STA 414/2104:

Statistical Methods of Machine Learning II Week 10: Probabilistic PCA/Bayesian Regression

Murat A. Erdoğdu and Piotr Zwiernik

University of Toronto

Overview

- A probabilistic model for continuous latent variables.
 - ▶ Probabilistic interpretation of the PCA
- Earlier formulation of PCA was motivated geometrically.
- We will show that it can be expressed as the maximum likelihood estimate of a certain probabilistic model.

Low dimensional representation

• In practice, even though data is very high dimensional, its important features can be accurately captured in a low dimensional subspace.

- Find a low dimensional representation of your data.
 - ► Computational benefits
 - ▶ Interpretability, visualization
 - ▶ Generalization

Nice example

Source: Novembre et al, Genes mirror geography within Europe, Nature, 2009.

Recall: Principal Component Analysis (PCA)

- Data set $\{\mathbf{x}^{(i)}\}_{i=1}^{N}$
- Each input vector $\mathbf{x}^{(i)} \in \mathbb{R}^D$ is approximated as $\overline{\mathbf{x}} + \mathbf{U}\mathbf{z}^{(i)}$,

$$\mathbf{x}^{(i)} \approx \tilde{\mathbf{x}}^{(i)} = \overline{\mathbf{x}} + \mathbf{U}\mathbf{z}^{(i)}$$

where $\overline{\mathbf{x}} = \frac{1}{n} \sum_{i} \mathbf{x}^{(i)}$ is the data mean, $\mathbf{U} \in \mathbb{R}^{D \times K}$ is the orthogonal basis for the principal subspace, and $\mathbf{z}^{(i)} \in \mathbb{R}^{K}$ is the code vector

$$\mathbf{z}^{(i)} = \mathbf{U}^{\top} (\mathbf{x}^{(i)} - \overline{\mathbf{x}})$$

• U is chosen to minimize the reconstruction error

$$\mathbf{U}^* = \arg\min_{\mathbf{U}} \sum_{i} \|\mathbf{x}^{(i)} - \overline{\mathbf{x}} - \mathbf{U}\mathbf{U}^{\top}(\mathbf{x}^{(i)} - \overline{\mathbf{x}})\|^2$$

We are looking for directions

- For example, in a 2-dimensional problem, we are looking for the direction u_1 along which the data is well represented: (?)
 - e.g. direction of higher variance
 - e.g. direction of minimum reconstruction error
 - ▶ Recall: they are the same!

Probabilistic PCA

Consider the following latent variable model.

• Similar to the Gaussian mixture model but with Gaussian latents:

$$\mathbf{z} \sim \mathcal{N}_K(\mathbf{0}, \mathbf{I}_K)$$
$$\mathbf{x} \mid \mathbf{z} \sim \mathcal{N}_D(\mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \sigma^2 \mathbf{I}_D)$$

- This is similar to naive Bayes graphical model, because $p(\mathbf{x} \mid \mathbf{z})$ factorizes with respect to the dimensions of \mathbf{x} .
- What sort of data does this model produce?

Matrix-vector multiplication: $\mathbf{W}\mathbf{z}$ is a linear combination of the columns of \mathbf{W} with coefficients $\mathbf{z} = (z_1, \dots, z_K)$.

Probabilistic PCA

- Wz is a random linear combination of the columns of W
- To get the random variable \mathbf{x} , we sample a standard normal \mathbf{z} and then add a small amount of isotropic noise to $\mathbf{W}\mathbf{z} + \boldsymbol{\mu}$.

The column span of \mathbf{W} refers to the principal subspace in PCA.

Probabilistic PCA: The Likelihood function

• To perform maximum likelihood in this model, we need to maximize the following:

$$\max_{\mathbf{W}, \boldsymbol{\mu}, \sigma^2} \log p(\mathbf{x} \mid \mathbf{W}, \boldsymbol{\mu}, \sigma^2) = \max_{\mathbf{W}, \boldsymbol{\mu}, \sigma^2} \log \int p(\mathbf{x} \mid \mathbf{z}, \mathbf{W}, \boldsymbol{\mu}, \sigma^2) p(\mathbf{z}) \ d\mathbf{z}$$

- This is easier than for the Gaussian mixture model.
- $\mathbf{x} = \mathbf{W}\mathbf{z} + \boldsymbol{\mu} + \boldsymbol{\epsilon}$ (\mathbf{x} is an affine transformations of Gaussian vars)
- $p(\mathbf{x} | \mathbf{W}, \boldsymbol{\mu}, \sigma^2)$ is Gaussian
 - ▶ Only need to compute $\mathbb{E}[\mathbf{x}]$ and $Cov[\mathbf{x}]$.

Probabilistic PCA: Maximum Likelihood

$$\mathbb{E}[\mathbf{x}] = \mathbb{E}[\mathbf{W}\mathbf{z} + \boldsymbol{\mu} + \boldsymbol{\epsilon}] = \boldsymbol{\mu}$$

$$Cov[\mathbf{x}] = \mathbb{E}[(\mathbf{W}\mathbf{z} + \epsilon)(\mathbf{W}\mathbf{z} + \epsilon)^{\top}]$$
$$= \mathbb{E}[(\mathbf{W}\mathbf{z}\mathbf{z}^{\top}\mathbf{W}^{\top}] + Cov[\epsilon]$$
$$= \mathbf{W}\mathbf{W}^{\top} + \sigma^{2}\mathbf{I}_{D}$$

Recall: \mathbf{R} orthogonal if $\mathbf{R}\mathbf{R}^{\top} = \mathbf{I}$.

This model is not identifiable because $\mathbf{W}\mathbf{W}^{\mathsf{T}} = (\mathbf{W}\mathbf{R})(\mathbf{W}\mathbf{R})^{\mathsf{T}}$.

Probabilistic PCA: Maximum Likelihood

Thus, the log-likelihood of the data under this model is given by

$$-\frac{ND}{2}\log(2\pi) - \frac{N}{2}\log|\mathbf{C}| - \frac{1}{2}\sum_{i=1}^{N}(\mathbf{x}^{(i)} - \boldsymbol{\mu})^{\mathsf{T}}\mathbf{C}^{-1}(\mathbf{x}^{(i)} - \boldsymbol{\mu})$$

where $\mathbf{C} = \mathbf{W}\mathbf{W}^{\top} + \sigma^2 \mathbf{I}_D$.

Here the MLE $(\widehat{\mu}, \widehat{\mathbf{W}}, \widehat{\sigma}^2)$ is given in a closed-form!

Check Tipping and Bishop (Probabilistic PCA, 1999) for details.

The maximum likelihood estimates

The maximum likelihood estimator is:

$$\widehat{\boldsymbol{\mu}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{(i)}$$

$$\widehat{\mathbf{W}} = \widehat{\mathbf{U}} (\widehat{\mathbf{L}} - \widehat{\sigma}^2 \mathbf{I}_K)^{\frac{1}{2}} \mathbf{R}$$

$$\widehat{\sigma}^2 = \frac{1}{D - K} \sum_{i=K+1}^{D} \lambda_i$$

- The columns of $\widehat{\mathbf{U}} \in \mathbb{R}^{D \times K}$ are the K unit eigenvectors of the empirical covariance matrix $\widehat{\Sigma}$ that have the largest eigenvalues,
- $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_D$ are the eigenvalues of $\widehat{\Sigma}$.
- $\hat{\mathbf{L}} = \operatorname{diag}(\lambda_1, \dots, \lambda_K)$ is the diagonal matrix whose elements are the corresponding eigenvalues, and \mathbf{R} is any orthogonal matrix.

Probabilistic PCA: Maximum Likelihood

- That seems complex, to get an intuition about how this model behaves when it is fit to data, lets consider the MLE density.
- ullet Recall that the marginal distribution on ${f x}$ in our fitted model is a Gaussian with mean

$$\widehat{\boldsymbol{\mu}} = \overline{\mathbf{x}}$$

and covariance

$$\widehat{C} = \widehat{\mathbf{W}} \widehat{\mathbf{W}}^{\mathsf{T}} + \widehat{\sigma}^2 \mathbf{I} = \widehat{\mathbf{U}} (\widehat{\mathbf{L}} - \widehat{\sigma}^2 \mathbf{I}) \widehat{\mathbf{U}}^{\mathsf{T}} + \widehat{\sigma}^2 \mathbf{I}$$

• The covariance gives us a nice intuition about the model.

Probabilistic PCA: Maximum Likelihood

• Center the data and check the variance along one of the unit eigenvectors \mathbf{u}_i , which are the vectors forming the columns of $\widehat{\mathbf{U}}$:

$$Var(\mathbf{u}_{i}^{\top}(\mathbf{x} - \overline{\mathbf{x}})) = \mathbf{u}_{i}^{\top} Cov[\mathbf{x}] \mathbf{u}_{i}$$
$$= \mathbf{u}_{i}^{\top} \widehat{\mathbf{U}}(\widehat{\mathbf{L}} - \widehat{\sigma}^{2} \mathbf{I}) \widehat{\mathbf{U}}^{\top} \mathbf{u}_{i} + \widehat{\sigma}^{2}$$
$$= \lambda_{i} - \widehat{\sigma}^{2} + \widehat{\sigma}^{2} = \lambda_{i}$$

• Now, center the data and check the variance along any unit vector orthogonal to the subspace spanned by $\widehat{\mathbf{U}}$:

$$\operatorname{Var}(\mathbf{u}_{i}^{\top}(\mathbf{x} - \overline{\mathbf{x}})) = \mathbf{u}_{i}^{\top} \widehat{\mathbf{U}}(\widehat{\mathbf{L}} - \widehat{\sigma}^{2} \mathbf{I}) \widehat{\mathbf{U}}^{\top} \mathbf{u}_{i} + \widehat{\sigma}^{2}$$
$$= \widehat{\sigma}^{2}$$

• The model captures the variance along the principle axes and approximates it in all remaining directions with a single variance.

How does it relate to PCA?

• The posterior mean is given by

$$\mathbb{E}[\mathbf{z} \mid \mathbf{x}] = (\mathbf{W}^{\top} \mathbf{W} + \sigma^{2} \mathbf{I})^{-1} \mathbf{W}^{\top} (\mathbf{x} - \boldsymbol{\mu})$$

• Posterior variance:

$$Cov[\mathbf{z}|\mathbf{x}] = \sigma^2 (\mathbf{W}^{\mathsf{T}} \mathbf{W} + \sigma^2 \mathbf{I})^{-1}$$

• In the limit $\sigma^2 \to 0$, we get

$$\mathbb{E}[\mathbf{z} \mid \mathbf{x}] \stackrel{\sigma^2 \to 0}{\to} (\mathbf{W}^\top \mathbf{W})^{-1} \mathbf{W}^\top (\mathbf{x} - \boldsymbol{\mu})$$

• Plugging in the MLEs, this limit recovers the standard PCA.

Why Probabilistic PCA (PPCA)?

- Fitting a full-covariance Gaussian model of data requires D(D+1)/2 + D parameters. With PPCA we model only the K most significant correlations and this only requires $\mathcal{O}(KD)$ parameters as long as K is small.
- Bayesian PCA gives us a Bayesian method for determining the low dimensional principal subspace.
- Existence of likelihood functions allows direct comparison with other probabilistic models.
- Instead of solving directly, we can also use EM. The EM can be scaled to very large high- dimensional datasets.

Summary: Some Gaussian models

- Gaussian mixture model.
 - ▶ Gaussian latent variable model $p(\mathbf{x}) = \sum_{z} p(\mathbf{x}, z)$ used for clustering.
- Probabilistic PCA.
 - ▶ Gaussian latent variable model $p(\mathbf{x}) = \int_z p(\mathbf{x}, z)$ used for dimensionality reduction.
- Bayesian linear regression (next hour).
 - ▶ Gaussian discriminative model $p(y | \mathbf{x})$ used for regression with a Bayesian analysis for the weights.

Overview of the next hour

- Continuing in our theme of probabilistic models for continuous variables.
- We give a probabilistic interpretation of linear regression.
- Chapter 3.3 in Bishop's book.

Completing the Square for Gaussians

Useful technique to find moments of Gaussian random variables.

- It is a multivariate generalization of completing the square.
- The density of $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ satisfies:

$$\log p(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}) + \text{const}$$
$$= -\frac{1}{2} \mathbf{x}^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \mathbf{x} + \mathbf{x}^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} + \text{const}$$

 Thus, if we know w is Gaussian with unknown mean and covariance, and we also know that

$$\log p(\mathbf{w}) = -\frac{1}{2}\mathbf{w}^{\top}\mathbf{A}\mathbf{w} + \mathbf{w}^{\top}\mathbf{b} + \mathrm{const}$$

for A positive definite, then we know that

$$\mathbf{w} \sim \mathcal{N}(\mathbf{A}^{-1}\mathbf{b}, \mathbf{A}^{-1}).$$

Bayesian Linear Regression

- We take the Bayesian approach to linear regression.
 - ▶ This is in contrast with the standard regression.
 - ▶ By inferring a posterior distribution over the *parameters*, the model can know what it doesn't know.
- How can uncertainty in the predictions help us?
 - Smooth out the predictions by averaging over lots of plausible explanations
 - ▶ Assign confidences to predictions
 - ▶ Make more robust decisions

Recap: Linear Regression

- Given a training set of inputs and targets $\{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^{N}$
- Linear model:

$$y = \mathbf{w}^{\top} \psi(\mathbf{x}) + \epsilon$$

Vectorized, we have the design matrix X in input space and

$$\mathbf{\Psi} = \begin{bmatrix} - & \boldsymbol{\psi}(\mathbf{x}^{(1)}) & - \\ - & \boldsymbol{\psi}(\mathbf{x}^{(2)}) & - \\ \vdots & & \\ - & \boldsymbol{\psi}(\mathbf{x}^{(N)}) & - \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{bmatrix}$$

and predictions

$$\hat{\mathbf{y}} = \mathbf{\Psi} \mathbf{w}$$

Recap: Ridge Regression

• Penalized sum of squares (ridge regression):

$$\text{minimize} \quad \frac{1}{2} \|\mathbf{y} - \mathbf{\Psi} \mathbf{w}\|^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

- The gradient: $(\boldsymbol{\Psi}^{\mathsf{T}}\boldsymbol{\Psi} + \lambda \mathbf{I})\mathbf{w} \boldsymbol{\Psi}^{\mathsf{T}}\mathbf{y}$.
- Solution 1: solve analytically by setting the gradient to 0

$$\mathbf{w} = (\boldsymbol{\Psi}^{\top} \boldsymbol{\Psi} + \lambda \mathbf{I})^{-1} \boldsymbol{\Psi}^{\top} \mathbf{y}$$

• Solution 2: solve approximately using gradient descent

$$\mathbf{w} \leftarrow (1 - \alpha \lambda) \mathbf{w} - \alpha \mathbf{\Psi}^{\top} (\mathbf{\Psi} \mathbf{w} - \mathbf{y})$$

Linear Regression as Maximum Likelihood

• We can give linear regression a probabilistic interpretation by assuming a Gaussian noise model:

$$y \mid \mathbf{x} \sim \mathcal{N}(\mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x}), \ \sigma^2)$$

• Linear regression is just maximum log-likelihood under this model:

$$\begin{split} \sum_{i=1}^{N} \log p(y^{(i)} \mid \mathbf{x}^{(i)}; \mathbf{w}, b) &= \sum_{i=1}^{N} \log \mathcal{N}(y^{(i)}; \mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x}^{(i)}), \sigma^{2}) \\ &= \sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x}^{(i)}))^{2}}{2\sigma^{2}} \right) \right] \\ &= \operatorname{const} - \frac{1}{2\sigma^{2}} \sum_{i=1}^{N} (y^{(i)} - \mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x}^{(i)}))^{2} \\ &= \operatorname{const} - \frac{1}{2\sigma^{2}} ||\mathbf{y} - \mathbf{\Psi} \mathbf{w}||^{2} \end{split}$$

Regularized Linear Regression as MAP Estimation

 \bullet View an L_2 regularizer as MAP inference with a Gaussian prior.

$$\arg\max_{\mathbf{w}}\log p(\mathbf{w}\mid\mathcal{D}) = \arg\max_{\mathbf{w}}\left[\log p(\mathbf{w}) + \log p(\mathcal{D}\mid\mathbf{w})\right]$$

• We just derived the likelihood term $\log p(\mathcal{D} \mid \mathbf{w})$:

$$\log p(\mathcal{D} \mid \mathbf{w}) = \text{const} - \frac{1}{2\sigma^2} ||\mathbf{y} - \mathbf{\Psi} \mathbf{w}||^2$$

• Assume a Gaussian prior, $\mathbf{w} \sim \mathcal{N}(\mathbf{m}, \mathbf{S})$:

$$\log p(\mathbf{w}) = \log \left[\frac{1}{(2\pi)^{D/2} |\mathbf{S}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{w} - \mathbf{m})^{\mathsf{T}} \mathbf{S}^{-1}(\mathbf{w} - \mathbf{m})\right) \right]$$
$$= -\frac{1}{2}(\mathbf{w} - \mathbf{m})^{\mathsf{T}} \mathbf{S}^{-1}(\mathbf{w} - \mathbf{m}) + \text{const}$$

• Commonly, $\mathbf{m} = \mathbf{0}$ and $\mathbf{S} = \eta \mathbf{I}$, so

$$\log p(\mathbf{w}) = -\frac{1}{2n} ||\mathbf{w}||^2 + \text{const.}$$

This is just L_2 regularization!

Full Bayesian Inference

- Full Bayesian inference makes predictions by averaging over all likely explanations under the posterior distribution.
- Compute posterior using Bayes' Rule:

$$p(\mathbf{w} \mid \mathcal{D}) \propto p(\mathbf{w})p(\mathcal{D} \mid \mathbf{w})$$

• Make predictions using the posterior predictive distribution:

$$p(y \mid \mathbf{x}, \mathcal{D}) = \int p(\mathbf{w} \mid \mathcal{D}) p(y \mid \mathbf{x}, \mathbf{w}) d\mathbf{w}$$

• Doing this lets us quantify our uncertainty.

Bayesian Linear Regression

- Prior distribution: $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{S})$
- Likelihood: $y \mid \mathbf{x}, \mathbf{w} \sim \mathcal{N}(\mathbf{w}^{\top} \psi(\mathbf{x}), \sigma^2)$
- Assuming fixed/known **S** and σ^2 is a big assumption. More on this later.

Bayesian Linear Regression

- Bayesian linear regression considers various plausible explanations for how the data were generated.
- It makes predictions using all possible regression weights, weighted by their posterior probability.
- Here are samples from the prior $p(\mathbf{w})$ and posteriors $p(\mathbf{w} \mid \mathcal{D})$

Bayesian Linear Regression: Posterior

• Deriving the posterior distribution:

$$\log p(\mathbf{w} \mid \mathcal{D}) = \log p(\mathbf{w}) + \log p(\mathcal{D} \mid \mathbf{w}) + \text{const}$$

$$= -\frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{S}^{-1} \mathbf{w} - \frac{1}{2\sigma^{2}} || \mathbf{\Psi} \mathbf{w} - \mathbf{y} ||^{2} + \text{const}$$

$$= -\frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{S}^{-1} \mathbf{w} - \frac{1}{2\sigma^{2}} (\mathbf{w}^{\mathsf{T}} \mathbf{\Psi}^{\mathsf{T}} \mathbf{\Psi} \mathbf{w} - 2 \mathbf{y}^{\mathsf{T}} \mathbf{\Psi} \mathbf{w} + \mathbf{y}^{\mathsf{T}} \mathbf{y}) + \text{const}$$

$$= -\frac{1}{2} \mathbf{w}^{\mathsf{T}} (\sigma^{-2} \mathbf{\Psi}^{\mathsf{T}} \mathbf{\Psi} + \mathbf{S}^{-1}) \mathbf{w} + \frac{1}{\sigma^{2}} \mathbf{y}^{\mathsf{T}} \mathbf{\Psi} \mathbf{w} + \text{const (complete the square!)}$$

Thus $\mathbf{w} \mid \mathcal{D} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where

$$\boldsymbol{\mu} = \left(\mathbf{\Psi}^{\mathsf{T}} \mathbf{\Psi} + \sigma^{2} \mathbf{S}^{-1}\right)^{-1} \mathbf{\Psi}^{\mathsf{T}} \mathbf{y}$$
$$\boldsymbol{\Sigma} = \sigma^{2} \left(\mathbf{\Psi}^{\mathsf{T}} \mathbf{\Psi} + \sigma^{2} \mathbf{S}^{-1}\right)^{-1}$$

Bayesian Linear Regression: Posterior

- Gaussian prior leads to a Gaussian posterior, and so the Gaussian distribution is the conjugate prior for linear regression model.
- Compare μ to the closed-form solution for linear regression:

$$\mathbf{w} = (\mathbf{\Psi}^{\mathsf{T}} \mathbf{\Psi} + \lambda \mathbf{I})^{-1} \mathbf{\Psi}^{\mathsf{T}} \mathbf{y}$$

This is the mean of the posterior for $\mathbf{S} = \frac{\sigma^2}{\lambda} \mathbf{I}$.

• As $\lambda \to 0$, the standard deviation of the prior goes to ∞ , and the mean of the posterior converges to the MLE.

Bayesian Linear Regression

Illustration of sequential Bayesian learning for $y = w_0 + w_1 x$, $w_0 = -0.3$, $w_1 = 0.5$.

Left column:

- Likelihood of a single data point.
- Single point does not identify a line.
- Fix (x, y) then $w_0 = y w_1 x$.

Middle column:

• Prior/posterior.

Right column:

- Lines: samples from the posterior.
- Dots: data points.

Radial bases example

• Example with radial basis function (RBF) features

$$\psi_j(x) = \exp\left(-\frac{(x-\mu_j)^2}{2s^2}\right)$$

Radial bases example

Functions sampled from the posterior:

Posterior predictive distribution

- The posterior just gives us distribution over the parameter space, but if we want to make predictions, the natural choice is to use the posterior predictive distribution.
- Posterior predictive distribution:

$$p(y \mid \mathbf{x}, \mathcal{D}) = \int \underbrace{p(y \mid \mathbf{x}, \mathbf{w})}_{\mathcal{N}(y; \mathbf{w}^{\top} \psi(\mathbf{x}), \sigma)} \underbrace{p(\mathbf{w} \mid \mathcal{D})}_{\mathcal{N}(\mathbf{w}; \boldsymbol{\mu}, \boldsymbol{\Sigma})} \, \mathrm{d}\mathbf{w}$$

• Another interpretation: $y = \mathbf{w}^{\top} \psi(\mathbf{x}) + \varepsilon$, where $\varepsilon \sim \mathcal{N}(0, \sigma)$ is independent of $\mathbf{w} \mid \mathcal{D} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

Recall

$$\boldsymbol{\mu} = \left(\boldsymbol{\Psi}^{\top}\boldsymbol{\Psi} + \boldsymbol{\sigma}^{2}\mathbf{S}^{-1}\right)^{-1}\boldsymbol{\Psi}^{\top}\mathbf{y}$$

$$\boldsymbol{\Sigma} = \boldsymbol{\sigma}^{2}\left(\boldsymbol{\Psi}^{\top}\boldsymbol{\Psi} + \boldsymbol{\sigma}^{2}\mathbf{S}^{-1}\right)^{-1}$$

Bayesian Linear Regression

- Another interpretation: $y = \mathbf{w}^{\top} \psi(\mathbf{x}) + \varepsilon$, where $\varepsilon \sim \mathcal{N}(0, \sigma)$ is independent of $\mathbf{w} \mid \mathcal{D} \sim \mathcal{N}(\mu, \Sigma)$.
- ullet Again by the fact that affine transformations of Gaussian vectors are Gaussian, y is a Gaussian distribution with parameters

$$\begin{split} \boldsymbol{\mu}_{\mathrm{pred}} &= \boldsymbol{\mu}^{\top} \boldsymbol{\psi}(\mathbf{x}) \\ \boldsymbol{\sigma}_{\mathrm{pred}}^2 &= \boldsymbol{\psi}(\mathbf{x})^{\top} \boldsymbol{\Sigma} \boldsymbol{\psi}(\mathbf{x}) + \boldsymbol{\sigma}^2 \end{split}$$

• Hence, the posterior predictive distribution is $\mathcal{N}(y \mid \mu_{\text{pred}}, \sigma_{\text{pred}}^2)$.

Bayesian Linear Regression

Here we visualize confidence intervals based on the posterior predictive mean and variance at each point:

Summary

• This lecture covered the basics of Bayesian regression.

What's remaining:

- Week 11: Neural networks.
- Week 12: Kernel methods, Gaussian processes.
- Week 13: Diffusions.