wt — UVE(Wt)

where 7 € (0,1] is the step size (or learning rate).

N
* For the least squares, minimize E(w) = % > o xpw — t)?

n=1

* we have N
VE(w) = Z X, (xXw — t,)
n=1

* We choose an initial point WO , and perform the following iterations

with = w! — nVE(w)

Gradient descent derivation

Suppose we are at w and we want to pick a direction d such that E(w + nd) is
smaller than E(w) for a step size n.

The first-order Taylor series approximation of E(w+d) around w is:
E(w+nd) ~ E(w) +nVE(w)'d
d should be in the negative direction of VE(w)

This approximation gets better as n gets smaller since as we zoom in on a
differentiable function it will look more and more linear.

Gradient descent derivation

¢ We need to find a direction for d that minimizes

E(w+nd) = E(w) +nVE(w)'d
* The best direction is —V E(w)

This doesn’t affect
the problem, but it is
YN common in practice

* Forthe least squares, minimize E(w)= — Z(t" — XZ;W)Z to normalize with N

* we have 1 N
VE(w) = ¥ Z xp(xLw — t,)
n=1

0

* We choose an initial point w" , and do the following iterations

witl = w! — nVE(w")

How to choose the step size?

Step size is referred to as learning rate in machine learning.
It should be in the interval (0,1).
The sequence of step sizes is referred to as the learning rate schedule.

One simple strategy: start with a big nand progressively make it smaller by e.g.,
halving it until the function decreases.

There are more formal ways of choosing the step size. But in practice, they are
not used for computational reasons.

When does the GD converged?

When [|[VE(w)| =0

This is never possible in practice. So we stop iterations if gradient is smaller
than a threshold.

If the function is convex then we have reached a global minimum.
If the function is not convex, what did we obtain?

Probably a local minimum or a saddle.

Stochastic Gradient Descent

* Any iteration of a gradient descent method requires that we
sum over the entire dataset to compute the gradient.

* SGD idea: at each iteration, sub-sample a small amount of data
(even just 1 point can work) and use that to estimate the
gradient.

* Each update is noisy, but very fast!

* This is the basis of optimizing ML algorithms with huge datasets
(e.g., recent deep learning).

* Computing gradients using the full dataset is called batch
learning, using subsets of data is called mini-batch learning.

Stochastic Gradient Descent

* In most cases, the minimization is an average over data points:

minimize E(w

2 \

N
Z (tn, y(Xn, Hard to compute
n=1 when N is large

Recall that we can write the negativej\l{og-likelihood in the above form.
1
Gradient: VE(w) = N Z VL(tn, y(xn, w))
n=1

At each iteration, sub-sample a small amount of data and use that to estimate
the gradient.

WH_1 = Wt Z VL nay Xn, W))
nES

&«

Here, |S| denotes the number of elements in the set S.
Standard SGD has |S|=1, i.e., randomly samples an index
and takes a step based on that sample. |S|>1 is called mini-batch SGD.

Non-convex optimization

Stochastic Gradient descent

Local minimum

Global minimum

Stochastic methods have higher chance to escape “bad” minima, and converge to
favorable regions.

9 Limits of Linear Classification

STA414-Week 6 3/50

Visualizing NOT

e Data is linearly separable if a linear decision rule
can perfectly separate the training examples.

Prob Learning (UofT) STA414-Week 6 4 /50

XOR is Not Linearly Separable

Some datasets are not linearly separable, e.g. XOR.

T2

X1

Prob Learning (UofT) STA414-Week 6 5/50

Classifying XOR Using Feature Maps

Sometimes, we can overcome this limitation using feature maps,
e.g., for XOR.

21 @y | (%) Pa(x) s(x) |t

0 0] 0 0 0 |0

1 0 1| 0 1 0 |1

Px)=| o 1 0| 1 0 0 |1
Tr1T2

1 1] 1 1 1 o

e This is linearly separable. (Try it!)
@ Designing feature maps can be hard. Can we learn them?

Prob Learning (UofT) STA414-Week 6 6 /50

@ Introducing Neural Networks

STA414-Week 6 7 /50

Neurons in the Brain

Neurons receive input signals and accumulate voltage.

After some threshold, they will fire spiking responses.

Action potential

+40
Na® ions in
Sl 13 &
- At
S o 05 |z
£ 2 B K ions out
@ & =
o °
Q
= 3
g)
Threshold _ / Failed e
55— initiations
Resting state
70 [—

Hyperpolarization
0 1 2 3 4
Time (ms)

[Pic credit: www.moleculardevices.com]

STA414-Week 6

8/50

A Simpler Neuron

For neural nets, we use a much simpler model for neuron, or unit:

Yy _ .
output output weights bias

e X ylzqﬁ(‘l?vTx—Hl))

inputs T \
1 T2 x3

activation function inputs

o Same as logistic regression: y = o(w'x + b)

e By throwing together lots of these simple neuron-like processing
units, we can do some powerful computations!

Prob Learning (UofT) STA414-Week 6 9 /50

A Feed-Forward Neural Network

an output
unit

output layer

second hidden layer
o A directed acyclic graph
e Units are grouped into

layers ahidden
unit

first hidden layer

input layer

a connection

depth an input

unit

Prob Learning (UofT) STA414-Week 6 10 /50

Multilayer Perceptrons

o A multi-layer network consists of fully connected layers.

o In a fully connected layer, all input units are connected to
all output units.

o The outputs are a function of the input units:
y = f(x) = ¢(Wx+Db)

¢ is applied component-wise.

Prob Learning (UofT) STA414-Week 6 11 /50

Some Activation Functions

Identity Rectified Linear Unit
(ReLU)
Yy==z
y = max(0, 2)

Prob Learning (UofT) STA414-Week 6

Soft ReLU

y=1logl+e*

12/ 50

More Activation Functions

Hard Threshold

- 1 ifz>0
Y=Y 0 ifz<o0

Prob Learning (UofT)

Logistic

1

V= Ty

STA414-Week 6

Hyperbolic
Tangent
(tanh)

e —e *?

13 /50

Computation in Each Layer

Each layer computes a function.

b = 70(x) = o(Wx + b)) y [©OO O

h® = O HRMD) = pWnD 4 p®) f)

y : FE (RE-D) f(3)
h? O O O
£

o If task is regression: choose h(l) O OO

y = f) (h(L—l)) = (W<L))Th(L—1) + p)

f(l)
o If task is binary classification: choose I:
y = FOMED) = o (W) ThED 4 pB) O OO

Prob Learning (UofT) STA414-Week 6 14 /50

A Composition of Functions

The network computes
a composition of functions.

y=fHo...0 f(l)(x).

Modularity: We can implement each layer’s
computations as a black box.

Prob Learning (UofT) STA414-Week 6

f(l)
x| O OO

15 /50

Feature Learning

Neural nets can be viewed as a way of learning features:

linear regressor.
/ clasifier

The goal:

b Learning (UofT) STA414-Week 6 16 / 50

Feature Learning

Y output output wewg‘hts bi‘as
wy connections [v '
wg W y=¢(w'x+b)
inputs 4 A

zy T2 T3 !
activation function inputs

Suppose we're trying to classify images of handwritten digits.
Each image is represented as a vector of 28 x 28 = 784 pixel values.

Each hidden unit in the first layer acts as a feature detector.

We can visualize w by reshaping it into an image.
Below is an example that responds to a diagonal stroke.

Prob Learning (UofT) STA414-Week 6 17 /50

Features for Classifying Handwritten Digits

Features learned by the first hidden layer of a handwritten digit
classifier:

Unlike hard-coded feature maps (e.g., in polynomial regression),
features learned by neural networks adapt to patterns in the data.

Prob Learning (UofT) STA414-Week 6 18 /50

Expressive Power of Linear Networks

o Consider a linear layer: the activation function was the identity.
The layer just computes an affine transformation of the input.

e Any sequence of linear layers is equivalent to a single linear layer.

y = WOWAWW
P A
AW/

@ Deep linear networks can only represent linear functions
— no more expressive than linear regression.

Prob Learning (UofT) STA414-Week 6 19 /50

Expressive Power of Non-linear Networks

e Multi-layer feed-forward neural networks
with non-linear activation functions

@ Universal Function Approximators:
They can approximate any function arbitrarily well.

@ True for various activation functions
(e.g. thresholds, logistic, ReLU, etc.)

Prob Learning (UofT) STA414-Week 6 20 /50

Designing a Network to Classify XOR

Assume a hard threshold activation function.

1

1 ‘@ 1

Prob Learning (UofT) STA414-Week 6

21 /50

Designing a Network to Classify XOR

h1 is computed as x1 V x9

hy =1z + xz9 — 0.5 > 0]
ho is computed as x1 A x3

ho =1z + 23 — 1.5 > 0]
Yy computes

Yy :H[hl —hy — 0.5 > 0]
=T XOR xT9

Prob Learning (UofT) STA414-Week 6 22 /50

Expressivity of the Logistic Activation Function

e What about the logistic activation function?
e Approximate a hard threshold by scaling up w and b.

1

0.8,

06+

04}

0.2

o.

=4 -3 -2 -1 o0 1 2 3 w4 -3 2 -

y=o(x) y = o(bx)

e Logistic units are differentiable, so we can learn weights with
gradient descent.

Prob Learning (UofT) STA414-Week 6 23 /50

What is Expressivity Good For?

e May need a very large network to represent a function.
e Non-trivial to learn the weights that represent a function.

e If you can learn any function, over-fitting is potentially
a serious concern!

For the polynomial feature mappings, expressivity increases with
the degree M, eventually allowing multiple perfect fits to the
training data. This motivated L? regularization.

50
25
00
-25

50
-50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50

@ Do neural networks over-fit and how can we regularize them?

Prob Learning (UofT) STA414-Week 6 24 /50

Regularization and Over-fitting for Neural Networks

e The topic of over-fitting (when & how it happens, how to
regularize, etc.) for neural networks is not well-understood, even

by researchers!

» In principle, you can always apply L? regularization.

@ A common approach is early stopping, or stopping training early,
because over-fitting typically increases as training progresses.

Prediction Error

Prob Learning (UofT)

Generalization error

N Early stopping " -

T—

. Training error

Training lterations

STA414-Week 6 25 /50

@ Backpropagation

STA414-Week 6 26 / 50

Learning Weights in a Neural Network

Goal is to learn weights in a multi-layer neural network
using gradient descent.

Weight space for a multi-layer neural net: one set of weights for
each unit in every layer of the network

Define a loss £ and compute the gradient of the cost

VJ(w)=dJ/dw

the average loss over all the training examples.

Let’s look at how we can calculate d/dw.

Prob Learning (UofT) STA414-Week 6 27 /50

Example: Two-Layer Neural Network

Figure: Two-Layer Neural Network

Prob Learning (UofT) STA414-Week 6 28 /50

Computations for Two-Layer Neural Network

A neural network computes a composition of functions.

N B O B
h1 = 0'(2’1)
252) :w(()21) . 1+w§) - hq —I—w() - ho

Prob Learning (UofT) STA414-Week 6 29 /50

Simplified Example: Logistic Least Squares

STA414-Week 6 30/ 50

Computation Graph

@ The nodes represent the inputs and computed quantities.

@ The edges represent which nodes are computed directly
as a function of which other nodes.

z t

T .

b3z >y [

w

Prob Learning (UofT) STA414-Week 6 31 /50

Uni-variate Chain Rule

Let z = f(y) and y = g(z) be uni-variate functions.
Then z = f(g(x)).

dz dz %

a_dfy dz

Prob Learning (UofT) STA414-Week 6 32 /50

Logistic Least Squares: Gradient for w

Computing the loss:

z=wx+b
y=o(z)
1 2
= —(y—t
2(?/)

Computing the gradient for w:

oL 0L oy

ow dy dw
0L Oy 0z
dy 9z dw

= (o(wx +b) — t)o’ (wx + b)x

STA414-Week 6

Prob Learning (UofT)

33 /50

Logistic Least Squares: Gradient for b

Computing the loss:

z=wr+b

y=o0(2)
_1 2

ﬁ—i(y t)

Computing the gradient for b:

oL
0b

Prob Learning (UofT) STA414-Week 6 34 /50

Logistic Least Squares: Gradient for b

Computing the loss:

z=wx+b
y=o0(2)

1 2
L=5y—-1)

Computing the gradient for b:

oL OL dy

ob dy db
AL By 0=
Ty 0z Ob

=(y—1t) d'(2) 1
= (o’(wx + b) — t)a’(wm + b)l

Prob Learning (UofT) STA414-Week 6 35 /50

Comparing Gradient Computations for w and b

Computing the loss:

z=wx+b
y=o0(z2)
il 2

L=5ly—1)

Computing the gradient for w: Computing the gradient for b:

oL
ab
0L By 0=

~ Jy 0z Ob
=(y—1t)o'(2) 1

Prob Learning (UofT) STA414-Week 6 36 /50

Structured Way of Computing Gradients

Computing the loss:

z=wxr+b
y=o(z)
_ 1 2
L=5-1)
Computing the gradients:
oL
7= —t
9y (y—1)
oL oL
92 87y o'(z)
or_dcd: _dc oL _dcd: _de
w dedw dz b dzdb dz

Prob Learning (UofT) STA414-Week 6 37 /50

Error Signal Notation

e Let y denote the derivative d£/dy, called the error signal.

e Error signals are just values our program is computing
(rather than a mathematical operation).

Computing the loss: Computing the derivatives:
z=wzx+b y=(y—t)
y=o0(2) z=750(2)
1 w=zx b=z
L= §(y —t)°

Prob Learning (UofT)

STA414-Week 6 38 /50

Computation Graph has a Fan-Out > 1

Lo-Regularized Regression
z=wxr+b

L t (2)
Y=oz
b>§z_>y—>£—>£reg L= %(y - t)2

/L(_// »R/ R = %wg

Lrog = L+ AR

STA414-Week 6 39 /50

Prob Learning (UofT)

Computation Graph has a Fan-Out > 1

Softmax Regression

w11 W1
by \
\ t zg:ng-x-—i—bg
x]_ >Z >y1 K] I
e
Io <9 Y2 / TS e
/ T t2 ,C: —Ztklogyk
b k
w21
22

STA414-Week 6 40 / 50

Multi-variate Chain Rule

Suppose we have functions f(x,y), z(t), and y(t).

d
a0 = 5o oy @

of dr 0f dy t< \
/'

Example:
x(t) = cost dt — drdt ' 9y dt
y(t) = +2 = (ye™) - (—sint) + (1 + ze™¥) - 2t

Prob Learning (UofT) STA414-Week 6 41 /50

Multi-variate Chain Rule

In the context of back-propagation:

Mathematical expressions
to be evaluated

df _ofdz fd
a o df—i_@y dg *t
N/ /

Values already computed
by our program

In our notation:

~ \

de
dt Yy

2l&

Prob Learning (UofT)

STA414-Week 6 42 /50

Backpropagation for Regularized Logistic Least Squares

X t

\ Backward pass:
b/z >l ‘,C;:»Crcg == ALyeg 7_7d7
w >R dR Z=Y 1z
Forward pass: =\ —750(2)
- dLlee
z=wxr—+b L= & 7':7((92 ﬁdR
= o(2) dc Y= 2w dw
v= =1 =Zz+Rw
L=(y—t)> o7 _ 0
2 (v—1) y=~L dy b= E—z
1 _
R = ju’ =L(y—1) =z
Lreg = L+ AR

Prob Learning (UofT)

STA414-Week 6 43 /50

Full Backpropagation Algorithm:

Let v1,...,vn be an ordering of the computation graph where parents
come before children.

vy denotes the variable for which we're trying to compute gradients.
o forward pass:
For:=1,...,N,
Compute v; as a function of Parents(v;).
e backward pass:

Fort=N-1,...,1,
_ _0v;j
vi = Z Ujavj.

(2

j€Children(v;)

Prob Learning (UofT)

STA414-Week 6 44 / 50

Computational Cost

e Computational cost of forward pass:
one add-multiply operation per weight

Z w(l)x] + b

e Computational cost of backward pass:
two add-multiply operations per weight

EZZ?T (2)
k

@ One backward pass is as expensive as two forward passes.

Prob Learning (UofT) STA414-Week 6

45 / 50

Backpropagation

o The algorithm for efficiently computing gradients in neural nets.

o Gradient descent with gradients computed via backprop is used to
train the overwhelming majority of neural nets today.

e Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the
gradients.

Prob Learning (UofT) STA414-Week 6 46 / 50

Auto-Differentiation

o Autodifferentiation performs backprop in a completely mechanical
and automatic way.

e Many autodiff libraries: PyTorch, Tensorflow, Jax, etc.

e Although autodiff automates the backward pass for you, it’s still
important to know how things work under the hood.

@ In the tutorial, you will use an autodiff framework to build
complex neural networks.

Prob Learning (UofT) STA414-Week 6 47 / 50

Backpropagation for Two-Layer Neural Network

Wit @ Backward pass:

=1
o)" po e
2 W by :)

o) Wy u

A
\

uh w;(j) =Yk hi
. (2
Forward pass: b;ﬁ) _ T
hi=> gewg;
Z; = Zj:wg)m] + bgl) ¢ Ek: ki
hi = o(2) Zi = hio'(z)
e = Y wi hi+ b wl) =z
| T
L= 5 ;(’yk — tr)? b, =%

Prob Learning (UofT) STA414-Week 6 48 / 50

Backpropagation for Two-Layer Neural Network

In vectorized form:

w Wij) Backward pass:
y=L(y—t
- é y=~L(y—t)

b W@ =yh'

Forward pass: 5@ — -
z=WUx +p® h=w@Ty
h = o(z) Z="hoo/(z)

1 __
£=3le—yl* b =z

Prob Learning (UofT) STA414-Week 6

49 /50

Conclusion

o Introduced Neural Networks
@ Discuss their expressive power.
» Can approximate any function.
o Introduced backpropagation.
» We also work out the updates for a two-layer neural network.

Prob Learning (UofT) STA414-Week 6 50 / 50

	Basics of Optimization in ML
	Limits of Linear Classification
	Introducing Neural Networks
	Backpropagation

