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Overview

A probabilistic model for continuous latent variables.
▶ Probabilistic interpretation of the PCA

Earlier formulation of PCA was motivated geometrically.

We will show that it can be expressed as the maximum likelihood
estimate of a certain probabilistic model.
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Low dimensional representation

In practice, even though data is very high dimensional, its important
features can be accurately captured in a low dimensional subspace.

Find a low dimensional representation of your data.

▶ Computational benefits
▶ Interpretability, visualization
▶ Generalization
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Nice example

Source: Novembre et al, Genes mirror geography within Europe,
Nature, 2009.
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Recall: Principal Component Analysis (PCA)

Data set {x(i)}Ni=1
Each input vector x

(i) ∈ RD
is approximated as x +Uz

(i)
,

x
(i) ≈ x̃

(i) = x +Uz
(i)

where x = 1
n
∑i x

(i)
is the data mean, U ∈ RD×K

is the orthogonal

basis for the principal subspace, and z
(i) ∈ RK

is the code vector

z
(i) = U

⊤(x(i) − x)
U is chosen to minimize the reconstruction error

U
∗ = argmin

U

i

∥x(i) − x −UU
⊤(x(i) − x)∥2
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We are looking for directions

For example, in a 2-dimensional problem, we are looking for the
direction u1 along which the data is well represented: (?)

▶ e.g. direction of higher variance
▶ e.g. direction of minimum reconstruction error
▶ Recall: they are the same!
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Probabilistic PCA

Consider the following latent variable model.

Similar to the Gaussian mixture model but with Gaussian latents:

z ∼ NK(0, IK)
x ∣ z ∼ ND(Wz + µ,σ

2
ID)

This is similar to naive Bayes graphical model, because p(x ∣ z)
factorizes with respect to the dimensions of x.

What sort of data does this model produce?

Matrix-vector multiplication: Wz is a linear combination of the
columns of W with coefficients z = (z1, . . . , zK).
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Probabilistic PCA

Wz is a random linear combination of the columns of W

To get the random variable x, we sample a standard normal z and
then add a small amount of isotropic noise to Wz + µ.

z

p(z)

bz

x2

x1

µ

p(x|bz)

} bz|w|

w
x2

x1

µ

p(x)

The column span of W refers to the principal subspace in PCA.
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Probabilistic PCA : The Likelihood function

To perform maximum likelihood in this model, we need to
maximize the following:

max
W,µ,σ2

log p(x ∣W,µ,σ
2) = max

W,µ,σ2
log p(x ∣ z,W,µ,σ

2)p(z) dz

This is easier than for the Gaussian mixture model.

x = Wz + µ +  (x is an affine transformations of Gaussian vars)

p(x ∣W,µ,σ
2) is Gaussian

▶ Only need to compute E[x] and Cov[x].
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Probabilistic PCA : Maximum Likelihood

E[x] = E[Wz + µ + ] = µ

Cov[x] = E[(Wz + )(Wz + )⊤]
= E[(Wzz

⊤
W

⊤] + Cov[]
= WW

⊤ + σ
2
ID

Recall: R orthogonal if RR
⊤ = I.

This model is not identifiable because WW
⊤ = (WR)(WR)⊤.

Prob Learning (UofT) STA414-Week 10 10 / 36



Probabilistic PCA : Maximum Likelihood

Thus, the log-likelihood of the data under this model is given by

−
ND

2
log(2π) − N

2
log ∣C∣ − 1

2

N


i=1

(x(i) − µ)⊤C−1(x(i) − µ)
where C = WW

⊤ + σ
2
ID.

Here the MLE (µ̂,W, σ̂
2) is given in a closed-form!

Check Tipping and Bishop (Probabilistic PCA, 1999) for details.
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The maximum likelihood estimates

The maximum likelihood estimator is:

µ̂ = 1

N

N


i=1

x
(i)

W = U(L̂ − σ̂
2
IK) 1

2R

σ̂
2 = 1

D −K

D


i=K+1

λi

The columns of U ∈ RD×K
are the K unit eigenvectors of the

empirical covariance matrix Σ that have the largest eigenvalues,

λ1 ≥ λ2 ≥ ⋯ ≥ λD are the eigenvalues of Σ.

L̂ = diag(λ1, . . . ,λK) is the diagonal matrix whose elements are
the corresponding eigenvalues, and R is any orthogonal matrix.
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Probabilistic PCA : Maximum Likelihood

That seems complex, to get an intuition about how this model
behaves when it is fit to data, lets consider the MLE density.

Recall that the marginal distribution on x in our fitted model is a
Gaussian with mean

µ̂ = x

and covariance

C = WW⊤ + σ̂
2
I = U(L̂ − σ̂

2
I)U⊤ + σ̂

2
I

The covariance gives us a nice intuition about the model.
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Probabilistic PCA : Maximum Likelihood

Center the data and check the variance along one of the unit
eigenvectors ui, which are the vectors forming the columns of U:

Var(u⊤
i (x − x)) = u

⊤
i Cov[x]ui

= u
⊤
i U(L̂ − σ̂

2
I)U⊤

ui + σ̂
2

= λi − σ̂
2 + σ̂

2 = λi

Now, center the data and check the variance along any unit vector
orthogonal to the subspace spanned by U:

Var(u⊤
i (x − x)) = u

⊤
i U(L̂ − σ̂

2
I)U⊤

ui + σ̂
2

= σ̂
2

The model captures the variance along the principle axes and
approximates it in all remaining directions with a single variance.
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How does it relate to PCA?

The posterior mean is given by

E[z ∣x] = W⊤
W + σ

2
I−1W⊤(x − µ)

Posterior variance:

Cov[z∣x] = σ
2(W⊤

W + σ
2
I)−1

In the limit σ
2 → 0, we get

E[z ∣x] σ
2→0
→ W⊤

W−1W⊤(x − µ)
Plugging in the MLEs, this limit recovers the standard PCA.
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Why Probabilistic PCA (PPCA)?

Fitting a full-covariance Gaussian model of data requires
D(D + 1)/2 +D parameters. With PPCA we model only the K
most significant correlations and this only requires O(KD)
parameters as long as K is small.

Bayesian PCA gives us a Bayesian method for determining the low
dimensional principal subspace.

Existence of likelihood functions allows direct comparison with
other probabilistic models.

Instead of solving directly, we can also use EM. The EM can be
scaled to very large high- dimensional datasets.
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Summary: Some Gaussian models

Gaussian mixture model.

▶ Gaussian latent variable model p(x) = ∑z p(x, z) used for
clustering.

Probabilistic PCA.

▶ Gaussian latent variable model p(x) = ∫
z
p(x, z) used for

dimensionality reduction.

Bayesian linear regression (next hour).

▶ Gaussian discriminative model p(y ∣x) used for regression with a
Bayesian analysis for the weights.
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Overview of the next hour

Continuing in our theme of probabilistic models for continuous
variables.

We give a probabilistic interpretation of linear regression.

Chapter 3.3 in Bishop’s book.
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Completing the Square for Gaussians

Useful technique to find moments of Gaussian random variables.

It is a multivariate generalization of completing the square.

The density of x ∼ N (µ,Σ) satifies:

log p(x) = −1
2
(x − µ)⊤Σ−1(x − µ) + const

= −1
2
x
⊤
Σ

−1
x + x

⊤
Σ

−1
µ + const

Thus, if we know w is Gaussian with unknown mean and
covariance, and we also know that

log p(w) = −1
2
w

⊤
Aw +w

⊤
b + const

for A positive definite, then we know that

w ∼ N (A−1
b,A

−1).
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Bayesian Linear Regression

We take the Bayesian approach to linear regression.
▶ This is in contrast with the standard regression.
▶ By inferring a posterior distribution over the parameters, the model

can know what it doesn’t know.

How can uncertainty in the predictions help us?
▶ Smooth out the predictions by averaging over lots of plausible

explanations
▶ Assign confidences to predictions
▶ Make more robust decisions
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Recap: Linear Regression

Given a training set of inputs and targets {(x(i)
, y

(i))}Ni=1
Linear model:

y = w
⊤
ψ(x) + 

Vectorized, we have the design matrix X in input space and

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− ψ(x(1)) −
− ψ(x(2)) −

⋮
− ψ(x(N)) −

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y
(1)

y
(2)
⋮

y
(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and predictions

ŷ = Ψw
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Recap: Ridge Regression

Penalized sum of squares (ridge regression):

minimize
1

2
∥y −Ψw∥2 +

λ

2
∥w∥2

The gradient: (Ψ⊤
Ψ + λI)w −Ψ

⊤
y.

Solution 1: solve analytically by setting the gradient to 0

w = (Ψ⊤
Ψ + λI)−1Ψ⊤

y

Solution 2: solve approximately using gradient descent

w ← (1 − αλ)w − αΨ
⊤(Ψw − y)

Prob Learning (UofT) STA414-Week 10 22 / 36



Linear Regression as Maximum Likelihood

We can give linear regression a probabilistic interpretation by
assuming a Gaussian noise model:

y ∣x ∼ N (w⊤
ψ(x), σ

2)
Linear regression is just maximum log-likelihood under this model:

N


i=1

log p(y(i) ∣x(i)
;w, b) = N


i=1

logN (y(i)
;w

⊤
ψ(x(i)),σ2)

=
N


i=1

log  1
2πσ

exp− (y(i) −w
⊤
ψ(x(i)))2

2σ2


= const −
1

2σ2

N


i=1

(y(i) −w
⊤
ψ(x(i)))2

= const −
1

2σ2
∥y −Ψw∥2
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Regularized Linear Regression as MAP Estimation

View an L2 regularizer as MAP inference with a Gaussian prior.

argmax
w

log p(w ∣D) = argmax
w

[log p(w) + log p(D ∣w)]
We just derived the likelihood term log p(D ∣w):

log p(D ∣w) = const −
1

2σ2
∥y −Ψw∥2

Assume a Gaussian prior, w ∼ N (m,S):
log p(w) = log  1(2π)D/2∣S∣1/2 exp − 1

2
(w −m)⊤S−1(w −m)

= − 1

2
(w −m)⊤S−1(w −m) + const

Commonly, m = 0 and S = ηI, so

log p(w) = −
1

2η
∥w∥2 + const.

This is just L2 regularization!
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Full Bayesian Inference

Full Bayesian inference makes predictions by averaging over all
likely explanations under the posterior distribution.

Compute posterior using Bayes’ Rule:

p(w ∣D) ∝ p(w)p(D ∣w)
Make predictions using the posterior predictive distribution:

p(y ∣x,D) =  p(w ∣D) p(y ∣x,w) dw
Doing this lets us quantify our uncertainty.
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Bayesian Linear Regression

Prior distribution: w ∼ N (0,S)
Likelihood: y ∣x,w ∼ N (w⊤

ψ(x), σ
2)

Assuming fixed/known S and σ
2
is a big assumption. More on this

later.
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Bayesian Linear Regression

Bayesian linear regression considers various plausible explanations
for how the data were generated.

It makes predictions using all possible regression weights, weighted
by their posterior probability.

Here are samples from the prior p(w) and posteriors p(w ∣D)

Prob Learning (UofT) STA414-Week 10 27 / 36



Bayesian Linear Regression: Posterior

Deriving the posterior distribution:

log p(w ∣D) = log p(w) + log p(D ∣w) + const

= − 1

2
w

⊤
S
−1
w −

1

2σ2
∥Ψw − y∥2 + const

= − 1

2
w

⊤
S
−1
w −

1

2σ2
w⊤

Ψ
⊤
Ψw − 2y

⊤
Ψw + y

⊤
y + const

= − 1

2
w

⊤ σ−2
Ψ

⊤
Ψ + S

−1w +
1

σ2
y
⊤
Ψw + const (complete the square!)

Thus w ∣D ∼ N (µ,Σ) where

µ = Ψ⊤
Ψ + σ

2
S
−1−1Ψ⊤

y

Σ = σ
2 Ψ⊤

Ψ + σ
2
S
−1−1
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Bayesian Linear Regression: Posterior

Gaussian prior leads to a Gaussian posterior, and so the Gaussian
distribution is the conjugate prior for linear regression model.

Compare µ to the closed-form solution for linear regression:

w = (Ψ⊤
Ψ + λI)−1Ψ⊤

y

This is the mean of the posterior for S = σ
2

λ
I.

As λ → 0, the standard deviation of the prior goes to ∞, and the
mean of the posterior converges to the MLE.
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Bayesian Linear Regression

Illustration of sequential Bayesian learning for y = w0 + w1x,
w0 = −0.3, w1 = 0.5.

Left column:

Likelihood of a single data point.

Single point does not identify a line.

Fix (x, y) then w0 = y − w1x.

Middle column:

Prior/posterior.

Right column:

Lines: samples from the posterior.

Dots: data points.
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Radial bases example

Example with radial basis function (RBF) features

ψj(x) = exp−(x − µj)2
2s2
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Radial bases example

Functions sampled from the posterior:
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Posterior predictive distribution

The posterior just gives us distribution over the parameter space,
but if we want to make predictions, the natural choice is to use the
posterior predictive distribution.

Posterior predictive distribution:

p(y ∣x,D) =  p(y ∣x,w)  
N (y ;w⊤ψ(x),σ)

p(w ∣D)   
N (w ;µ,Σ)

dw

Another interpretation: y = w
⊤
ψ(x) + ε, where ε ∼ N (0,σ) is

independent of w ∣D ∼ N (µ,Σ).
Recall

µ = Ψ⊤
Ψ + σ

2
S
−1−1 Ψ⊤

y

Σ = σ
2 Ψ⊤

Ψ + σ
2
S
−1−1
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Bayesian Linear Regression

Another interpretation: y = w
⊤
ψ(x) + ε, where ε ∼ N (0,σ) is

independent of w ∣D ∼ N (µ,Σ).
Again by the fact that affine transformations of Gaussian vectors
are Gaussian, y is a Gaussian distribution with parameters

µpred = µ
⊤
ψ(x)

σ
2
pred = ψ(x)⊤Σψ(x) + σ

2

Hence, the posterior predictive distribution is N (y ∣µpred,σ
2
pred).
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Bayesian Linear Regression

Here we visualize confidence intervals based on the posterior predictive
mean and variance at each point:

— Bishop, Pattern Recognition and Machine Learning
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Summary

This lecture covered the basics of Bayesian regression.

What’s remaining:

Week 11: Neural networks.

Week 12: Kernel methods, Gaussian processes.

Week 13: Diffusions.
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