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Linear Regression as Maximum Likelihood

We gave linear regression a probabilistic interpretation by
assuming a Gaussian noise model:

y |x ∼ N (w>ψ(x), σ2)

The MLE under the first model leads to ordinary least squares.

We can also do full Bayesian inference:
I Recall MAP estimator with a special Gaussian prior becomes

equivalent to the ridge regression estimator.
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Some problems with this formulation

The MLE will not be uniquely defined if N < M .
I We can use ridge regression or other regularization.

Flexibility may require a large number M of features, which may
need to depend on N .

We would like to have a method that is more automatic.

Kernel regression offers such a flexible framework.

Kernel methods are applicable widely beyond regression problems.

We cover classification later in the context of Gaussian Processes.
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Regularized Linear Regression: towards kernel trick

In the ridge regression problem we minimize

E(w) =
1

2
‖y −Ψw‖2 +

λ

2
w>w

∇E(w) = Ψ>Ψw −Ψ>y + λw.

Taking ∇E(w) = 0 is equivalent to solving:

w =
1

λ
Ψ>(y −Ψw) = Ψ>a ∈ RM ,

where a = (y −Ψw)/λ ∈ RN .

Substitute w = Ψ>a back in E(w), we get

E(a) =
1

2
‖y −ΨΨ>a‖2 +

λ

2
a>ΨΨ>a
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Kernel Ridge Regression

Introduce the gram matrix K = ΨΨ>, i.e.

Kij = ψ(x(i))>ψ(x(j)) =: k(x(i),x(j))

which we call the kernel matrix. Function k(x,x′) is the kernel.

Therefore, we minimize

E(a) =
1

2
‖y −Ka‖2 +

λ

2
a>Ka

Plugging w = Ψ>a to a = (y −Ψw)/λ we get

a = (K + λIN )−1y.

Substitute back into the linear regression model

ŷ(x) = ψ(x)>w = ψ(x)>Ψ>a = k(x)>(K + λIN )−1y

where k(x) = Ψψ(x) = [ψ(x(i))>ψ(x)]i = [k(x(i),x)]i.
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Kernel Ridge Regression

This is known as a dual formulation, aka Kernel trick.

We have
ŷ(x) = k(x)>(K + λIN )−1y,

where [k(x)]i = k(x(i),x), Kij = k(x(i),x(j)).

The prediction at x is given by a linear combination y.

The coefficients depend on “proximity” of x to x(i).

Dual formulation requires inverting an N ×N matrix, whereas the
standard one requires inverting an M ×M matrix.

The advantage of the dual formulation is that it is expressed
entirely in terms of the kernel function with no explicit reference
to the feature map ψ(x) (can use features of high dimension).
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Kernels: Formal definition

Positive semidefinite matrix (PSD)

A symmetric matrix A ∈ RN×N is PSD if for every vector u ∈ RN

u>Au ≥ 0.

We can use feature maps ψ : RD → RM to define kernels:

k(x,x′) = ψ(x)>ψ(x′).

But we can consider a (slightly) more general definition.

A kernel k(x,x′) is any function such that for any N data points
x(i) for i = 1, ..., N , the kernel matrix K with entries
Kij = k(x(i),x(j)) is positive semidefinite (Schoenberg 1938).

Prob Learning (UofT) STA414-Week12 7 / 35



Feature map defines a kernel

Let k(x,x′) = ψ(x)>ψ(x′)

The kernel matrix is given as Kij = k(x(i),x(j)), K = ΨΨ>.

We show that this matrix is positive semi-definite, ∀u ∈ RN ,

u>Ku = u>ΨΨ>u = (Ψ>u)>Ψ>u = ‖Ψ>u‖2 ≥ 0.

Main points:

Forget the feature map.

We can directly choose a kernel and work with it!

The dimension of the feature space does not matter anymore.

Kernels provide a measure of proximity between x and x′.
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Kernels: Examples

Example 1:

D-dimensional inputs: x = (x1, x2, ..., xD)> and z = (z1, z2, ...zD)>

k(x, z) =(x>z)2 = (x1z1 + x2z2 + ...)2

=x21z
2
1 + 2x1z1x2z2 + x22z

2
2 + ...

=(x21, x
2
2, ...,

√
2x1x2, ...)

>(z21 , z
2
2 , ...,

√
2z1z2, ...)

=ψ(x)>ψ(z)

Example 2 (Gaussian kernel): k(x, z) = exp(−‖x− z‖2/2σ2).

The feature vector has infinite dimension here!
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Kernels: Example

Predictions in the kernel ridge regression:

y(x) = wTψ(x) = aTΨψ(x) = k(x)T (K + λI)−1y

Lets look at the predictions for the scaled targets a = (K+λI)−1y

y(x) = k(x)Ta =

N∑
i=1

k(x,x(i)) ai

Which looks very much like k-NN!
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Constructing kernels from kernels

Given valid kernels k1(x,x
′) and k2(x,x

′), the following kernels will
also be valid:

k(x,x′) = ck1(x,x
′) for c > 0,

k(x,x′) = f(x)k1(x,x
′)f(x′)

k(x,x′) = k1(x,x
′) + k2(x,x

′)

k(x,x′) = k1(x,x
′) · k2(x,x′)

k(x,x′) = x>Ax (A PSD)

k(x,x′) = exp(k1(x,x
′))

k(x,x′) = q(k1(x,x
′))

where q polynomial with ≥ 0 coefficients.
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Local vs Global Kernels
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Radial basis functions

To get a better feeling for the kernel method consider the case where
kernel is defined by a radial basis function.

Radial basis functions depend only on the distance from µj , i.e.

ψj(x) = h(‖x− µj‖).

Sigmoidal basis functions: h is sigmoid.

Gaussian basis functions: h is normal pdf
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Example: Radial basis functions

We define two Gaussian basis functions with centers shown by the
green crosses, and with contours shown by the green circles.

Linear decision boundary (right) corresponds to the nonlinear
decision boundary in the input space (left, black curve).
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Radial basis functions: motivation

Given a set of data samples (x(i), y(i)) for i = 1, .., N , we want to
find a smooth function f that fits data as

f(x(i)) ≈ y(i) for i = 1, . . . , N.

This is achieved by expressing f(x) as a linear combination of
radial basis functions, one centred on every data point

f(x) =

N∑
i=1

wih(‖x− x(i)‖)

where wi are found by least squares.

In practice we may use many less functions than N .
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Radial basis functions: Illustration

Kernel regression model using isotropic Gaussian kernels:

The original sine function is shown by the green curve.

The data points are shown in blue, and each is the centre of an
isotropic Gaussian kernel.

The resulting regression function is shown by the red line.

Prob Learning (UofT) STA414-Week12 16 / 35



Neural Networks and Feature learning

Last layer in Neural networks:

If task is regression: choose
y = f (L)(h(L−1)) = (w(L))>h(L−1) + b(L)

If task is binary classification: choose
y = f (L)(h(L−1)) = σ((w(L))>h(L−1) + b(L))

Neural nets can be viewed as a way of learning features:
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Summary of the first hour

This lecture covered the basics of kernel-based methods.

Kernels can be used directly for regression and classification.

These are useful functions that capture a measure of proximity
between inputs, and express predictions based on this measure.

Next, we will continue with kernel methods and introduce
Gaussian processes.
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Overview of the second hour

We build on the kernel viewpoint of regression.

We introduce Gaussian processes.

This provides an additional component to kernel regression.

We dispense with the parametric model and define a prior
distribution over functions directly.

There are multiple advantages (e.g. uncertainty quantification).
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Recap: Linear Regression

Given a training set of inputs and targets {(x(i), y(i))}Ni=1

Linear model:
y = w>ψ(x) + ε

where ψ(x) is the feature map.

Vectorized, we have the design matrix X in input space and

Ψ =


− ψ(x(1)) −
− ψ(x(2)) −

...

− ψ(x(N)) −

 ∈ RN×M

and predictions

ŷ = Ψw.
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Recap: Bayesian Linear Regression

We gave linear regression a probabilistic interpretation by
assuming a Gaussian noise model:

y |x ∼ N (ŷ(x), σ2), ŷ(x) = w>ψ(x)

and a Gaussian prior

w ∼ N (0,
1

α
IM )

Prior induces a probability distribution over

ŷ = Ψw ∼ N (0,
1

α
ΨΨ>).
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Distribution over prediction function

In practice, we evaluate the prediction function ŷ(x) at specific
points, for example at the training data points x(i) for i = 1, ..., N .

So we are interested in the joint distribution of the function values

ŷ(x(1)), . . . , ŷ(x(N))

which we denote by the vector ŷ = (ŷ(x(1)), . . . , ŷ(x(N))).

We showed that

ŷ ∼ N (0,K) K =
1

α
ΨΨ>

where K is the (scaled) Gram matrix

Kij =
1

α
k(x(i),x(j)) =

1

α
ψ(x(i))>ψ(x(j))
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Gaussian process

Definition: A Gaussian process is a probability distribution
over functions ŷ(x) such that for any N ≥ 1 and any set of N
points x(1),x(2), . . . ,x(N) in RD, the vector (ŷ(x(1)), . . . , ŷ(x(N))) is
jointly Gaussian.

The joint distribution is specified completely by the second-order
statistics, i.e. the mean and the covariance functions.

In most applications, the mean function of ŷ(x) can be set to zero
and then the Gaussian process is completely specified by the
covariance function

E[ŷ(x)ŷ(x′)] =
1

α
k(x,x′)

Prob Learning (UofT) STA414-Week12 23 / 35



Gaussian process

We can directly define the kernel of a Gaussian process, not
worrying about the feature map.

Samples from Gaussian processes for a Gaussian kernel (left) and
an exponential kernel (right).
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Gaussian processes for regression

We have the linear model

y |x ∼ N (ŷ(x), σ2) ŷ(x) = w>ψ(x)

Given N independent observations, we have

y | ŷ ∼ N (ŷ, σ2IN ), ŷ ∼ N (0,K).

Therefore the marginal of y is given by

y ∼ N (0,C) C = K + σ2IN

where the corresponding kernel is

c(x(i),x(j)) =
1

α
k(x(i),x(j)) + σ2δ(x(i),x(j))

δ(x,x′) = 1 if x = x′ and δ(x,x′) = 0 otherwise.
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Gaussian processes for regression

Denote now yN = (y(1), y(2), ..., y(N)).

We have the marginal of yN given by

yN ∼ N (0,CN ) CN = KN + σ2IN .

This reflects the two Gaussian sources of randomness.

Goal: We want to predict for a new output y(N+1).

We need
p(y(N+1) |yN )

Note that x(1), . . . ,x(N) are treated as constants.
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Gaussian processes for regression

We have

yN+1 ∼ N (0,CN+1) CN+1 = KN+1 + σ2IN+1

where

CN+1 =

[
CN k
k> c

]
.

I Here, c = 1
αk(x(N+1),x(N+1)) + σ2

I k is a vector with entries ki = 1
αk(x(i),x(N+1))

Since the vector yN+1 is Gaussian, we easily find y(N+1) |yN .
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Property of Multivariate Gaussian Distribution

Recall:

If we have x ∼ N (µ,Σ) with

x =

[
x1

x2

]
µ =

[
µ1

µ2

]
Σ =

[
Σ11 Σ12

Σ21 Σ22

]
Then,

x2 | (x1 = a) ∼ N (m,C)

with

m = µ2 + Σ21Σ
−1
11 (a− µ1) C = Σ22 −Σ21Σ

−1
11 Σ12.
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Gaussian processes for regression

Recall:

yN+1 ∼ N(0, CN+1), CN+1 =

[
CN k

k> c

]
.

Since yN+1 is multivariate Gaussian, y(N+1) |yN is also Gaussian
with mean and variance

mean = k>C−1N yN variance = c− k>C−1N k

These are the key results that define Gaussian process regression.

The vector k is a function of the new test input x(N+1).

The predictive distribution is a Gaussian whose mean and variance
both depend on x(1), . . . ,x(N),x(N+1).
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GPs for regression

The green curve is the true sinusoidal function from which the
data points, shown in blue, are obtained.

The red line shows the mean of the Gaussian process predictive
distribution.

The shaded region corresponds to plus and minus two standard
deviations.
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GPs for classification

Consider a classification problem with target variables y ∈ {0, 1}
We define a Gaussian process over a function a(x) and then
transform the function using sigmoid ŷ(x) = σ(a(x)).

We obtain a non-Gaussian stochastic process over functions
ŷ(x) ∈ (0, 1).

Left: a(x) Right: ŷ(x)
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GPs for classification

The probability distribution over target is then given by

p(y|a) = σ(a)y(1− σ(a))1−y, y ∈ {0, 1}.

We need to compute
p(y(N+1) |yN )

and notice that a(x) is a Gaussian process but ŷ(x) is not.

We have aN+1 ∼ N (0,CN+1), where

CN+1(x
(i),x(j)) =

1

α
k(x(i),x(j)) + νδij .

But aN is not observed, so we write

p(y(N+1) |yN ) =

∫
p(y(N+1) |aN+1)p(aN+1 |yN )daN+1

This is intractable. We need MCMC based methods, or numerical
integration to approximate this integral.
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GPs for classification: Illustration

Illustration of GPs for classification:

Left: optimal decision boundary from the true distribution in
green, and the decision boundary from the Gaussian process
classifier in black.

Right: predicted posterior for the blue and red classes together
with the Gaussian process decision boundary.
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Learning the hyperparameters

We didn’t do any learning other than choosing a kernel!

Rather than fixing the covariance function 1
αk(x,x′), we may

prefer to use a parametric family of functions and then infer the
parameter values from the data.

Denoting the hyperparameters with θ, one can easily write down
the likelihood of the Gaussian process model.

log p(y | θ) = −1

2
log |CN | −

1

2
y>C−1N y − N

2
log(2π)

The next step is standard: gradient based optimization, grid
search etc.

Prob Learning (UofT) STA414-Week12 34 / 35



Summary of the second hour

Gaussian processes are flexible tools that can be used in regression
and classification tasks.

One can simply choose a kernel and find the predictive density!

They can be used together with modern tools, creating powerful
learning methods.
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