
STA 414/2104:
Probabilistic Machine Learning
Week 9: Variational Inference II & VAEs

Murat A. Erdogdu

University of Toronto

Prob Learning (UofT) STA414-Week9 1 / 43

Overview for the first hour

Variational Inference

ELBO and its properties

Estimating gradients of the ELBO
I Simple Monte Carlo
I Reparameterization trick

Prob Learning (UofT) STA414-Week9 2 / 43

Recap: Posterior Inference for Latent Variable Models

We encountered a few latent variable models (e.g. the trueskill model).

These models have a factorization p(x, z) = p(z)p(x|z) where:

x are the observations or data,

z are the unobserved (latent) variables

p(z) is called the prior

p(x|z) is called the likelihood

The conditional distribution of the unobserved variables given the
observed variables (aka the posterior) is

p(z|x) =
p(x, z)

p(x)
=

p(x, z)∫
p(x, z)dz

We assume p(x) =
∫
p(x, z)dz is hard to compute

Prob Learning (UofT) STA414-Week9 3 / 43

Variational methods

Variational inference works as follows:

Choose a tractable parametric distribution qφ(z) with parameters
φ. This distribution will be used to approximate p(z|x).

I For example, qφ(z) = N (z|µ,Σ) where φ = (µ,Σ).

Encode some notion of ”distance” between p(z|x) and qφ(z) that
can be efficiently estimated. Usually we will use the KL
divergence.

Minimize this distance.

Prob Learning (UofT) STA414-Week9 4 / 43

Recall: KL divergence

We will measure the difference between q and p using the
Kullback-Leibler divergence

KL(qφ(z)‖p(z|x)) =

∫
qφ(z) log

qφ(z)

p(z|x)
dz

= E
z∼qφ

log
qφ(z)

p(z|x)

Prob Learning (UofT) STA414-Week9 5 / 43

ELBO: Evidence Lower Bound

Evaluating KL(qφ(z)‖p(z|x)) is intractable because of the integral
over z and the term p(z|x), which is intractable to normalize.

We can still “optimize” this KL without knowing the
normalization constant p(x).

We solve a surrogate optimization problem: maximize the
evidence lower bound (ELBO).

Maximizing the ELBO is equivalent to minimizing

KL(qφ(z)‖p(z|x)).

Prob Learning (UofT) STA414-Week9 6 / 43

ELBO: Evidence Lower Bound

Maximizing the ELBO is the same as minimizing KL(qφ(z)‖p(z|x)).

KL(qφ(z)‖p(z|x)) = E
z∼qφ

log
qφ(z)

p(z|x)

= E
z∼qφ

[
log

(
qφ(z) · p(x)

p(z, x)

)]

= E
z∼qφ

[
log

qφ(z)

p(z, x)

]
+ E
z∼qφ

log p(x)

:= −L(φ) + log p(x)

Where L(φ) is the ELBO:

L(φ) = E
z∼qφ

[
log p(z, x)− log qφ(z)

]

Prob Learning (UofT) STA414-Week9 7 / 43

ELBO: Evidence Lower Bound

KL(qφ(z)‖p(z|x)) = −L(φ) + log p(x).

Rearranging, we get

L(φ) + KL(qφ(z)‖p(z|x)) = log p(x)

Because KL(qφ(z)‖p(z|x)) ≥ 0,

L(φ) ≤ log p(x)

maximizing the ELBO ⇒ minimizing KL(qφ(z)‖p(z|x)).

Note: L(φ) = E
z∼qφ

[
log p(z, x)

]
+ E
z∼qφ

[
− log qφ(z)

]
, so

ELBO = expected log-joint + entropy

Prob Learning (UofT) STA414-Week9 8 / 43

Maximizing ELBO

Recall: ∇L(φ) gives the direction of the steepest ascent of L(φ).

Gradient descent (GD) methods: φt+1 = φt + st∇L(φt).

We have that L(φ) = E
z∼qφ

[
log p(x, z)− log qφ(z)

]
.

We need ∇φL(φ) or its unbiased estimate (stochastic GD).

Approximating the gradient of some E(f(Y, φ)):

If the distribution of Y independent of φ then

∇φE(f(Y, φ)) = E(∇φf(Y, φ)).

We then have ∇φE(f(Y, φ)) ≈ 1
n

∑n
i=1∇φf(yi, φ).

Problem: In our case the distribution of z depends on φ.

Prob Learning (UofT) STA414-Week9 9 / 43

The reparameterization trick

Problem:

∇φ E
z∼qφ

[
log p(x, z)− log qφ(z)

]
6= E

z∼qφ

[
∇φ (log p(x, z)− log qφ(z))

]
.

But in some situations there is a trick:

We break this sampling process into two parts:
I Sample a random variable ε that has fixed (or no) parameters, such

as a uniform distribution or standard normal.
I Determinsitically compute z’s as a function φ and ε, such that:

I ε ∼ p0(ε)
I z = T (ε, φ)
I =⇒
I z ∼ qφ(z)

Prob Learning (UofT) STA414-Week9 10 / 43

The reparameterization trick

For example, z = µ+ σε = T (φ, ε) (here φ = (µ, σ)).
I ε ∼ N (0, 1)
I z = µ+ εσ
I =⇒
I z ∼ N (µ, σ)

This makes the density independent of the parameter φ, which will
let us use simple Monte Carlo: z = T (φ, ε)

∇φL(φ) = ∇φEz∼qφ(z)
[

log p(x, z)− log qφ(z)
]

= ∇φEε∼p0(ε)
[

log p(x, T (φ, ε))− log qφ(T (φ, ε))
]

= Eε∼p0(ε)∇φ
[

log p(x, T (φ, ε))− log qφ(T (φ, ε))
]

Prob Learning (UofT) STA414-Week9 11 / 43

SVI: Stochastic Variational Inference

Instead of computing the full gradient (which is in general not
possible), we compute a simple Monte Carlo estimate of it.

For example, instead of

Eε∼p0(ε)∇φ
[

log p(x, T (φ, ε))− log qφ(T (φ, ε))
]

we work with a mini-batch of size m

Êε∼p0(ε)∇φ
[

log p(x, T (φ, ε))− log qφ(T (φ, ε))
]

≈ 1

m

m∑
i=1

∇φ
[

log p(x, T (φ, εi))− log qφ(T (φ, εi))
]

Prob Learning (UofT) STA414-Week9 12 / 43

MCMC: Pros & Cons

Pros of MCMC:

Accurate results (at least asymptotically)

Flexibility

No approximation

Handles multimodal distributions

Cons of MCMC:

High computational cost

Requires tuning of hyperparameters

Convergence issues

Inefficient in sampling complex dependencies

Prob Learning (UofT) STA414-Week9 13 / 43

SVI: Pros & Cons

Pros of SVI:

Faster convergence

Scalability

Ease of use

Cons of SVI:

Approximate results

Limited flexibility

Mode seeking

Sensitive to choice of hyperparameters

Prob Learning (UofT) STA414-Week9 14 / 43

Overview of the second part

Autoencoders

Variational Autoencoders

Prob Learning (UofT) STA414-Week9 15 / 43

Non-linear Dimension Reduction

Neural networks can be used for
nonlinear dimensionality reduction.

This is achieved by having the same
number of outputs as inputs. These
models are called autoencoders.

Consider a multilayer perceptron
that has D inputs, D outputs, and
M hidden units, with M < D.

We can squeeze the information
through some kind of bottleneck.

If we use a linear network (linear
activation) this is very similar to
Principal Components Analysis.

Prob Learning (UofT) STA414-Week9 16 / 43

Autoencoders and PCA

Given an input x, its corresponding reconstruction is given by:

yk(x,w) =

M∑
j=1

w
(2)
kj σ

(D∑
i=1

w
(1)
ji xi

)
, k = 1, ..., D.

We can determine the network parameters w by minimizing the
reconstruction error:

E(w) =
1

2

N∑
n=1

‖y(xn,w)− xn‖2

If the hidden and output layers are
linear, it will learn hidden units
that are linear functions of the data
and minimize squared error.

M hidden units will span the same
space as the first M principal
components.

Prob Learning (UofT) STA414-Week9 17 / 43

Deep Autoencoders

We can put extra nonlinear hidden
layers between the input and the
bottleneck and between the
bottleneck and the output.

This gives nonlinear generalization
of PCA, providing non-linear
dimensionality reduction.

The network can be trained by the
minimization of the reconstruction
error function.

Much harder to train.

Prob Learning (UofT) STA414-Week9 18 / 43

Geometrical Interpretation

Geometrical interpretation of the mappings performed by the
network with 2 hidden layers for the case of D = 3 and M = 2
units in the middle layer.

The mapping F1 defines a nonlinear projection of points in the
original D-space into the M -dimensional subspace.

The mapping F2 maps from an M -dimensional space into
D-dimensional space.

Prob Learning (UofT) STA414-Week9 19 / 43

Deep Autoencoders

We can consider very deep autoencoders.

By row: Real data, Deep autoencoder with a
bottleneck of 30 linear units, and 30-d PCA.

Prob Learning (UofT) STA414-Week9 20 / 43

Deep Autoencoders

Similar model for MNIST handwritten digits:

Deep autoencoders produce much better reconstructions.

Prob Learning (UofT) STA414-Week9 21 / 43

Application: Image Denoising

We can train a denoising autoencoder.

We feed noisy image as an input to the encoder

Minimize the reconstruction error between the decoder output and
original image.

This method requires training and knowledge of the noise
structure (fully supervised).

In contrast, loopy BP works for a single noisy image and doesn’t
require the knowledge of noise structure (unsupervised).

Prob Learning (UofT) STA414-Week9 22 / 43

Autoencoders: Summary

Autoencoders reconstruct their input via an encoder and a decoder.

Encoder: g(x) = z ∈ F, x ∈ X
Decoder: f(z) = x̃ ∈ X
where X is the data space, and F is the feature (latent) space.
z is the code, compressed representation of the input, x. It is
important that this code is a bottleneck, i.e. that

dim F � dim X

Goal: x̃ = f(g(x)) ≈ x.

Prob Learning (UofT) STA414-Week9 23 / 43

Issues with (deterministic) Autoencoders

Issue 1: Proximity in data space does not mean proximity in
feature space

I The codes learned by the model are deterministic, i.e.

g(x1) = z1 ⇒ f(z1) = x̃1

g(x2) = z2 ⇒ f(z2) = x̃2

I but proximity in feature space is not “directly” enforced for inputs
in close proximity in data space, i.e.

x1 ≈ x2 6⇒ z1 ≈ z2

I The latent space may not be continuous, or allow easy interpolation.

Prob Learning (UofT) STA414-Week9 24 / 43

Issues with (deterministic) Autoencoders

Issue 1: Proximity in data space does not mean proximity in
feature space

I If the space has discontinuities (eg. gaps between clusters) and you
sample/generate a variation from there, the decoder will simply
generate an unrealistic output.

Image credit: I. Shafkat

Prob Learning (UofT) STA414-Week9 25 / 43

Issues with (deterministic) Autoencoders

Issue 2: How to measure the goodness of a reconstruction?

I The reconstruction looks quite good. However, if we chose a simple
distance metric between inputs and reconstructions, we would
heavily penalize the left-shift in the reconstruction x̃.

I Choosing an appropriate metric for evaluating model performance
can be difficult, and that a miss-aligned objective can be disastrous.

Prob Learning (UofT) STA414-Week9 26 / 43

Variational Autoencoders

Variational autoencoders (VAEs) encode inputs with uncertainty.

Unlike standard autoencoders, the encoder of a VAE outputs a
probability distribution, qφ(z) to approximate p(z|x).

Instead of the encoder learning an encoding vector, it learns two
vectors: vector of means, µ, and another vector of standard
deviations, σ.

Prob Learning (UofT) STA414-Week9 27 / 43

Variational Autoencoders

The mean µ controls where encoding of input is centered while the
standard deviation controls how much can the encoding vary.

Encodings are generated at random from the “circle”, the decoder
learns that all nearby points refer to the same input.

Image credit: I. Shafkat

Prob Learning (UofT) STA414-Week9 28 / 43

VAE: Specifics

Our model is generated by the joint distribution over the latent
codes and the input data p(x, z). Decomposing

p(x, z) = prior× likelihood = p(z)p(x|z)

The encoder is p(z|x) = p(x, z)/p(x).

However, learning p(x) =
∫
p(x|z)p(z)dz is intractable.

We introduce an approximation with its own set of parameters, qφ,
and learn these parameters such that

qφ(z) ≈ p(z|x).

Prob Learning (UofT) STA414-Week9 29 / 43

VAE: Specifics

VI idea:

L(θ, φ;x) =ELBO

=Ez∼qφ
[

log pθ(x|z)
]
−KL(qφ(z)||p(z))

which is the (negative) loss function we use when training VAEs.

First term is the expected log-likelihood and the second is the
divergence of qφ from the true prior.

The encoder and decoder in a VAE become:
I Encoder: qφi(z) = qφi(z|xi) = N (µi, σ

2
i) where φi = (µi, log σi)

I Decoder: f(zi) = θi typically a neural network

Prob Learning (UofT) STA414-Week9 30 / 43

VAE Pipeline

For a given input (or minibatch) xi,
I Sample zi ∼ qφi(z|xi). This is the code in our feature space F .
I Run the code through decoder and write the likelihood: pθ(x|z).
I Compute the loss function:

L(x; θ, φ) = −Ezφ∼qφ
[

log pθ(x|z)
]

+KL(qφ(z|x)||p(z))

Use gradient-based optimization to backpropogate ∇θL, ∇φL

Prob Learning (UofT) STA414-Week9 31 / 43

After VAE is trained

Once a VAE is trained, we can sample new inputs

z ∼ p(z) x̃ ∼ pθ(x|z)
We can also interpolate between inputs, using simple vector
arithmetic.

Prob Learning (UofT) STA414-Week9 32 / 43

Example: MNIST

We choose the prior on z to be the standard Gaussian

p(z) ∼ N (0, I)

our likelihood function to be

pθ(x|z) = Bernoulli(θ)

and our approximate posterior is

qφi(z|xi) = N (µi, σ
2
i I)

To get our reconstructed input, we simply evaluate

x̃ ∼ pθ(x|z)

We will use neural networks as our encoder and decoder!

Prob Learning (UofT) STA414-Week9 33 / 43

The Reparametrization Trick

Encoder generates a code by sampling from qφ(z|x).

This sampling process introduces a major problem: gradients and
(approximate) expectations cannot be exchanged.

To solve this problem, we use the reparameterization trick.
I Instead of sampling z directly from its distribution (e.g.
zi ∼ N (µi, σ

2
i)) we express zi as

zi = µi + σi × εi where εi ∼ N (0, I)

with this, gradients can now flow through the entire network.

Prob Learning (UofT) STA414-Week9 34 / 43

Amortized Inference

Instead of doing VI from scratch every time we see a new
datapoint, we learn a function that can look at the data for a
point xi, and then output an approximate posterior qφ(zi|xi).
We’ll call this a ”recognition model”

Instead of a separate φi for each data example, we’ll just have a
single global φ that specifies the parameters of the recognition
model.

Because the relationship between data and posteriors is complex
and hard to specify by hand, we’ll do this with a neural network!

Prob Learning (UofT) STA414-Week9 35 / 43

Amortized Inference

We can simply have a network take in xi, and output the mean
and variance vector for a Gaussian:

Then the approximate posterior is given by

qφ(zi|xi) = N (zi|µφ(xi),Σφ(xi))

Prob Learning (UofT) STA414-Week9 36 / 43

VAE vs Amortized VAE Pipeline

For a given input (or minibatch) xi,

Standard VAE

Sample
zi ∼ qφi(z|xi) = N (µi, σ

2
i I).

Amortized VAE

Sample
zi∼qφ(z|xi)=N (µφ(xi),Σφ(xi))

Run the code through decoder and get likelihood: pθ(x|z).
Compute the loss function:

L(x; θ, φ) = −Ezφ∼qφ
[

log pθ(x|z)
]

+KL(qφ(z|x)||p(z))

Use gradient-based optimization to backpropogate ∇θL, ∇φL

Prob Learning (UofT) STA414-Week9 37 / 43

Standard vs Amortized VAE

This allows us to use the share parameters for all data points, and
reduce the number of parameter for the encoder to that of the
encoding NN.

Standard VAE encoder is more expressive since no parameters are
shared across different data points.

Prob Learning (UofT) STA414-Week9 38 / 43

Example: MNIST

We choose the prior on z to be the standard Gaussian

p(z) ∼ N (0, I)

our likelihood function to be

pθ(x|z) = Bernoulli(θ)

and our approximate posterior is

qφ(z|xi) = N (µφ(xi),Σφ(xi))

Finally, we use neural networks as our encoder and decoder
I Encoder: gφ(xi) = [µ(xi), log Σ(xi)]
I Decoder: fθ(zi) = θ(zi)
I where θi are parameters of a Bernoulli rv for each input pixel.

To get our reconstructed input, we simply evaluate

x̃ ∼ pθ(x|z)

Prob Learning (UofT) STA414-Week9 39 / 43

Example: MNIST

We use neural networks for both the encoder and the decoder.

We compute the loss function −L(θ, φ;x) and propagate its
derivative with respect to θ and φ, ∇θL, ∇φL, through the
network during training.

We need reparametrization trick as before!

Prob Learning (UofT) STA414-Week9 40 / 43

MNIST: Autoencoder vs VAE

Codes generated by L: AE R: VAE

Image credit: I. Shafkat

Prob Learning (UofT) STA414-Week9 41 / 43

VAE loss interpretation

The VAE maximization objective can be written as

L(x; θ, φ) =Ezφ∼qφ

[
log pθ(x|z)

]
−KL(qφ(z|x)||p(z))

=Ezφ∼qφ

[
log pθ(x, z)

]
+H(qφ)

Interpretation 1: Maximize expected complete data
log-likelihood while penalizing low entropy solutions.

Interpretation 2: Maximize expected log-likelihood while
penalizing solutions that are different from the prior.

Prob Learning (UofT) STA414-Week9 42 / 43

Summary

This lecture covered the basics of variational inference:
I Elbo
I Autoencoders
I VAEs

Prob Learning (UofT) STA414-Week9 43 / 43

