STA 414/2104:

Probabilistic Machine Learning
Week 9: Variational Inference II & VAEs

Murat A. Erdogdu

University of Toronto

Prob Learning (UofT) STA414-Week9 1/43

Overview for the first hour

@ Variational Inference

e ELBO and its properties

o Estimating gradients of the ELBO

» Simple Monte Carlo
» Reparameterization trick

Prob Learning (UofT) STA414-Week9 2/43

Recap: Posterior Inference for Latent Variable Models

We encountered a few latent variable models (e.g. the trueskill model).

These models have a factorization p(z, z) = p(z)p(z|z) where:
@ x are the observations or data,

e z are the unobserved (latent) variables

p(z) is called the prior
p(z|z) is called the likelihood

The conditional distribution of the unobserved variables given the
observed variables (aka the posterior) is

P2 plw2)
p(x) [p(z, 2)dz

e We assume p(z) = [p(z, z)dz is hard to compute

p(z|z) =

Prob Learning (UofT) STA414-Week9 3/43

Variational methods

Variational inference works as follows:

e Choose a tractable parametric distribution ¢4(z) with parameters
¢. This distribution will be used to approximate p(z|x).

» For example, g4(z) = N (z|u, X) where ¢ = (i, X).
e Encode some notion of ”distance” between p(z|x) and g4(2) that
can be efficiently estimated. Usually we will use the KL
divergence.

@ Minimize this distance.

Prob Learning (UofT) STA414-Week9 4 /43

Recall: KL divergence

We will measure the difference between ¢ and p using the
Kullback-Leibler divergence

KL(q4(2)[lp(2]2)) = / 9o(2) log 55;('1)) a2
)

= [E log q¢(z
zZ~qe p(z]z)

Prob Learning (UofT) STA414-Week9 5/43

ELBO: Evidence Lower Bound

Evaluating KL (g4 (2)||p(2|z)) is intractable because of the integral
over z and the term p(z|z), which is intractable to normalize.

We can still “optimize” this KL without knowing the
normalization constant p(x).

e We solve a surrogate optimization problem: maximize the

evidence lower bound (ELBO).

e Maximizing the ELBO is equivalent to minimizing

KL(gs(2)[Ip(z|2))-

Prob Learning (UofT) STA414-Week9 6 /43

ELBO: Evidence Lower Bound

Maximizing the ELBO is the same as minimizing KL(gy(2)|/p(z|)).

)

)}+Wg¢bgp@)

KL(qg(2)[[p(2]x)) = le; log %()

[g

ZEM [log oz,
= —L(¢) + log p(z)

Where L(¢) is the ELBO:

2)

L(p)= E [logp(z,x) —log q¢(z)]

2~qg

Prob Learning (UofT) STA414-Week9 7/43

ELBO: Evidence Lower Bound

KL(gg(2)[lp(2]z)) = —L(¢) + log p(x).
o Rearranging, we get

L(¢) + KL(gy(2)[[p(z]x)) = log p(x)

e Because KL(q4(2)||p(z|x)) > 0,

L(¢) < logp(x)
e maximizing the ELBO = minimizing KL(qy(2)||p(2|z)).
e Note: L(¢) = E {logp(z,x)} + E {—log%(z)], S0
znq ZNq¢

1¢

ELBO = expected log-joint + entropy

Prob Learning (UofT) STA414-Week9 8 /43

Maximizing ELBO

Recall: VL(¢) gives the direction of the steepest ascent of L£(¢).

Gradient descent (GD) methods: ¢i11 = ¢ + st VL(¢y).

e We have that L(¢) = ZE [logp(a?, z) — log q¢(z)].

~qy
o We need V,L(¢) or its unbiased estimate (stochastic GD).
Approximating the gradient of some E(f(Y,¢)):
o If the distribution of Y independent of ¢ then
VE(f(Y,9)) = E(Vyf(Y, ¢)).

e We then have V4E(f(Y,¢)) = %Z?:l Vo f(yi, d).
@ Problem: In our case the distribution of z depends on ¢.

Prob Learning (UofT)

STA414-Week9

9/43

The reparameterization trick

Problem:
Vo E |logp(r,2) ~logas(2)| # E |V (logp(w,2) ~logay(z)) |-

But in some situations there is a trick:
e We break this sampling process into two parts:

» Sample a random variable € that has fixed (or no) parameters, such
as a uniform distribution or standard normal.
» Determinsitically compute z’s as a function ¢ and €, such that:

> e~ pole)
> 2=T(e,¢)
- =
>z~ qe(z)

Prob Learning (UofT) STA414-Week9 10 /43

The reparameterization trick

e For example, z = u+ oe = T(¢, €) (here ¢ = (u,0)).
» e~ N(0,1)
> 2= U+ €0
—

> 2~ N(p,o0)

@ This makes the density independent of the parameter ¢, which will
let us use simple Monte Carlo: z = T'(¢, €)

V¢£(¢) = V<1>Ez~q¢>(z) |:10gp(.%', Z) — log Q¢(Z):|
= V¢E6~p0(e) [logp(xv T(¢7 6)) - IOg Q¢(T(¢7 6))}

= Eefvpo(e)vqﬁ [Ing($7 T(¢a 6)) - log Q¢(T(¢7 E)):|

Prob Learning (UofT) STA414-Week9 11 /43

SVI: Stochastic Variational Inference

e Instead of computing the full gradient (which is in general not
possible), we compute a simple Monte Carlo estimate of it.

e For example, instead of

Ecnpo(o) Vo [10% p(z,T($,€)) —log 4s(T (¢, e))}
we work with a mini-batch of size m

Eerpo(V| 108 2, T(,€)) — log 4,(T(#,)]

~ % > Vs [logp(w, T(¢,€)) —log qs(T (9, Ei))}
=1

Prob Learning (UofT) STA414-Week9 12 /43

MCMC: Pros & Cons

Pros of MCMC:
e Accurate results (at least asymptotically)
o Flexibility
e No approximation

o Handles multimodal distributions

Cons of MCMC:

High computational cost

@ Requires tuning of hyperparameters

Convergence issues

o Inefficient in sampling complex dependencies

Prob Learning (UofT) STA414-Week9 13 /43

SVI: Pros & Cons

Pros of SVI:
o Faster convergence
@ Scalability

e Ease of use

Cons of SVI:
e Approximate results
o Limited flexibility
e Mode seeking

@ Sensitive to choice of hyperparameters

Prob Learning (UofT) STA414-Week9

14 /43

Overview of the second part

o Autoencoders

@ Variational Autoencoders

Prob Learning (UofT) STA414-Week9 15 /43

Non-linear Dimension Reduction

@ Neural networks can be used for
nonlinear dimensionality reduction.

o This is achieved by having the same
number of outputs as inputs. These
models are called autoencoders.

o Consider a multilayer perceptron
that has D inputs, D outputs, and
M hidden units, with M < D.

o We can squeeze the information
through some kind of bottleneck.

o If we use a linear network (linear
activation) this is very similar to
Principal Components Analysis.

Prob Learning (UofT) STA414-Week9 16 /43

Autoencoders and PCA

e Given an input x, its corresponding reconstruction is given by:

Zw(2) (iwﬁ)xi), k=1,..,D.
i=1

@ We can determine the network parameters w by minimizing the
reconstruction error:

o If the hidden and output layers are

() linear, it will learn hidden units
: that are linear functions of the data
: outputs and minimize squared error.

: e M hidden units will span the same
()1 space as the first M principal
components.

Prob Learning (UofT) STA414-Week9 17 /43

Deep Autoencoders

(]

We can put extra nonlinear hidden
layers between the input and the
bottleneck and between the
bottleneck and the output.

o This gives nonlinear generalization
of PCA, providing non-linear
dimensionality reduction.

o The network can be trained by the
minimization of the reconstruction
error function.

@ Much harder to train.

Prob Learning (UofT) STA414-Week9 18 /43

Geometrical Interpretation

o Geometrical interpretation of the mappings performed by the
network with 2 hidden layers for the case of D =3 and M = 2
units in the middle layer.

z3

Ty
@ The mapping F} defines a nonlinear projection of points in the
original D-space into the M-dimensional subspace.

@ The mapping F» maps from an M-dimensional space into
D-dimensional space.

Prob Learning (UofT) STA414-Week9

19 /43

Deep Autoencoders

e :V“ 1!

o We can consider very deep autoencoders.

o By row: Real data, Deep autoencoder with a
bottleneck of 30 linear units, and 30-d PCA.

Prob Learning (UofT) STA414-Week9 20 /43

Deep Autoencoders

e Similar model for MNIST handwritten digits:

E /&3 45618 QERER
VA N SIS ol A R eR 30-d deep autoencoder
/@ 3 4 567 ¢ qQEREELE
/& 3 4 s L7 46 QESEN

@ Deep autoencoders produce much better reconstructions.

Prob Learning (UofT) STA414-Week9

21 /43

Application: Image Denoising

Encoder —>E—> Decoder [~ 2

Compressed
representation

Noisiy input

Denoised image

We can train a denoising autoencoder.

We feed noisy image as an input to the encoder

@ Minimize the reconstruction error between the decoder output and
original image.

o This method requires training and knowledge of the noise

structure (fully supervised).

e In contrast, loopy BP works for a single noisy image and doesn’t
require the knowledge of noise structure (unsupervised).

Prob Learning (UofT) STA414-Week9 22 /43

Autoencoders: Summary

Autoencoders reconstruct their input via an encoder and a decoder.

Encoder: g(z) =z€ F, ze€X

Decoder: f(z) =z € X

where X is the data space, and F' is the feature (latent) space.
z is the code, compressed representation of the input, x. It is
important that this code is a bottleneck, i.e. that

dim F' < dim X
Goal: = = f(g(x)) ~ x.

input output

decoder
encoder

Prob Learning (UofT) STA414-Week9

23 /43

[ssues with (deterministic) Autoencoders

o Issue 1: Proximity in data space does not mean proximity in
feature space

» The codes learned by the model are deterministic, i.e.

g(x1) =21=> f(z1) = T4
g(x2) = 22 = f(22) = T2

» but proximity in feature space is not “directly” enforced for inputs
in close proximity in data space, i.e.

Ty R Ty P 21 R 2o

» The latent space may not be continuous, or allow easy interpolation.

Prob Learning (UofT) STA414-Week9 24 /43

[ssues with (deterministic) Autoencoders

o Issue 1: Proximity in data space does not mean proximity in
feature space
» If the space has discontinuities (eg. gaps between clusters) and you
sample/generate a variation from there, the decoder will simply
generate an unrealistic output.

What we require What we may inadvertently end up with

Image credit: I. Shafkat

Prob Learning (UofT) STA414-Week9 25 /43

[ssues with (deterministic) Autoencoders

o Issue 2: How to measure the goodness of a reconstruction?

- | =7
7 ¥

» The reconstruction looks quite good. However, if we chose a simple
distance metric between inputs and reconstructions, we would
heavily penalize the left-shift in the reconstruction z.

» Choosing an appropriate metric for evaluating model performance
can be difficult, and that a miss-aligned objective can be disastrous.

Prob Learning (UofT) STA414-Week9 26 /43

Variational Autoencoders

e Variational autoencoders (VAEs) encode inputs with uncertainty.

o Unlike standard autoencoders, the encoder of a VAE outputs a
probability distribution, g4(z) to approximate p(z|x).

@ Instead of the encoder learning an encoding vector, it learns two
vectors: vector of means, u, and another vector of standard
deviations, o.

Prob Learning (UofT) STA414-Week9 27 /43

Variational Autoencoders

@ The mean p controls where encoding of input is centered while the
standard deviation controls how much can the encoding vary.

Standard Autoencoder Variational Autoencoder
(direct encoding coordinates) (nand o initialize a probability distribution)

e Encodings are generated at random from the “circle”, the decoder
learns that all nearby points refer to the same input.

Image credit: I. Shafkat

Prob Learning (STA414-Week9 28 /43

VAE: Specifics

@ Our model is generated by the joint distribution over the latent
codes and the input data p(z, z). Decomposing

p(z, z) = prior x likelihood = p(z)p(z|z)

@ The encoder is p(z]:r) =p(z,z)/p(x)
o However, learning p(z) = [p(z|2)p(z)dz is intractable.

e We introduce an appr0x1mat10n Wlth its own set of parameters, g4,
and learn these parameters such that

4s(2) ~ p(z|2).

Prob Learning (UofT) STA414-Week9 29 /43

VAE: Specifics

o VI idea:
L(0, ;) =ELBO

=E-wq, | logpo(z]2)| ~ KL(go(2)]p(2))

which is the (negative) loss function we use when training VAEs.
e First term is the expected log-likelihood and the second is the
divergence of ¢4 from the true prior.
@ The encoder and decoder in a VAE become:

» Encoder: g¢4,(2) = gy, (2|2i) = N (1, 07) where ¢; = (u;,log ;)
» Decoder: f(z;) = 0; typically a neural network

Prob Learning (UofT) STA414-Week9 30 /43

VAE Pipeline

e For a given input (or minibatch) z;,
» Sample z; ~ gy, (z|z;). This is the code in our feature space F.
» Run the code through decoder and write the likelihood: pg(z|z).
» Compute the loss function:

£(230,6) = ~F- g, [logp(al2) | + K L(gg(+12)]Ip(2)
e Use gradient-based optimization to backpropogate VoL, V4L

Prob Learning (UofT) STA414-Week9 31 /43

After VAE is trained

@ Once a VAE is trained, we can sample new inputs
z ~p(2) T ~ pp(x|2)

e We can also interpolate between inputs, using simple vector
arithmetic.

o

Classical music sample vector

Interpolating between samples

Prob Learning (UofT) STA414-Week9 32 /43

Example: MNIST

We choose the prior on z to be the standard Gaussian
p(z) ~ N(0,1)

our likelihood function to be

po(x|z) = Bernoulli(0)
e and our approximate posterior is
G, (2]:) = N (i, 07 1)
e To get our reconstructed input, we simply evaluate
T ~ py(z|2)

@ We will use neural networks as our encoder and decoder!

Prob Learning (UofT) STA414-Week9 33 /43

The Reparametrization Trick

e Encoder generates a code by sampling from ¢4 (2|z).

o This sampling process introduces a major problem: gradients and
(approximate) expectations cannot be exchanged.
@ To solve this problem, we use the reparameterization trick.

» Instead of sampling z directly from its distribution (e.g.
2i ~ N (i, 02)) we express z; as

zi = p; + 0; X g; where g; ~ N(0,1)

with this, gradients can now flow through the entire network.

Prob Learning (UofT) STA414-Week9 34 /43

Amortized Inference

o Instead of doing VI from scratch every time we see a new
datapoint, we learn a function that can look at the data for a
point z;, and then output an approximate posterior gq(2;|x;).
We'll call this a ”recognition model”

o Instead of a separate ¢; for each data example, we’ll just have a
single global ¢ that specifies the parameters of the recognition
model.

o Because the relationship between data and posteriors is complex
and hard to specify by hand, we’ll do this with a neural network!

Prob Learning (UofT) STA414-Week9 35 /43

Amortized Inference

@ We can simply have a network take in x;, and output the mean
and variance vector for a Gaussian:

@ Then the approximate posterior is given by

¢ (zilzi) = N (zi|pg (i), g (i)

Prob Learning (UofT) STA414-Week9 36 /43

VAE vs Amortized VAE Pipeline

e For a given input (or minibatch) x;,

e Standard VAE o Amortized VAE
e Sample e Sample
zi ~ qg, (2]xi) = N (i, 07 1). zi~qy(2|2i) =N (1 (i), g ()

e Run the code through decoder and get likelihood: py(z|z).

Compute the loss function:
L(236,0) = — - g, | 08 P (212)| + K L{gs(212)][p(2))
Use gradient-based optimization to backpropogate VoL, V4L

Prob Learning (UofT) STA414-Week9 37 /43

Standard vs Amortized VAE

@ This allows us to use the share parameters for all data points, and
reduce the number of parameter for the encoder to that of the
encoding NN.

e Standard VAE encoder is more expressive since no parameters are
shared across different data points.

Prob Learning (UofT) STA414-Week9 38 /43

Example: MNIST

@ We choose the prior on z to be the standard Gaussian
p(z) ~ N(0,1)

our likelihood function to be

po(x|z) = Bernoulli(#)
@ and our approximate posterior is

qp(2lwi) = N(pg (i), X (2:))

Finally, we use neural networks as our encoder and decoder
» Encoder: gy(z;) = [u(z;),log (z;)]
» Decoder: fy(z;) = 0(z;)
» where 6; are parameters of a Bernoulli rv for each input pixel.

To get our reconstructed input, we simply evaluate

T ~ pp(x|2)

Prob Learning (UofT) STA414-Week9 39 /43

Example: MNIST

@ We use neural networks for both the encoder and the decoder.

e We compute the loss function —L£(6, ¢;) and propagate its
derivative with respect to 6 and ¢, VoL, V4L, through the
network during training.

e We need reparametrization trick as before!

STA414-Week9 40 /43

MNIST: Autoencoder vs VAE

Codes generated by L: AE R: VAE

Image credit: I. Shafkat

1g (UofT) STA414-Week9 41 /43

VAE loss interpretation

e The VAE maximization objective can be written as

£(2:0,0) =F-ymq, [logpo(z]2)| = KL{gs(212)1p(2))

:Ez¢~q¢ |:1ng9($’ Z):| + H(q¢)

o Interpretation 1: Maximize expected complete data
log-likelihood while penalizing low entropy solutions.

o Interpretation 2: Maximize expected log-likelihood while
penalizing solutions that are different from the prior.

Prob Learning (UofT) STA414-Week9 42 /43

Summary

@ This lecture covered the basics of variational inference:

» Elbo
» Autoencoders
» VAEs

STA414-Week9 43 /43

