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Overview

First we discuss discuss kernel methods.

o Kernel trick
o Kernel regression

o Overview of kernels
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Recap: Linear Regression

o Given a training set of inputs and targets {(x(,y(®) N

@ Linear model:
y=w'p(x)+e

where 1(x) : RP — RM is the feature map.

e We have the design matrix X € RVY*P in input space and
— pxM) —
2
S I Rl R
— PxN)) -

is the feature matrix, and predictions

y = U¥w.
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Linear Regression as Maximum Likelihood

o We gave linear regression a probabilistic interpretation by
assuming a Gaussian noise model:

ylx~N(wip(x), o?)

@ The MLE under the first model leads to ordinary least squares.

@ We can also do full Bayesian inference as explained last week.

» Recall MAP estimator with a special Gaussian prior becomes
equivalent to the ridge regression estimator.
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Some problems with this formulation

The MLE will not be uniquely defined if N < M.

» We can use ridge regression or other regularization.

o Flexibility may require a large number M of features, which may
need to depend on N.

o We would like to have a method that is more automatic.

Kernel regression offers such a flexible framework.

Kernel methods are applicable widely beyond regression problems.

e We cover classification later in the context of Gaussian Processes.
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Regularized Linear Regression: towards kernel trick

o In the ridge regression problem we minimize
1 A
B(w) = 5y — Ow[? + Sw'w

VE(w) = ¥'ow - ¥y + \w.
e Taking VE(w) = 0 is equivalent to solving:

1
w = X\Iﬁ(y—\yw) =®'a ¢ RM,

where a = (y — w)/\ € RV,
o Substitute w = W'a back in E(w), we get

1 A
E(a) = §||y — 0¥ a2+ §aTlIl\IlTa
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Kernel Ridge Regression

o Introduce the gram matrix K = ¥ ' ie.
Kij = p(xD) Tap(xV)) = k(x1, x1))

which we call the kernel matrix. Function k(x,x’) is the kernel.

o Therefore, we minimize (note: no unique minimum)
B(a) = ¢ly ~ Kal? + JaKa
o Pluggingw = ¥'atoa=(y— ¥w)/\ we get
a=(K+\y) ly.
@ Substitute back in to the linear regression model
§(x) = 9(x) "W =9(x) " TTa=k(x) (K +Ay) 'y
where k(x) = W1b(x) = [$(x@) T(x)}; = [k(x, x)].
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Kernel Ridge Regression

o This is known as a dual formulation, aka Kernel trick.
o We have
j(x) = k(x)T (K + AIy) "y,
where [k(x)]; = k(x®), x), K;; = k(x?,x0)).
@ The prediction at x is given by a linear combination y.
e The coefficients depend on “proximity” of x to x(¥).

@ Dual formulation requires inverting an N x N matrix, whereas the
standard one requires inverting an M x M matrix.

o The advantage of the dual formulation is that it is expressed
entirely in terms of the kernel function with no explicit reference
to the feature map 1 (x) (can use features of high dimension).
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Kernels: Formal definition

Positive semidefinite matrix (PSD)

A symmetric matrix A € RV*N is PSD if for every vector u € RY

u' Au > 0.

o We can use feature maps 1 : R? — RM to define kernels:
k(x,x') = (x) TP (x').

But we can consider a (slightly) more general definition.

o A kernel k(x,x’) is any function such that for any N data points
x(® for i = 1,..., N, the kernel matrix K with entries
K;j = k(x®,x0)) is positive semidefinite (Schoenberg 1938).

o Feature maps define kernels but not all kernels are like that.
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Feature map defines a kernel

o Let h(x,x) = $(x) 9 (x)
o The kernel matrix is given as K;; = k(x(),x0)), K = ¥,

e We show that this matrix is positive semi-definite, Yu € RY,

' Ku=u'"9¥ u= (¥ u)" ¥ u= v u?>0.

Main points:

(]

Forget the feature map.

(]

We can directly choose a kernel and work with it!

The dimension of the feature space does not matter anymore.

Kernels provide a measure of proximity between x and x’.
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Kernels: Examples

Example 1:

e D-dimensional inputs: x = (21, z2, ...,zD)—r and z = (21, 29, ...ZD)T

k(x,2) =(x"2)? = (121 + T220 + ...)°
=232% + 221212020 + 2325 + ..
=(22, 23, ...V 2x120,..) T (21,22, V2212, ..))
= (x) 9(2)
Example 2 (Gaussian kernel): k(x,z) = exp(—||x — z||?/20?).

@ The feature vector has infinite dimension here!
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Constructing kernels from kernels

Given valid kernels k;(x,x’) and ko(x,x’), the following kernels will

also be valid:

where ¢ polynomial with
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k(x,x") = cki(x,x’) for ¢ >0,
K6 x) = £k (6, %) F()
k(x,x") = k1(x,x') + ka(x,x)
k(x,x") = k1(x,x') - ka(x, %)
k(x,x') = x' Ax (A PSD)
k%) = exp(ka (%, X))
k%) = gk (x, X))

> 0 coefficients.
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Radial basis functions

To get a better feeling for the kernel method consider the case where
kernel is defined by a radial basis function.

e Radial basis functions depend only on the distance from g, i.e.

Y;(x) = h(llx = pl)-

075}/
05

0.25

e Sigmoidal basis functions: A is sigmoid.

o Gaussian basis functions: h is normal pdf
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Example: Radial basis functions

Corresponding feature space using two
Gaussian basis functions

Original input space

1
em.?:\
2 -. .
0.5 —-—///—;-——
[]
- ¥
! 3
0
0 05 & 1

o We define two Gaussian basis functions with centers shown by the
green crosses, and with contours shown by the green circles.

o Linear decision boundary (right) corresponds to the nonlinear
decision boundary in the input space (left, black curve).
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Summary of the first hour

This lecture covered the basics of kernel-based methods.

(]

(]

Kernels can be used directly for regression and classification.

These are useful functions that capture a measure of proximity
between inputs, and express predictions based on this measure.

@ Next hour we will continue with kernel methods and introduce
Gaussian processes.
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Overview of the second hour

(]

We building on the kernel viewpoint of regression.

(]

We introduce Gaussian processes.

This provide an additional component to kernel regression.

We dispense with the parametric model and define a prior
distribution over functions directly.

e There are multiple advantages (e.g. uncertainty quantification).
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Recap: Linear Regression

o Given a training set of inputs and targets {(x(,y(®) N
@ Linear model:
.
y=w P(x)+e
where 1)(x) is the feature map.

@ Vectorized, we have the design matrix X in input space and
— b)) —

o= | v - e RVXM

_ opx™)

and predictions

y = U¥w.
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Recap: Bayesian Linear Regression

o We gave linear regression a probabilistic interpretation by
assuming a Gaussian noise model:

ylx~N(@Gx), 0%),  §(x)=w 9(x)

e and a Gaussian prior
1
W~ N (0, —I M)
o
o Prior induces a probability distribution over

1
y=9w ~ N(0, -0 ")
[0
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Distribution over prediction function

e In practice, we evaluate the prediction function ¢(x) at specific
points, for example at the training data points x for i = 1,..., N.

@ So we are interested in the joint distribution of the function values
. o (N
§x), (=)

which we denote by the vector y = (7(x(1),...,5(x(M)).
o We showed that
1
y~NO,K) K=-9¥"
o'

where K is the (scaled) Gram matrix

1 o 1 , .
Kij = —k(x",x) = aw(x(z))T'ﬁb(Xm)

a
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Gaussian process

o Definition: A Gaussian process is a probability distribution
over functions g(x) such that for any N > 1 and any set of N
points x(V, x@ .. x() in RP, the vector (gj(x(l)), ... ,Q(X(N))) is
jointly Gaussian.

o The joint distribution is specified completely by the second-order
statistics, i.e. the mean and the covariance functions.

e In most applications, the mean function of §(x) can be set to zero
and then the Gaussian process is completely specified by the
covariance function
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Gaussian process

@ We can directly define the kernel of a Gaussian process, not
worrying about the feature map.

3 3
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Samples from Gaussian processes for a Gaussian kernel (left) and
an exponential kernel (right).
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Gaussian processes for regression

o We have the linear model
yIx~N(Gx), 0®)  gx) =w ()
o Given N independent observations, we have
Yy ~N(, o’Iy),  §~N(0,K).
o Therefore the marginal of y is given by
y ~N(0,C) C=K +d’Iy
where the corresponding kernel is

dxugxunzzgfmxmjxug_%gaxxayxog

d(x,x") =1if x =x" and d(x,x") = 0 otherwise.
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Gaussian processes for regression

e Denote now yy = (yM,y@, .., y).
o We have the marginal of yy given by

yn ~N(0,Cn) Cy = Ky + ’1y.

@ This reflects the two Gaussian sources of randomness.

Goal: We want to predict for a new output y(N +1),

e We need
(N+1)
PN [ yn)
o Note that x(I, ..., x®) are treated as constants.
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Gaussian processes for regression

o We have

yn+1 ~N(0,Cnya) Cni1 =Ky +0° Iy

where
_|CN k

» Here, ¢ = Li(x(V+D x(NHD) 4 52
» k is a vector with entries k; = ék(x(i),x(N‘H))

e Since the vector y 41 is Gaussian, we easily find 3N+ | yy.
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Property of Multivariate Gaussian Distribution

Recall:

o If we have x ~ N (u,X) with
X1 y Y X
= = =
* [Xj H [l@] [221 222]

x2|(x1:a)~N(m,C)

o Then,

with

m = [y + 22121_11(0, — p‘l) C = 222 — 22121_11212.
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Gaussian processes for regression

Recall:

C k
yn+1 ~ N(0,Cn+1), Cniy1= {kg C} .

(N+1

e Since y 41 is multivariate Gaussian, y ) |y is also Gaussian

with mean and variance
T -1 . T -1
mean =k Cyyn variance = c—k Cy'k

@ These are the key results that define Gaussian process regression.

The vector k is a function of the new test input x(N+1).

The predictive distribution is a Gaussian whose mean and variance
both depend on x| ... x(V) x(N+1),
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GPs for regression
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@ The green curve is the true sinusoidal function from which the
data points, shown in blue, are obtained.

o The red line shows the mean of the Gaussian process predictive
distribution.

@ The shaded region corresponds to plus and minus two standard
deviations.
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GPs for classification

e Consider a classification problem with target variables y € {0,1}

o We define a Gaussian process over a function a(x) and then
transform the function using sigmoid §(x) = o(a(x)).

@ We obtain a non-Gaussian stochastic process over functions
9(x) € (0,1).
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Left: a(x) Right: g(x)
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GPs for classification

o The probability distribution over target is then given by

plyla) = 0(a)’(1 —0(a))'™¥, ye{0,1}.

We need to compute

Py [y n)

and notice that a(x) is a Gaussian process but y(x) is not.
o We have ayi1 ~ N (0,Cny1), where

. ) 1 . .
CNJrl(X(Z), X(j)) = —k?(X(l), X(j)) + I/(Si]’.
«
e But ay is not observed, so we write

™) | yw) = / (™ |ans1)p(ans1 | yn)dayst

This is intractable. We need MCMC based methods, or numerical
integration to approximate this integral.
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GPs for classification: Ilustration

o [llustration of GPs for classification:

-2

-2

o Left: optimal decision boundary from the true distribution in
green, and the decision boundary from the Gaussian process
classifier in black.

o Right: predicted posterior for the blue and red classes together
with the Gaussian process decision boundary.
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Learning the hyperparameters

We didn’t do any learning other than choosing a kernel!

o Rather than fixing the covariance function ékz(x, x'), we may
prefer to use a parametric family of functions and then infer the
parameter values from the data.

o Denoting the hyperparameters with 8, one can easily write down
the likelihood of the Gaussian process model.

1 1+ . N
log p(y |6) = —5 log|Cn| — §yTCN1y — 5 log(2m)

o The next step is standard: gradient based optimization, grid
search etc.
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Summary of the second hour

o Gaussian processes are flexible tools that can be used in regression
and classification tasks.

@ One can simply choose a kernel and find the predictive density!

o They can be used together with modern tools, creating powerful
learning methods.
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