STA 414/2104:
 Statistical Methods of Machine Learning II

 Week 10: Probabilistic PCA/Bayesian RegressionMurat A. Erdoğdu and Piotr Zwiernik

University of Toronto

Overview

- A probabilistic model for continuous latent variables.
- Probabilistic interpretation of the PCA
- Earlier formulation of PCA was motivated geometrically.
- We will show that it can be expressed as the maximum likelihood estimate of a certain probabilistic model.

Low dimensional representation

- In practice, even though data is very high dimensional, its important features can be accurately captured in a low dimensional subspace.

- Find a low dimensional representation of your data.
- Computational benefits
- Interpretability, visualization
- Generalization

Nice example

Source: Novembre et al, Genes mirror geography within Europe, Nature, 2009.

Recall: Principal Component Analysis (PCA)

- Data set $\left\{\mathbf{x}^{(i)}\right\}_{i=1}^{N}$
- Each input vector $\mathbf{x}^{(i)} \in \mathbb{R}^{D}$ is approximated as $\overline{\mathbf{x}}+\mathbf{U z}{ }^{(i)}$,

$$
\mathbf{x}^{(i)} \approx \tilde{\mathbf{x}}^{(i)}=\overline{\mathbf{x}}+\mathbf{U} \mathbf{z}^{(i)}
$$

where $\overline{\mathbf{x}}=\frac{1}{n} \sum_{i} \mathbf{x}^{(i)}$ is the data mean, $\mathbf{U} \in \mathbb{R}^{D \times K}$ is the orthogonal basis for the principal subspace, and $\mathbf{z}^{(i)} \in \mathbb{R}^{K}$ is the code vector

$$
\mathbf{z}^{(i)}=\mathbf{U}^{\top}\left(\mathbf{x}^{(i)}-\overline{\mathbf{x}}\right)
$$

- \mathbf{U} is chosen to minimize the reconstruction error

$$
\mathbf{U}^{*}=\arg \min _{\mathbf{U}} \sum_{i}\left\|\mathbf{x}^{(i)}-\overline{\mathbf{x}}-\mathbf{U} \mathbf{U}^{\top}\left(\mathbf{x}^{(i)}-\overline{\mathbf{x}}\right)\right\|^{2}
$$

We are looking for directions

- For example, in a 2 -dimensional problem, we are looking for the direction \boldsymbol{u}_{1} along which the data is well represented: (?)
- e.g. direction of higher variance
- e.g. direction of minimum reconstruction error
- Recall: they are the same!

Probabilistic PCA

Consider the following latent variable model.

- Similar to the Gaussian mixture model but with Gaussian latents:

$$
\begin{aligned}
\mathbf{z} & \sim \mathcal{N}_{K}\left(\mathbf{0}, \mathbf{I}_{K}\right) \\
\mathbf{x} \mid \mathbf{z} & \sim \mathcal{N}_{D}\left(\mathbf{W} \mathbf{z}+\boldsymbol{\mu}, \sigma^{2} \mathbf{I}_{D}\right)
\end{aligned}
$$

- This is similar to naive Bayes graphical model, because $p(\mathbf{x} \mid \mathbf{z})$ factorizes with respect to the dimensions of \mathbf{x}.
- What sort of data does this model produce?

Matrix-vector multiplication: $\mathbf{W z}$ is a linear combination of the columns of \mathbf{W} with coefficients $\mathbf{z}=\left(z_{1}, \ldots, z_{K}\right)$.

Probabilistic PCA

- $\mathbf{W z}$ is a random linear combination of the columns of \mathbf{W}
- To get the random variable \mathbf{x}, we sample a standard normal \mathbf{z} and then add a small amount of isotropic noise to $\mathbf{W z}+\boldsymbol{\mu}$.

The column span of \mathbf{W} refers to the principal subspace in PCA.

Probabilistic PCA : The Likelihood function

- To perform maximum likelihood in this model, we need to maximize the following:

$$
\max _{\mathbf{W}, \boldsymbol{\mu}, \sigma^{2}} \log p\left(\mathbf{x} \mid \mathbf{W}, \boldsymbol{\mu}, \sigma^{2}\right)=\max _{\mathbf{W}, \boldsymbol{\mu}, \sigma^{2}} \log \int p\left(\mathbf{x} \mid \mathbf{z}, \mathbf{W}, \boldsymbol{\mu}, \sigma^{2}\right) p(\mathbf{z}) d \mathbf{z}
$$

- This is easier than for the Gaussian mixture model.
- $\mathbf{x}=\mathbf{W z}+\boldsymbol{\mu}+\epsilon$ (\mathbf{x} is an affine transformations of Gaussian vars)
- $p\left(\mathbf{x} \mid \mathbf{W}, \boldsymbol{\mu}, \sigma^{2}\right)$ is Gaussian
- Only need to compute $\mathbb{E}[\mathbf{x}]$ and $\operatorname{Cov}[\mathbf{x}]$.

Probabilistic PCA : Maximum Likelihood

$$
\begin{aligned}
\mathbb{E}[\mathbf{x}] & =\mathbb{E}[\mathbf{W} \mathbf{z}+\boldsymbol{\mu}+\epsilon]=\boldsymbol{\mu} \\
\operatorname{Cov}[\mathbf{x}] & =\mathbb{E}\left[(\mathbf{W} \mathbf{z}+\epsilon)(\mathbf{W} \mathbf{z}+\epsilon)^{\top}\right] \\
& =\mathbb{E}\left[\left(\mathbf{W} \mathbf{z z} \mathbf{W}^{\top}\right]+\operatorname{Cov}[\epsilon]\right. \\
& =\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}_{D}
\end{aligned}
$$

Recall: \mathbf{R} orthogonal if $\mathbf{R R}^{\top}=\mathbf{I}$.
This model is not identifiable because $\mathbf{W} \mathbf{W}^{\top}=(\mathbf{W R})(\mathbf{W R})^{\top}$.

Probabilistic PCA : Maximum Likelihood

Thus, the log-likelihood of the data under this model is given by

$$
-\frac{N D}{2} \log (2 \pi)-\frac{N}{2} \log |\mathbf{C}|-\frac{1}{2} \sum_{i=1}^{N}\left(\mathbf{x}^{(i)}-\boldsymbol{\mu}\right)^{\top} \mathbf{C}^{-1}\left(\mathbf{x}^{(i)}-\boldsymbol{\mu}\right)
$$

where $\mathbf{C}=\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}_{D}$.
Here the MLE $\left(\hat{\boldsymbol{\mu}}, \widehat{\mathbf{W}}, \hat{\sigma}^{2}\right)$ is given in a closed-form!
Check Tipping and Bishop (Probabilistic PCA, 1999) for details.

The maximum likelihood estimates

The maximum likelihood estimator is:

$$
\begin{aligned}
\widehat{\boldsymbol{\mu}} & =\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{(i)} \\
\widehat{\mathbf{W}} & =\widehat{\mathbf{U}}\left(\widehat{\mathbf{L}}-\widehat{\sigma}^{2} \mathbf{I}_{K}\right)^{\frac{1}{2}} \mathbf{R} \\
\widehat{\sigma}^{2} & =\frac{1}{D-K} \sum_{i=K+1}^{D} \lambda_{i}
\end{aligned}
$$

- The columns of $\widehat{\mathbf{U}} \in \mathbb{R}^{D \times K}$ are the K unit eigenvectors of the empirical covariance matrix $\widehat{\boldsymbol{\Sigma}}$ that have the largest eigenvalues,
- $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{D}$ are the eigenvalues of $\widehat{\boldsymbol{\Sigma}}$.
- $\hat{\mathbf{L}}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{K}\right)$ is the diagonal matrix whose elements are the corresponding eigenvalues, and \mathbf{R} is any orthogonal matrix.

Probabilistic PCA : Maximum Likelihood

- That seems complex, to get an intuition about how this model behaves when it is fit to data, lets consider the MLE density.
- Recall that the marginal distribution on \mathbf{x} in our fitted model is a Gaussian with mean

$$
\hat{\mu}=\overline{\mathrm{x}}
$$

and covariance

$$
\widehat{C}=\widehat{\mathbf{W}} \widehat{\mathbf{W}}^{\top}+\hat{\sigma}^{2} \mathbf{I}=\widehat{\mathbf{U}}\left(\hat{\mathbf{L}}-\hat{\sigma}^{2} \mathbf{I}\right) \widehat{\mathbf{U}}^{\top}+\hat{\sigma}^{2} \mathbf{I}
$$

- The covariance gives us a nice intuition about the model.

Probabilistic PCA : Maximum Likelihood

- Center the data and check the variance along one of the unit eigenvectors \mathbf{u}_{i}, which are the vectors forming the columns of $\widehat{\mathbf{U}}$:

$$
\begin{aligned}
\operatorname{Var}\left(\mathbf{u}_{i}^{\top}(\mathbf{x}-\overline{\mathbf{x}})\right) & =\mathbf{u}_{i}^{\top} \operatorname{Cov}[\mathbf{x}] \mathbf{u}_{i} \\
& =\mathbf{u}_{i}^{\top} \widehat{\mathbf{U}}\left(\hat{\mathbf{L}}-\widehat{\sigma}^{2} \mathbf{I}\right) \widehat{\mathbf{U}}^{\top} \mathbf{u}_{i}+\widehat{\sigma}^{2} \\
& =\lambda_{i}-\hat{\sigma}^{2}+\hat{\sigma}^{2}=\lambda_{i}
\end{aligned}
$$

- Now, center the data and check the variance along any unit vector orthogonal to the subspace spanned by $\widehat{\mathbf{U}}$:

$$
\begin{aligned}
\operatorname{Var}\left(\mathbf{u}_{i}^{\top}(\mathbf{x}-\overline{\mathbf{x}})\right) & =\mathbf{u}_{i}^{\top} \widehat{\mathbf{U}}\left(\hat{\mathbf{L}}-\hat{\sigma}^{2} \mathbf{I}\right) \widehat{\mathbf{U}}^{\top} \mathbf{u}_{i}+\hat{\sigma}^{2} \\
& =\hat{\sigma}^{2}
\end{aligned}
$$

- The model captures the variance along the principle axes and approximates it in all remaining directions with a single variance.

How does it relate to PCA?

- The posterior mean is given by

$$
\mathbb{E}[\mathbf{z} \mid \mathbf{x}]=\left(\mathbf{W}^{\top} \mathbf{W}+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{W}^{\top}(\mathbf{x}-\boldsymbol{\mu})
$$

- Posterior variance:

$$
\operatorname{Cov}[\mathbf{z} \mid \mathbf{x}]=\sigma^{2}\left(\mathbf{W}^{\top} \mathbf{W}+\sigma^{2} \mathbf{I}\right)^{-1}
$$

- In the limit $\sigma^{2} \rightarrow 0$, we get

$$
\mathbb{E}[\mathbf{z} \mid \mathbf{x}] \xrightarrow{\sigma^{2} \rightarrow 0}\left(\mathbf{W}^{\top} \mathbf{W}\right)^{-1} \mathbf{W}^{\top}(\mathbf{x}-\boldsymbol{\mu})
$$

- Plugging in the MLEs, this limit recovers the standard PCA.

Why Probabilistic PCA (PPCA)?

- Fitting a full-covariance Gaussian model of data requires $D(D+1) / 2+D$ parameters. With PPCA we model only the K most significant correlations and this only requires $\mathcal{O}(K D)$ parameters as long as K is small.
- Bayesian PCA gives us a Bayesian method for determining the low dimensional principal subspace.
- Existence of likelihood functions allows direct comparison with other probabilistic models.
- Instead of solving directly, we can also use EM. The EM can be scaled to very large high- dimensional datasets.

Summary: Some Gaussian models

- Gaussian mixture model.
- Gaussian latent variable model $p(\mathrm{x})=\sum_{z} p(\mathrm{x}, z)$ used for clustering.
- Probabilistic PCA.
- Gaussian latent variable model $p(\mathbf{x})=\int_{z} p(\mathbf{x}, z)$ used for dimensionality reduction.
- Bayesian linear regression (next hour).
- Gaussian discriminative model $p(y \mid \mathbf{x})$ used for regression with a Bayesian analysis for the weights.

Overview of the next hour

- Continuing in our theme of probabilistic models for continuous variables.
- We give a probabilistic interpretation of linear regression.
- Chapter 3.3 in Bishop's book.

Completing the Square for Gaussians

Useful technique to find moments of Gaussian random variables.

- It is a multivariate generalization of completing the square.
- The density of $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ satifies:

$$
\begin{aligned}
\log p(\mathbf{x}) & =-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})+\mathrm{const} \\
& =-\frac{1}{2} \mathbf{x}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}+\mathbf{x}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}+\mathrm{const}
\end{aligned}
$$

- Thus, if we know \mathbf{w} is Gaussian with unknown mean and covariance, and we also know that

$$
\log p(\mathbf{w})=-\frac{1}{2} \mathbf{w}^{\top} \mathbf{A} \mathbf{w}+\mathbf{w}^{\top} \mathbf{b}+\text { const }
$$

for \mathbf{A} positive definite, then we know that

$$
\mathbf{w} \sim \mathcal{N}\left(\mathbf{A}^{-1} \mathbf{b}, \mathbf{A}^{-1}\right)
$$

Bayesian Linear Regression

- We take the Bayesian approach to linear regression.
- This is in contrast with the standard regression.
- By inferring a posterior distribution over the parameters, the model can know what it doesn't know.
- How can uncertainty in the predictions help us?
- Smooth out the predictions by averaging over lots of plausible explanations
- Assign confidences to predictions
- Make more robust decisions

Recap: Linear Regression

- Given a training set of inputs and targets $\left\{\left(\mathbf{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}$
- Linear model:

$$
y=\mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x})+\epsilon
$$

- Vectorized, we have the design matrix \mathbf{X} in input space and

$$
\boldsymbol{\Psi}=\left[\begin{array}{ccc}
- & \boldsymbol{\psi}\left(\mathbf{x}^{(1)}\right) & - \\
- & \boldsymbol{\psi}\left(\mathbf{x}^{(2)}\right) & - \\
\vdots & \\
- & \boldsymbol{\psi}\left(\mathbf{x}^{(N)}\right) & -
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{c}
y^{(1)} \\
y^{(2)} \\
\vdots \\
y^{(N)}
\end{array}\right]
$$

and predictions

$$
\hat{\mathbf{y}}=\Psi \mathbf{w}
$$

Recap: Ridge Regression

- Penalized sum of squares (ridge regression):

$$
\operatorname{minimize} \quad \frac{1}{2}\|\mathbf{y}-\mathbf{\Psi} \mathbf{w}\|^{2}+\frac{\lambda}{2}\|\mathbf{w}\|^{2}
$$

- The gradient: $\left(\mathbf{\Psi}^{\top} \boldsymbol{\Psi}+\lambda \mathbf{I}\right) \mathbf{w}-\mathbf{\Psi}^{\top} \mathbf{y}$.
- Solution 1: solve analytically by setting the gradient to 0

$$
\mathbf{w}=\left(\mathbf{\Psi}^{\top} \mathbf{\Psi}+\lambda \mathbf{I}\right)^{-1} \mathbf{\Psi}^{\top} \mathbf{y}
$$

- Solution 2: solve approximately using gradient descent

$$
\mathbf{w} \leftarrow(1-\alpha \lambda) \mathbf{w}-\alpha \mathbf{\Psi}^{\top}(\mathbf{\Psi} \mathbf{w}-\mathbf{y})
$$

Linear Regression as Maximum Likelihood

- We can give linear regression a probabilistic interpretation by assuming a Gaussian noise model:

$$
y \mid \mathbf{x} \sim \mathcal{N}\left(\mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x}), \sigma^{2}\right)
$$

- Linear regression is just maximum log-likelihood under this model:

$$
\begin{aligned}
\sum_{i=1}^{N} \log p\left(y^{(i)} \mid \mathbf{x}^{(i)} ; \mathbf{w}, b\right) & =\sum_{i=1}^{N} \log \mathcal{N}\left(y^{(i)} ; \mathbf{w}^{\top} \boldsymbol{\psi}\left(\mathbf{x}^{(i)}\right), \sigma^{2}\right) \\
& =\sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(y^{(i)}-\mathbf{w}^{\top} \boldsymbol{\psi}\left(\mathbf{x}^{(i)}\right)\right)^{2}}{2 \sigma^{2}}\right)\right] \\
& =\text { const }-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N}\left(y^{(i)}-\mathbf{w}^{\top} \boldsymbol{\psi}\left(\mathbf{x}^{(i)}\right)\right)^{2} \\
& =\text { const }-\frac{1}{2 \sigma^{2}}\|\mathbf{y}-\boldsymbol{\Psi} \mathbf{w}\|^{2}
\end{aligned}
$$

Regularized Linear Regression as MAP Estimation

- View an L_{2} regularizer as MAP inference with a Gaussian prior.

$$
\arg \max _{\mathbf{w}} \log p(\mathbf{w} \mid \mathcal{D})=\arg \max _{\mathbf{w}}[\log p(\mathbf{w})+\log p(\mathcal{D} \mid \mathbf{w})]
$$

- We just derived the likelihood term $\log p(\mathcal{D} \mid \mathbf{w})$:

$$
\log p(\mathcal{D} \mid \mathbf{w})=\text { const }-\frac{1}{2 \sigma^{2}}\|\mathbf{y}-\mathbf{\Psi} \mathbf{w}\|^{2}
$$

- Assume a Gaussian prior, $\mathbf{w} \sim \mathcal{N}(\mathbf{m}, \mathbf{S})$:

$$
\begin{aligned}
\log p(\mathbf{w}) & =\log \left[\frac{1}{(2 \pi)^{D / 2}|\mathbf{S}|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{w}-\mathbf{m})^{\top} \mathbf{S}^{-1}(\mathbf{w}-\mathbf{m})\right)\right] \\
& =-\frac{1}{2}(\mathbf{w}-\mathbf{m})^{\top} \mathbf{S}^{-1}(\mathbf{w}-\mathbf{m})+\text { const }
\end{aligned}
$$

- Commonly, $\mathbf{m}=\mathbf{0}$ and $\mathbf{S}=\eta \mathbf{I}$, so

$$
\log p(\mathbf{w})=-\frac{1}{2 \eta}\|\mathbf{w}\|^{2}+\text { const. }
$$

This is just L_{2} regularization!

Full Bayesian Inference

- Full Bayesian inference makes predictions by averaging over all likely explanations under the posterior distribution.
- Compute posterior using Bayes' Rule:

$$
p(\mathbf{w} \mid \mathcal{D}) \propto p(\mathbf{w}) p(\mathcal{D} \mid \mathbf{w})
$$

- Make predictions using the posterior predictive distribution:

$$
p(y \mid \mathbf{x}, \mathcal{D})=\int p(\mathbf{w} \mid \mathcal{D}) p(y \mid \mathbf{x}, \mathbf{w}) \mathrm{d} \mathbf{w}
$$

- Doing this lets us quantify our uncertainty.

Bayesian Linear Regression

- Prior distribution: $\mathrm{w} \sim \mathcal{N}(0, S)$
- Likelihood: $y \mid \mathbf{x}, \mathbf{w} \sim \mathcal{N}\left(\mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x}), \sigma^{2}\right)$
- Assuming fixed/known \mathbf{S} and σ^{2} is a big assumption. More on this later.

Bayesian Linear Regression

- Bayesian linear regression considers various plausible explanations for how the data were generated.
- It makes predictions using all possible regression weights, weighted by their posterior probability.
- Here are samples from the prior $p(\mathbf{w})$ and posteriors $p(\mathbf{w} \mid \mathcal{D})$

no observations

one observation

two observations

Bayesian Linear Regression: Posterior

- Deriving the posterior distribution:

$$
\begin{aligned}
\log p(\mathbf{w} \mid \mathcal{D}) & =\log p(\mathbf{w})+\log p(\mathcal{D} \mid \mathbf{w})+\text { const } \\
& =-\frac{1}{2} \mathbf{w}^{\top} \mathbf{S}^{-1} \mathbf{w}-\frac{1}{2 \sigma^{2}}\|\mathbf{\Psi} \mathbf{w}-\mathbf{y}\|^{2}+\text { const } \\
& =-\frac{1}{2} \mathbf{w}^{\top} \mathbf{S}^{-1} \mathbf{w}-\frac{1}{2 \sigma^{2}}\left(\mathbf{w}^{\top} \mathbf{\Psi}^{\top} \mathbf{\Psi} \mathbf{w}-2 \mathbf{y}^{\top} \mathbf{\Psi} \mathbf{w}+\mathbf{y}^{\top} \mathbf{y}\right)+\text { const } \\
& =-\frac{1}{2} \mathbf{w}^{\top}\left(\sigma^{-2} \mathbf{\Psi}^{\top} \mathbf{\Psi}+\mathbf{S}^{-1}\right) \mathbf{w}+\frac{1}{\sigma^{2}} \mathbf{y}^{\top} \mathbf{\Psi} \mathbf{w}+\text { const (complete the square!) }
\end{aligned}
$$

Thus $\mathbf{w} \mid \mathcal{D} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where

$$
\begin{aligned}
\boldsymbol{\mu} & =\left(\boldsymbol{\Psi}^{\top} \boldsymbol{\Psi}+\sigma^{2} \mathbf{S}^{-1}\right)^{-1} \boldsymbol{\Psi}^{\top} \mathbf{y} \\
\boldsymbol{\Sigma} & =\sigma^{2}\left(\boldsymbol{\Psi}^{\top} \boldsymbol{\Psi}+\sigma^{2} \mathbf{S}^{-1}\right)^{-1}
\end{aligned}
$$

Bayesian Linear Regression: Posterior

- Gaussian prior leads to a Gaussian posterior, and so the Gaussian distribution is the conjugate prior for linear regression model.
- Compare $\boldsymbol{\mu}$ to the closed-form solution for linear regression:

$$
\mathbf{w}=\left(\mathbf{\Psi}^{\top} \mathbf{\Psi}+\lambda \mathbf{I}\right)^{-1} \mathbf{\Psi}^{\top} \mathbf{y}
$$

This is the mean of the posterior for $\mathbf{S}=\frac{\sigma^{2}}{\lambda} \mathbf{I}$.

- As $\lambda \rightarrow 0$, the standard deviation of the prior goes to ∞, and the mean of the posterior converges to the MLE.

Bayesian Linear Regression

Illustration of sequential Bayesian learning for $y=w_{0}+w_{1} x$, $w_{0}=-0.3, w_{1}=0.5$.

Left column:

- Likelihood of a single data point.
- Single point does not identify a line.
- Fix (x, y) then $w_{0}=y-w_{1} x$.

Middle column:

- Prior/posterior.

Right column:

- Lines: samples from the posterior.
- Dots: data points.

Radial bases example

- Example with radial basis function (RBF) features

$$
\psi_{j}(x)=\exp \left(-\frac{\left(x-\mu_{j}\right)^{2}}{2 s^{2}}\right)
$$

Radial bases example

Functions sampled from the posterior:

Posterior predictive distribution

- The posterior just gives us distribution over the parameter space, but if we want to make predictions, the natural choice is to use the posterior predictive distribution.
- Posterior predictive distribution:

$$
p(y \mid \mathbf{x}, \mathcal{D})=\int \underbrace{p(y \mid \mathbf{x}, \mathbf{w})}_{\mathcal{N}\left(y ; \mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x}), \sigma\right)} \underbrace{p(\mathbf{w} \mid \mathcal{D})}_{\mathcal{N}(\mathbf{w} ; \boldsymbol{\mu}, \mathbf{\Sigma})} \mathrm{d} \mathbf{w}
$$

- Another interpretation: $y=\mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x})+\varepsilon$, where $\varepsilon \sim \mathcal{N}(0, \sigma)$ is independent of $\mathbf{w} \mid \mathcal{D} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

Recall

$$
\begin{aligned}
& \boldsymbol{\mu}=\left(\boldsymbol{\Psi}^{\top} \boldsymbol{\Psi}+\sigma^{2} \mathbf{S}^{-1}\right)^{-1} \boldsymbol{\Psi}^{\top} \mathbf{y} \\
& \boldsymbol{\Sigma}=\sigma^{2}\left(\boldsymbol{\Psi}^{\top} \boldsymbol{\Psi}+\sigma^{2} \mathbf{S}^{-1}\right)^{-1}
\end{aligned}
$$

Bayesian Linear Regression

- Another interpretation: $y=\mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x})+\varepsilon$, where $\varepsilon \sim \mathcal{N}(0, \sigma)$ is independent of $\mathbf{w} \mid \mathcal{D} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
- Again by the fact that affine transformations of Gaussian vectors are Gaussian, y is a Gaussian distribution with parameters

$$
\begin{aligned}
& \mu_{\text {pred }}=\boldsymbol{\mu}^{\top} \boldsymbol{\psi}(\mathbf{x}) \\
& \sigma_{\text {pred }}^{2}=\boldsymbol{\psi}(\mathbf{x})^{\top} \boldsymbol{\Sigma} \boldsymbol{\psi}(\mathbf{x})+\sigma^{2}
\end{aligned}
$$

- Hence, the posterior predictive distribution is $\mathcal{N}\left(y \mid \mu_{\text {pred }}, \sigma_{\text {pred }}^{2}\right)$.

Bayesian Linear Regression

Here we visualize confidence intervals based on the posterior predictive mean and variance at each point:

Summary

- This lecture covered the basics of Bayesian regression. What's remaining:
- Week 11: Neural networks.
- Week 12: Kernel methods, Gaussian processes.
- Week 13: Diffusions.

