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Overview of the first hour

Gaussian mixture models

EM-algorithm

Clustering
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Mixture of Gaussians

We combine simple models into a complex model by taking a mixture
of K multivariate Gaussian densities of the form:

p(x) =

K

∑
k=1

πkNm(x∣µk,Σk),

where πk ≥ 0 and ∑K
k=1 πk = 1.

Each Gaussian component has its own mean vector µk and
covariance matrix Σk.

The parameters πk are called the mixing coefficients.

Example:

K = 3 (three Gaussian components)

m = 1 (univariate Gaussians)
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The crabs from Naples bay

In 1892, scientists collected data on populations of the crab, Carcinus

Moenas, and observed that the ratio of forehead width to the body length

actually showed a highly skewed distribution.

On Certain Correlated Variations in Carcinus maenas (1893) W. F. Weldon

They wondered whether this distribution

could be the result of the population being

a mix of two different normal distributions

(two sub-species).

In 1894, Karl Pearson proposed a method

to fit this model (read here), whose modern

version is the “method of moments”.
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Mixture of Gaussians
• Illustration of a mixture of 3 Gaussians in a 2-dimensional space: 

(a) Contours of constant density of each of the mixture components, along 
with the mixing coefficients
(b) Contours of marginal probability density  

(c) A surface plot of the distribution p(x). 
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Mixture of Gaussians as a latent variable model

Recall: p(x) = ∑K
k=1 πkNm(x∣µk,Σk).

Consider a latent variable z with K states z ∈ {1, . . . ,K}.

The distribution of z given by the mixing coefficients:

p(z = k) = πk.

Specify the conditional as p(x∣z = k) = Nm(x∣µk,Σk) with joint:

p(x, z = k) = p(z = k)p(x∣z = k) = πkNm(x∣µk,Σk).

Then the marginal p(x) satisfies

p(x) =
K

∑
k=1

p(x, z = k) =

K

∑
k=1

πkNm(x∣µk,Σk).
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Mixture of Gaussians: inference

If we have several observations x1, . . . , xN , for every observed data
point xn there is a corresponding latent zn.

Consider the conditional p(z∣x)

p(z = k∣x) =
p(z = k)p(x∣z = k)

∑K
j=1 p(z = j)p(x∣z = j)

=
πkNm(x∣µk,Σk)

∑K
j=1 πjNm(x∣µj ,Σj)

We view πk as prior probability that z = k, and p(z = k∣x) is the
corresponding posterior once we have observed the data.
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Example
• 500 points drawn from a mixture of 3 Gaussians. 

Samples from the joint 
distribution p(x,z).

Samples from the marginal 
distribution p(x).

Same samples where colors 
represent the value of 
responsibilities.  
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The Likelihood function

Parameters: π = (π1, . . . , πK), µ = (µ1, . . . , µK), Σ = (Σ1, . . . ,ΣK).

Recall: p(x∣π,µ,Σ) = ∑K
k=1 πkNm(x∣µk,Σk)

Represent the dataset {x1, . . . , xN} as X ∈ RN×m.

The latent variable is represented by a vector z ∈ RN .

The log-likelihood takes the form

log p(X∣π,µ,Σ) =
N

∑
n=1

log (
K

∑
k=1

πkNm(xn∣µk,Σk))
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Maximum Likelihood (µ)

Recall: log p(X∣π,µ,Σ) = ∑N
n=1 log (∑K

k=1 πkNm(xn∣µk,Σk)).

Differentiating wrt µk and setting to zero gives:

0 =

N

∑
n=1

πkN(xn∣µk,Σk)
∑j πjN(xn∣µj ,Σj)

Σ
−1
k (xn − µk)

=

N

∑
n=1

p(zn = k∣xn)Σ−1k (xn − µk).

Equivalently (as Σk is positive definite)

µk = ∑
n

p(z = k∣xn)
Nk

xn, Nk =∑
n

p(z = k∣xn).

Simple interpretation: the MLE given by the weighted mean of the
data weighted by the posterior p(z = k∣xn).
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Maximum Likelihood (Σ,π)

Recall: log p(X∣π,µ,Σ) = ∑N
n=1 log (∑K

k=1 πkNm(xn∣µk,Σk)).

Differentiating wrt Σk and setting to zero gives:

Σk = ∑
n

p(z = k∣xn)
Nk

(xn − µk)(xn − µk)⊤.

Again data points weighted by posterior probabilities.

Finally, for the weights πk the MLE is

πk =
Nk

∑K
j=1Nj

=
Nk

N
, Nk =∑

n

p(z = k∣xn).
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Motivating the EM algorithm

The MLE does not have a closed form solution.

The estimates depend on the posterior probabilities p(z = k∣xn),
which themselves depend on those parameters.

Indeed, recall that

p(z = k∣xn) =
πkNm(xn∣µk,Σk)

∑K
j=1 πjNm(xn∣µj ,Σj)

.

Iterative solution (EM algorithm):
▶ Initialize the parameters to some values.

E-step Update the posteriors p(z = k∣xn).
M-step Update model parameters π,µ,Σ.

▶ Repeat.
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EM algorithm for Gaussian mixtures

Initialize π,µ,Σ.

E-step: for each k, n compute the posterior probabilities

p(z = k∣xn) =
πkNm(xn∣µk,Σk)

∑K
j=1 πjNm(xn∣µj ,Σj)

.

M-step: Re-estimate model parameters

µ
new
k =

N

∑
n=1

p(z = k∣xn)
Nk

xn, Nk =

N

∑
n=1

p(z = k∣xn),

Σ
new
k =

N

∑
n=1

p(z = k∣xn)
Nk

(xn − µnewk )(xn − µnewk )⊤,

π
new
k =

Nk

N
.

Evaluate the log-likelihood and check for convergence.
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Illustration of the EM algorithm:Mixture of Gaussians: Example
• Illustration of the EM algorithm (much slower convergence compared to K-
means) 

Prob Learning (UofT) STA414-Week10 14 / 55



The General EM algorithm

Consider a general setting with latent variables.

Observed dataset X ∈ RN×D, latent variables Z ∈ RN×K .

Maximize the expected log-likelihood EZ log p(X,Z∣θ).

Initialize parameters θ
old

.

E-step: use θ
old

to compute the posterior p(Z∣X, θ
old).

M-step: θ
new

= arg maxθQ(θ, θold), where

Q(θ, θold) = ∑
Z

p(Z∣X, θ
old) log p(X,Z∣θ)

= E( log p(X,Z∣θ)»»»»»»X, θ
old)

which is tractable in many applications.

Replace θ
old
← θ

new
. Repeat until convergence.
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Example: Gaussian mixture

If z was observed, the MLE would be trivial

log p(X,Z∣θ) =
N

∑
n=1

log p(xn, zn∣θ) =
N

∑
n=1

K

∑
k=1

11(zn=k) log (πkN(xn∣µk,Σk)) .

For the E-step: p(Z∣X, θ) =∏N
n=1 p(zn∣X, θ) we have

p(zn = k∣X, θ) = p(zn = k∣xn, θ) =
πkNm(xn∣µk,Σk)

∑K
j=1 πjNm(xn∣µj ,Σj)

.

For the M-step: E(11(zn = k)∣X, θ
old) = p(zn = k∣X, θ

old) and so

E( log p(X,Z∣θ)»»»»»»X, θ
old) =

N

∑
n=1

K

∑
k=1

p(zn = k∣X, θ
old) log (πkN(xn∣µk,Σk)) .

Maximizing gives the formulas on Slide 13.
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Relationship to K-Means (CSC 311/STA 314)

Consider a Gaussian mixture, s.t. Σk = εI for all k = 1, . . . ,K.

We have

p(x∣µk,Σk) =
1

(2πε)m/2 exp (− 1

2ε
∥x − µk∥2) .

Consider the EM algorithm in this special case, θ = (π,µ).
The posterior probabilities take the form

p(zn = k∣X, θ) = πk exp(−∥xn − µk∥2/2ε)
∑K
j=1 πj exp(−∥xn − µj∥2/2ε)

.

If ε→ 0, the term with smallest ∥xn − µj∥ tends to zero most
slowly.

Thus p(zn = k∣X, θ) → rnk = {1 if k = arg minj ∥xn − µj∥
0 otherwise
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Relationship to K-Means

Recall: E( logp(X,Z∣θ)»»»»»»X, θ
old) = ∑N

n=1 ∑K
k=1 p(zn = k∣X, θ

old) log (πkN(xn∣µk,Σk)) .

As ε→ 0, we have

p(zn = k∣X, θ) → rnk = {1 if k = arg minj ∥xn − µj∥
0 otherwise

which gives

E( log p(X,Z∣θ)»»»»»»X, θ
old) → −

1

2

N

∑
n=1

K

∑
k=1

rnk∥xn − µk∥2
+ const.

In the limit, maximizing the expected log-likelihood is equivalent
to minimizing the distortion measure in the K-means algorithm.

The EM-algorithm is slower but more flexible and accurate.
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VI vs EM

The ELBO is given as

L(x; θ, φ) = Ezφ∼qφ[ log pθ(x, z)] +H(qφ)

▶ This maximizes expected complete data log-likelihood while
penalizing low entropy distributions.

▶ We perform alternating gradient descent (ascent).

Expectation in EM algorithm maximizes

Q(φ, φold) =Ez∼qold
φ

[ log pφ(x, z)]

▶ This maximizes expected complete data log-likelihood while the
expectation is over the posterior.

▶ We perform maximization at each iteration.

Prob Learning (UofT) STA414-Week10 19 / 55



Summary

EM algorithm is a classical method in statistics.

It can be used in the presence of latent variables.

When applied to Gaussian mixtures, compared to k-means, it
captures the covariance structure of the data.
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Overview of the second hour

Continuing in our theme of probabilistic models for continuous
variables.

We give a probabilistic interpretation of linear regression.

Chapter 3.3 in Bishop’s book.
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Completing the Square for Gaussians

Useful technique to find moments of Gaussian random variables.

It is a multivariate generalization of completing the square.

The density of x ∼ N (µ,Σ) satifies:

log p(x) = −1
2
(x − µ)⊤Σ

−1(x − µ) + const

= −1
2
x
⊤

Σ
−1

x + x
⊤

Σ
−1
µ + const

Thus, if we know w is Gaussian with unknown mean and
covariance, and we also know that

log p(w) = −1
2
w
⊤

Aw +w
⊤

b + const

for A positive definite, then we know that

w ∼ N (A−1
b,A

−1).
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Bayesian Linear Regression

We take the Bayesian approach to linear regression.
▶ This is in contrast with the standard regression.
▶ By inferring a posterior distribution over the parameters, the model

can know what it doesn’t know.

How can uncertainty in the predictions help us?
▶ Smooth out the predictions by averaging over lots of plausible

explanations
▶ Assign confidences to predictions
▶ Make more robust decisions
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Recap: Linear Regression

Given a training set of inputs and targets {(x(i)
, y

(i))}Ni=1
Linear model:

y = w
⊤
ψ(x) + ε

Vectorized, we have the design matrix X in input space and

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− ψ(x(1)) −

− ψ(x(2)) −
⋮

− ψ(x(N)) −

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y
(1)

y
(2)

⋮

y
(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and predictions

ŷ = Ψw
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Recap: Ridge Regression from 311/314

No statistical model.

Penalized sum of squares (ridge regression):

minimize
1

2
∥y −Ψw∥2

+
λ

2
∥w∥2

The gradient: (Ψ⊤Ψ + λI)w −Ψ
⊤

y.

Solution 1: solve analytically by setting the gradient to 0

w = (Ψ⊤Ψ + λI)−1Ψ⊤y

Solution 2: solve approximately using gradient descent

w ← (1 − αλ)w − αΨ
⊤(Ψw − y)
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Linear Regression as Maximum Likelihood

We can give linear regression a probabilistic interpretation by
assuming a Gaussian noise model:

y ∣x ∼ N (w⊤ψ(x), σ2)

Linear regression is just maximum log-likelihood under this model:

N

∑
i=1

log p(y(i) ∣x
(i)
;w, b) =

N

∑
i=1

logN (y(i);w⊤
ψ(x(i)), σ2)

=

N

∑
i=1

log [ 1√
2πσ

exp(− (y(i) −w
⊤
ψ(x(i)))2

2σ2
)]

= const −
1

2σ2

N

∑
i=1

(y(i) −w
⊤
ψ(x(i)))2

= const −
1

2σ2
∥y −Ψw∥2
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Regularized Linear Regression as MAP Estimation

View an L2 regularizer as MAP inference with a Gaussian prior.

arg max
w

log p(w ∣D) = arg max
w

[log p(w) + log p(D ∣w)]

We just derived the likelihood term log p(D ∣w):

log p(D ∣w) = const −
1

2σ2
∥y −Ψw∥2

Assume a Gaussian prior, w ∼ N (m,S):

log p(w) = log [ 1

(2π)D/2∣S∣1/2
exp (− 1

2
(w −m)⊤S

−1(w −m))]

= − 1

2
(w −m)⊤S

−1(w −m) + const

Commonly, m = 0 and S = ηI, so

log p(w) = − 1

2η
∥w∥2

+ const.

This is just L2 regularization!
Prob Learning (UofT) STA414-Week10 27 / 55



Full Bayesian Inference

Full Bayesian inference makes predictions by averaging over all
likely explanations under the posterior distribution.

Compute posterior using Bayes’ Rule:

p(w ∣D)∝ p(w)p(D ∣w)

Make predictions using the posterior predictive distribution:

p(y ∣x,D) = ∫ p(w ∣D) p(y ∣x,w) dw

Doing this lets us quantify our uncertainty.
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Bayesian Linear Regression

Prior distribution: w ∼ N (0,S)
Likelihood: y ∣x,w ∼ N (w⊤ψ(x), σ2)
Assuming fixed/known S and σ

2
is a big assumption. More on this

later.
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Bayesian Linear Regression

Bayesian linear regression considers various plausible explanations
for how the data were generated.

It makes predictions using all possible regression weights, weighted
by their posterior probability.

Here are samples from the prior p(w) and posteriors p(w ∣D)
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Bayesian Linear Regression: Posterior

Deriving the posterior distribution:

log p(w ∣D) = log p(w) + log p(D ∣w) + const

= − 1

2
w
⊤
S
−1

w −
1

2σ2
∥Ψw − y∥2

+ const

= − 1

2
w
⊤
S
−1

w −
1

2σ2
(w⊤

Ψ
⊤
Ψw − 2y

⊤
Ψw + y

⊤
y) + const

= − 1

2
w
⊤ (σ−2

Ψ
⊤
Ψ + S

−1)w +
1

σ2
y
⊤
Ψw + const (complete the □!)

Thus w ∣D ∼ N (µ,Σ) where

µ = (Ψ⊤Ψ + σ
2
S
−1)

−1
Ψ
⊤

y

Σ = σ
2 (Ψ⊤Ψ + σ

2
S
−1)

−1
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Bayesian Linear Regression: Posterior

Gaussian prior leads to a Gaussian posterior, and so the Gaussian
distribution is the conjugate prior for linear regression model.

Compare µ to the closed-form solution for linear regression:

w = (Ψ⊤Ψ + λI)−1Ψ⊤y

This is the mean of the posterior for S =
σ

2

λ
I.

As λ→ 0, the standard deviation of the prior goes to ∞, and the
mean of the posterior converges to the MLE.
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Bayesian Linear Regression

Illustration of sequential Bayesian learning for y = w0 + w1x,
w0 = −0.3, w1 = 0.5.

Left column:

Likelihood of a single data point.

Single point does not identify a line.

Fix (x, y) then w0 = y − w1x.

Middle column:

Prior/posterior.

Right column:

Lines: samples from the posterior.

Dots: data points.
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Radial bases example

Example with radial basis function (RBF) features

ψj(x) = exp(−
(x − µj)2

2s2
)
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Radial bases example

Functions sampled from the posterior:
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Posterior predictive distribution

The posterior just gives us distribution over the parameter space,
but if we want to make predictions, the natural choice is to use the
posterior predictive distribution.

Posterior predictive distribution:

p(y ∣x,D) = ∫ p(y ∣x,w)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

N (y ;w⊤ψ(x),σ)

p(w ∣D)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
N (w ;µ,Σ)

dw

Another interpretation: y = w
⊤
ψ(x) + ε, where ε ∼ N (0, σ) is

independent of w ∣D ∼ N (µ,Σ).
Recall

µ = (Ψ⊤
Ψ + σ

2
S
−1)−1

Ψ
⊤
y

Σ = σ
2 (Ψ⊤

Ψ + σ
2
S
−1)−1

Prob Learning (UofT) STA414-Week10 36 / 55



Bayesian Linear Regression

Another interpretation: y = w
⊤
ψ(x) + ε, where ε ∼ N (0, σ) is

independent of w ∣D ∼ N (µ,Σ).
Again by the fact that affine transformations of Gaussian vectors
are Gaussian, y is a Gaussian distribution with parameters

µpred = µ
⊤
ψ(x)

σ
2
pred = ψ(x)⊤Σψ(x) + σ2

Hence, the posterior predictive distribution is N (y ∣µpred, σ2pred).
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Bayesian Linear Regression

Here we visualize confidence intervals based on the posterior predictive
mean and variance at each point:

— Bishop, Pattern Recognition and Machine Learning
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Summary

This lecture covered the basics of Bayesian regression.

Key points:

Posterior can be computed by completing the square.

Posterior predictive distribution.

Uncertainty quantification.
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Overview

A probabilistic model for continuous latent variables.
▶ Probabilistic interpretation of the PCA

Earlier formulation of PCA was motivated geometrically.

We will show that it can be expressed as the maximum likelihood
estimate of a certain probabilistic model.
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Low dimensional representation

In practice, even though data is very high dimensional, its important
features can be accurately captured in a low dimensional subspace.

Find a low dimensional representation of your data.

▶ Computational benefits
▶ Interpretability, visualization
▶ Generalization
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Nice example

Source: Novembre et al, Genes mirror geography within Europe,
Nature, 2009.
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Principal Component Analysis (PCA)

Data set {x(i)}Ni=1
Each input vector x

(i)
∈ RD is approximated as x +Uz

(i)
,

x
(i)
≈ x̃

(i)
= x +Uz

(i)

where x = 1
n
∑i x

(i)
is the data mean, U ∈ RD×K is the orthogonal

basis for the principal subspace, and z
(i)
∈ RK is the code vector

z
(i)
= U

⊤(x(i)
− x)

U is chosen to minimize the reconstruction error

U
∗
= arg min

U
∑
i

∥x
(i)
− x −UU

⊤(x(i)
− x)∥2
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We are looking for directions

For example, in a 2-dimensional problem, we are looking for the
direction u1 along which the data is well represented: (?)

▶ e.g. direction of higher variance
▶ e.g. direction of minimum reconstruction error
▶ Recall: they are the same!
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Probabilistic PCA

Consider the following latent variable model.

Similar to the Gaussian mixture model but with Gaussian latents:

z ∼ NK(0, IK)
x ∣ z ∼ ND(Wz + µ, σ

2
ID)

This is similar to naive Bayes graphical model, because p(x ∣ z)
factorizes with respect to the dimensions of x.

What sort of data does this model produce?

Matrix-vector multiplication: Wz is a linear combination of the
columns of W with coefficients z = (z1, . . . , zK).
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Probabilistic PCA

Wz is a random linear combination of the columns of W

To get the random variable x, we sample a standard normal z and
then add a small amount of isotropic noise to Wz + µ.

z

p(z)

ẑ

x2

x1

µ

p(x|ẑ)

}
ẑ|w|

w
x2

x1

µ

p(x)

The column span of W refers to the principal subspace in PCA.
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Probabilistic PCA : The Likelihood function

To perform maximum likelihood in this model, we need to
maximize the following:

max
W,µ,σ2

log p(x ∣W,µ, σ
2) = max

W,µ,σ2
log∫ p(x ∣ z,W,µ, σ

2)p(z) dz

This is easier than the Gaussian mixture model.

x = Wz + µ + ε (x is an affine transformations of Gaussian vars)

p(x ∣W,µ, σ
2) is Gaussian

▶ Only need to compute E[x] and Cov[x].
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Probabilistic PCA : Maximum Likelihood

E[x] = E[Wz + µ + ε] = µ

Cov[x] = E[(Wz + ε)(Wz + ε)⊤]
= E[(Wzz

⊤
W
⊤] + Cov[ε]

= WW
⊤
+ σ

2
ID

Recall: R orthogonal if RR
⊤
= I.

This model is not identifiable because WW
⊤
= (WR)(WR)⊤.
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Probabilistic PCA : Maximum Likelihood

Thus, the log-likelihood of the data under this model is given by

−
ND

2
log(2π) − N

2
log ∣C∣ − 1

2

N

∑
i=1

(x(i)
− µ)⊤C

−1(x(i)
− µ)

where C = WW
⊤ + σ2ID.

Here the MLE (µ̂,Ŵ, σ̂
2) is given in a closed-form!

Check Tipping and Bishop (Probabilistic PCA, 1999) for details.
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The maximum likelihood estimates

The maximum likelihood estimator is:

µ̂ =
1

N

N

∑
i=1

x
(i)

Ŵ = Û(L̂ − σ̂2IK)
1
2 R

σ̂
2
=

1

D −K

D

∑
i=K+1

λi

The columns of Û ∈ RD×K are the K unit eigenvectors of the
empirical covariance matrix Σ̂ that have the largest eigenvalues,

λ1 ≥ λ2 ≥⋯ ≥ λD are the eigenvalues of Σ̂.

L̂ = diag(λ1, . . . , λK) is the diagonal matrix whose elements are
the corresponding eigenvalues, and R is any orthogonal matrix.
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Probabilistic PCA : Maximum Likelihood

That seems complex, to get an intuition about how this model
behaves when it is fit to data, lets consider the MLE density.

Recall that the marginal distribution on x in our fitted model is a
Gaussian with mean

µ̂ = x

and covariance

Ĉ = ŴŴ
⊤
+ σ̂

2
I = Û(L̂ − σ̂2I)Û⊤ + σ̂2I

The covariance gives us a nice intuition about the model.
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Probabilistic PCA : Maximum Likelihood

Center the data and check the variance along one of the unit
eigenvectors ui, which are the vectors forming the columns of Û:

Var(u⊤i (x − x)) = u
⊤
i Cov[x]ui

= u
⊤
i Û(L̂ − σ̂2I)Û⊤ui + σ̂

2

= λi − σ̂
2
+ σ̂

2
= λi

Now, center the data and check the variance along any unit vector
orthogonal to the subspace spanned by Û (i > K):

Var(u⊤i (x − x)) = u
⊤
i Û(L̂ − σ̂2I)Û⊤ui + σ̂

2

= σ̂
2

The model captures the variance along the principle axes and
approximates it in all remaining directions with a single variance.
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How does it relate to PCA?

The posterior mean is given by

E[z ∣x] = (W⊤
W + σ

2
I)
−1

W
⊤(x − µ)

Posterior variance:

Cov[z∣x] = σ−2(W⊤
W + σ

2
I)

In the limit σ
2
→ 0, we get

E[z ∣x] σ
2
→0
→ (W⊤

W)
−1

W
⊤(x − µ)

Plugging in the MLEs, this limit recovers the standard PCA.
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Why Probabilistic PCA (PPCA)?

Fitting a full-covariance Gaussian model of data requires
D(D + 1)/2 +D parameters. With PPCA we model only the K
most significant correlations and this only requires O(KD)
parameters as long as K is small.

Bayesian PCA gives us a Bayesian method for determining the low
dimensional principal subspace.

Existence of likelihood functions allows direct comparison with
other probabilistic models.

Instead of solving directly, we can also use EM. The EM can be
scaled to very large high- dimensional datasets.
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Summary: Some Gaussian models

Gaussian mixture model.

▶ Gaussian latent variable model p(x) = ∑z p(x, z) used for
clustering.

Probabilistic PCA.

▶ Gaussian latent variable model p(x) = ∫
z
p(x, z) used for

dimensionality reduction.

Bayesian linear regression

▶ Gaussian discriminative model p(y ∣x) used for regression with a
Bayesian analysis for the weights.
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