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Overview

o A probabilistic model for continuous latent variables.
» Probabilistic interpretation of the PCA

e Earlier formulation of PCA was motivated geometrically.

o We will show that it can be expressed as the maximum likelihood
estimate of a certain probabilistic model.
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Low dimensional representation

@ In practice, even though data is very high dimensional, its important
features can be accurately captured in a low dimensional subspace.
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@ Find a low dimensional representation of your data.

» Computational benefits
» Interpretability, visualization
» Generalization
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Nice example

Source: Novembre et al, Genes mirror geography within Europe,
Nature, 2009.
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Recall: Principal Component Analysis (PCA)

e Data set {x(i)}f\il
e Each input vector x e RP is approximated as X + Uz(i),

(@)

HONNMO (i)

=x+ Uz

DxK

where X = % > x is the data mean, U € R is the orthogonal

basis for the principal subspace, and 2 € R¥ is the code vector
2 = UT(x(i) -X)
o U is chosen to minimize the reconstruction error

* . (2) = T, () _ =12
U —argm[}nZHX x-UU (x X))l
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We are looking for directions
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o For example, in a 2-dimensional problem, we are looking for the
direction u; along which the data is well represented: (7)
» e.g. direction of higher variance
» e.g. direction of minimum reconstruction error
» Recall: they are the same!
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Probabilistic PCA

Consider the following latent variable model.

@ Similar to the Gaussian mixture model but with Gaussian latents:

z ~NK(O7IK)
x|z ~ Np(Wz + p,o°Ip)

e This is similar to naive Bayes graphical model, because p(x | z)
factorizes with respect to the dimensions of x.

o What sort of data does this model produce?

Matrix-vector multiplication: Wz is a linear combination of the
columns of W with coefficients z = (z1,..., 2k ).
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Probabilistic PCA

@ Wz is a random linear combination of the columns of W

o To get the random variable x, we sample a standard normal z and
then add a small amount of isotropic noise to Wz + p.

x

The column span of W refers to the principal subspace in PCA.
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Probabilistic PCA : The Likelihood function

To perform maximum likelihood in this model, we need to
maximize the following:

max_log p(x | W, ,0%) = max 1og[p(x 2, W, 1, 0")p(z) da
W,u,02 W,p,02

@ This is easier than for the Gaussian mixture model.

o x = Wz + p + € (x is an affine transformations of Gaussian vars)

p(x | W, p,0°) is Gaussian
» Only need to compute E[x] and Cov[x].
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Probabilistic PCA : Maximum Likelihood

E[x]=E[Wz+pu+e]l=p

Cov[x] = E[(Wz + €)(Wz +¢) " ]
= E[(Wzz' W' ]+ Cov[e]
= WW ' +5°1p
Recall: R orthogonal if RR' =1I.
This model is not identifiable because WW ' = (WR)(WR)T.
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Probabilistic PCA : Maximum Likelihood

Thus, the log-likelihood of the data under this model is given by
ND N 1< o) T -1, ()
=g loa(2m) = g log [0l = 5 ) (<7 =) O )
where C = WW ' + O'QID.
Here the MLE (i, W, 5°) is given in a closed-form!

Check Tipping and Bishop (Probabilistic PCA, 1999) for details.
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The maximum likelihood estimates

The maximum likelihood estimator is:

1
i = = <
=1
—~ 1
W = U(L - 51¢)°R
D
~2 1 Z
= \;
D-K &

o The columns of U € R”*X are the K unit eigenvectors of the
empirical covariance matrix 3 that have the largest eigenvalues,

@ A\ = )y = - = \p are the eigenvalues of s

o L = diag()\1, ..., \x) is the diagonal matrix whose elements are
the corresponding eigenvalues, and R is any orthogonal matrix.
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Probabilistic PCA : Maximum Likelihood

o That seems complex, to get an intuition about how this model
behaves when it is fit to data, lets consider the MLE density.

o Recall that the marginal distribution on x in our fitted model is a
Gaussian with mean

=X
and covariance
C = WW' +51 = OL-51)T" +51

@ The covariance gives us a nice intuition about the model.
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Probabilistic PCA : Maximum Likelihood

o Center the data and check the variance along one of the unit
eigenvectors u;, which are the vectors forming the columns of U:

uiT Cov[x]u;
u:ﬁ(i - EQI)ﬁTui +5

~2 ~2
N—o +o =)\

Var(uiT(x -X))

o Now, center the data and check the variance along any unit vector
orthogonal to the subspace spanned by U:
Var(u (x-X))=u; U( I)U w + 6

~2
=0

@ The model captures the variance along the principle axes and
approximates it in all remaining directions with a single variance.
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How does it relate to PCA?

The posterior mean is given by
-1
Elz|x]= (W' W+01) W' (x-p)

Posterior variance:

(]

Cov[z|x] = o2 (W W + o°T) "
o In the limit o” — 0, we get
T
(

E[z|x] 5" (WTW)_l W' (x - p)
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Why Probabilistic PCA (PPCA)?

e Fitting a full-covariance Gaussian model of data requires
D(D +1)/2 + D parameters. With PPCA we model only the K
most significant correlations and this only requires O(K D)
parameters as long as K is small.

@ Bayesian PCA gives us a Bayesian method for determining the low
dimensional principal subspace.

o Existence of likelihood functions allows direct comparison with
other probabilistic models.

e Instead of solving directly, we can also use EM. The EM can be
scaled to very large high- dimensional datasets.
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Summary: Some Gaussian models

@ Gaussian mixture model.

» Gaussian latent variable model p(x) = ), p(x, z) used for
clustering.

@ Probabilistic PCA.

» Gaussian latent variable model p(x) = IZ p(x, 2) used for
dimensionality reduction.

@ Bayesian linear regression (next hour).

» Gaussian discriminative model p(y | x) used for regression with a
Bayesian analysis for the weights.
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Overview of the next hour

e Continuing in our theme of probabilistic models for continuous
variables.

e We give a probabilistic interpretation of linear regression.

o Chapter 3.3 in Bishop’s book.
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Completing the Square for Gaussians

Useful technique to find moments of Gaussian random variables.

o It is a multivariate generalization of completing the square.
@ The density of x ~ N'(u, X) satifies:

log p(x) —%(x - u)TZ_l(x — ) + const

Te-1 Te-1
=—%X 3 'x+x X p+const

o Thus, if we know w is Gaussian with unknown mean and
covariance, and we also know that

log p(w) = —%WTAW +w ' b+ const

for A positive definite, then we know that

w~N(A"'b,ATh).
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Bayesian Linear Regression

o We take the Bayesian approach to linear regression.
» This is in contrast with the standard regression.
» By inferring a posterior distribution over the parameters, the model
can know what it doesn’t know.
o How can uncertainty in the predictions help us?
» Smooth out the predictions by averaging over lots of plausible
explanations
» Assign confidences to predictions
» Make more robust decisions
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Recap: Linear Regression

e Given a training set of inputs and targets {(x(i), y(i))}é\il

@ Linear model:
y=w p(x)+e

@ Vectorized, we have the design matrix X in input space and

¢(X(1)) _ (1)

Yy
_ (2) (2)
v = ¢(>§ ) Ly = y:
vy - y™
and predictions
y=¥w
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Recap: Ridge Regression

Penalized sum of squares (ridge regression):

1 A
minimize §||y - \Ilw||2 + §||W||2

The gradient: (¥' ¥ + \)w — ¥ y.
@ Solution 1: solve analytically by setting the gradient to 0

w= (T @+ )0y

Solution 2: solve approximately using gradient descent

we (1-a\)w - a‘I’T(lIlw -y)
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Linear Regression as Maximum Likelihood

@ We can give linear regression a probabilistic interpretation by
assuming a Gaussian noise model:

T 2
ylx~N(w 9(x), o)
@ Linear regression is just maximum log-likelihood under this model:
Y 1ogp(y™ | x5 w,b) = 3 log N (5w yp(x"), 0%)

(_ (" = wp(x"))? ﬂ

202

N
1 i T )42
= const — 257 Z(y(l) -w ¢(x(l)))
i=1

1 2
= const — — ||y - Tw
const — 55 lly - ww|
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Regularized Linear Regression as MAP Estimation

e View an Ls regularizer as MAP inference with a Gaussian prior.
arg m‘f}xlogp(w | D) = arg max [log p(w) + log p(D | w)]
e We just derived the likelihood term log p(D | w):
logp(D | w) = const — #Hy - \Ilw||2
e Assume a Gaussian prior, w ~ N'(m, S):

log () = log| exp (v = m)8”! (w - )|

1
(271')D/2|S|1/2
= —%(w - m)TS_l(w —m) + const
o Commonly, m =0 and S = nl, so
! =~ lwll? + const
ogp(w) = o 1w const.

This is just Ls regularization!
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Full Bayesian Inference

Full Bayesian inference makes predictions by averaging over all
likely explanations under the posterior distribution.

Compute posterior using Bayes’ Rule:

p(w | D) o< p(w)p(D | w)

(]

Make predictions using the posterior predictive distribution:

p(y|%.D) = [p(ww)p(mx,w)dw

Doing this lets us quantify our uncertainty.
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Bayesian Linear Regression

e Prior distribution: w ~ N (0,S)
o Likelihood: y|x,w ~ N (w ' 9(x), o°)

e Assuming fixed /known S and o’ isa big assumption. More on this
later.
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Bayesian Linear Regression

o Bayesian linear regression considers various plausible explanations
for how the data were generated.

o It makes predictions using all possible regression weights, weighted
by their posterior probability.

@ Here are samples from the prior p(w) and posteriors p(w | D)

7//

no observations one observation two observations
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Bayesian Linear Regression: Posterior

o Deriving the posterior distribution:

logp(w | D) =logp(w) + logp(D | w) + const

_ 1
= —%WTS 'w— —|Tw —y|I? + const
20

_ 1
_%WTS 'w— 257 (WT\I’T‘I’W - 2yT\IlW + yTy) + const
o

_ _ 1
—%WT (o w4+ S 1) W+ —QyT\Ilw + const (complete the square!)
o

Thus w | D ~ N(u, X) where
_17—1
p=(e'w+o’s7) Wy

S=o (e + 028_1)_1
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Bayesian Linear Regression: Posterior

o Gaussian prior leads to a Gaussian posterior, and so the Gaussian
distribution is the conjugate prior for linear regression model.

e Compare p to the closed-form solution for linear regression:
w= (¥ ¥T+A) 'Oy
2
This is the mean of the posterior for S = UTI‘

e As A — 0, the standard deviation of the prior goes to oo, and the
mean of the posterior converges to the MLE.
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Bayesian Linear Regression

Ilustration of sequential Bayesian learning for y = wqy + wyx,

wg = —0.3, wy = 0.5. othood s sz

Left column: @ %
e Likelihood of a single data point. O
o Single point does not identify a line. /§
e Fix (z,y) then wy =y — wyz. ) ) .

Middle column: Lo e

e Prior/posterior. H i %
Right column: 1 .

o Lines: samples from the posterior. J ]

e Dots: data points. " - |
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Radial bases example

e Example with radial basis function (RBF) features

(- Mj)2

V;(x) = exp (_T)

1
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0
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Radial bases example

Functions sampled from the posterior:

-1
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Posterior predictive distribution

o The posterior just gives us distribution over the parameter space,
but if we want to make predictions, the natural choice is to use the
posterior predictive distribution.

@ Posterior predictive distribution:

pylxD) = | pylxw) plw|D) dw
N(y;wp(x),0) N(w;p,X)

e Another interpretation: y = wTw(X) + ¢, where ¢ ~ N (0,0) is
independent of w | D ~ N (u, X).

Recall

(eTw+o’s) @y

l_L =
S=0" (2w +07s")"
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Bayesian Linear Regression

@ Another interpretation: y = wTw(X) + ¢, where ¢ ~ N(0,0) is
independent of w | D ~ N (u, X).

e Again by the fact that affine transformations of Gaussian vectors
are Gaussian, y is a Gaussian distribution with parameters

Hpred = NT¢(X)
Opred = Y(x) ' Tep(x) + 0

e Hence, the posterior predictive distribution is N (y | ftpreds U;red).

Prob Learning (UofT) STA414-Week 10 34 / 36



Bayesian Linear Regression

Here we visualize confidence intervals based on the posterior predictive
mean and variance at each point:

-1

STA414-Week 10 35 / 36



Summary

o This lecture covered the basics of Bayesian regression.

What’s remaining:

o Week 11: Neural networks.
o Week 12: Kernel methods, Gaussian processes.
o Week 13: Diffusions.
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