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Overview

e VAE Recap

e Intuition behind diffusions
o Diffusion modelling

e Simplifications

o Guided Diffusion

Latent / Stable diffusion
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Recap: Autoencoders

Autoencoders reconstruct their input via an encoder and a decoder.

Encoder: g(z) =z€ F, z€X

Decoder: f(z) =7 € X

where X is the data space, and F is the feature (latent) space.
z is the code, compressed representation of the input, x. It is
important that this code is a bottleneck, i.e. that

dim F < dim X

e Goal: 7= f(g(x)) = x.

z
inputs 0 : outputs
Ty Ty
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Variational Autoencoders

e Variational autoencoders (VAEs) encode inputs with uncertainty.

o Unlike standard autoencoders, the encoder of a VAE outputs a
probability distribution, g¢(2|x).

o Instead of the encoder learning an encoding vector, it learns two

vectors: vector of means, u, and another vector of standard
deviations, o.

Encoder Decoder

VAE: maximize
variational lower bound 99(z[x) o (x|2)
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Variational Autoencoders

e The mean p controls where encoding of input is centered while the
standard deviation controls how much can the encoding vary.

Y " 2 . + - 2 0

Standard Autoencoder Variational Autoencoder
(direct encoding coordinates) (pand o initialize a probability distribution)

e Encodings are generated at random from the “circle”, the decoder
learns that all nearby points refer to the same input.

Image credit: I. Shafkat
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VAE vs Amortized VAE Pipeline

e For a given input (or minibatch) x;,

e Standard VAE o Amortized VAE
e Sample e Sample
2 ~ Qg (2]i) = N(pi, o7 I). zi~qp(2|i) =N (1g(xi), (i)

Run the code through decoder and get likelihood: pg(z|2).

Compute the loss function:
L(20,0) = —Ezmq, | logpo(al2)| + K L(gg(212) lp(2)
Use gradient-based optimization to backpropogate VgL, V4L
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Physical Intuition

@ Observation 1: Diffusion destroys structure.

@ Think of a jar of water with a fresh drop of dye in it.
@ Dye represents the probability density

o Goal: Learn structure of the probability density

o If we allow the diffusion to run long enough we end up with a
uniform distribution of dye in the water.

What if we could reverse time?

@ Recover data distribution by starting with a uniform distribution
and running dynamics backwards
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Adding Gaussian Noise

o In Brownian motion postion updates are small gaussians
e Both forward and backward in time!

o We can destroy our images with a large number of small gaussian
updates.

The reverse updates (from noise to data) should also be gaussian!

We will try to learn a model that can estimate the mean and
covariance of each step in the reverse process

Diffusion models: X1
Gradually add Gaussian --- =
noise and then reverse
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Forward Diffusion

Given a data point sampled from a real data distribution zy ~ g(x), let
us define a forward diffusion process in which we add small amount
of Gaussian noise to the sample in 7" steps, producing a sequence of
noisy samples x1,...,zp.

q(x¢|i—1) = N(z45 /1 = Brae—1, Bel)

Use variational lower bound

‘\ ‘I(xt\xt 1) /
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Forward Diffusion

Can we do better than applying a gaussian 500 times in a row? Yes!
Begin by defining: oy =1 — 3, ay = Hi as, € ~ N(0,1) Note that:

xp =1 = Brxi—1 + / Brer—1
= Vaur 1+ V1 — a6
= Joroy_ 1749 + /1 — apo_1€_2

=fa:o+x/1—ozte

So if we want to have a diffusion at time T we can now get there in one
single step
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Reverse Diffusion

Now, if we can reverse the whole process, and sample from g(z;_1|x¢)
we will be able to go from N to our data distribution. We can

approach it similarily to what we did with VAEs - use a model py to
approximate these conditional probabilities.

T
po(z) = plar) [ [ po(we—ilze)

t=1

po(wi—1|xe) = N(z4—1; po(we, 1), Lo (2, 1))

a(xifxi1) = N(xe; V1 = Bixe-1, Bi)

Noise

po(xe-11xe) = N (x¢-1; pg(xt, 1), 07 1)
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Reverse Diffusion

The forward trajectory

q(xo.1) 0

The reverse trajectory

Po(Xo.1) 0
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Model Fitting

How do we fit the model? ELBO.

T
Tt—1|T
logpg(z0) = Eq |logp(ar) + Zlogp@((tﬂt)
— 7 q(m]we-a)

We can write the variational lower bound loss as:

Lyip=Lr+Lr1+---+ Lo

Where:

Lt = Drr(q(xr|z0)||pe(rT))
Ly = Drr(q(x|ze41, 20)||po(2i—1]|ze))
Lo = —logpg(xo|x1)
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Model Fitting

Lt = Dir(q(xr|zo0)||pe(rr))
Ly = Drr(q(xt|zis1, wo)||po(2i—1]2t))
Lo = —logpe(xo|z1)

Notice that all the KL divergences are comparing gaussian
distributions. This means we have a closed form solution!

Ly is constant and can be ignored since q has no learnable parameters,
and x7 is a Gaussian noise.
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Parametrizing L,

Recall that we need to learn a neural network to approximate the
conditioned probability distributions in the reverse diffusion process:

po(@i—1]z) = N (z1-1; po (21, 1), Xo (24, 1))
We would like to train pg to predict:

- 1 ].*Oét
= — | Ty — ———¢
Mt ar t /71_@tt

Since z; is an input at training time, we reparametrize the gaussian
noise term to make it predict ¢ from the input x; at time step t:

~ 1 l—at ( t)
= — |2t — ——=&(7
=\ Toa
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Simplification

The loss term L; then becomes:

1
L;=FE —— ||/ — t)|?
= Bage gt a0) — oo, O]

xt’t)||2
=E (1~ o) ller — eo(vVarzo + V1 — ages, t)|[?
T0,E 2at(1 _ C_Kt)HEQHg t 6 tL0 tCt

In practice it has been found that the unweighted loss term performs
better:

simple
Lt

= Byt 00 [Il€t — €o(ze,1)]]?]

= Byt 1] o0 [Ilet — €o(Varwo + V1 — auer, t)||’]
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Simplification

Algorithm 1 Training Algorithm 2 Sampling
1 repeat 1: xr ~ N(0,T)
2: xONQ(_XO) 2: fort="T,...,1do
3: &~ Uniform({1,...,T}) 3 z~N(0,I)ift>1,elsez=0
4. e~ N(0,I) ) _ —a
5: Take gradient descent step on 4 X1 = (x‘ - ﬁ@(xt,t)) + oz
Vo ||e — eo(+/@xo + v/1 —@te,t)||2 5: end for
6: return xo

6: until converged
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Choosing (;

How do we choose the noise parameter 5; 7

1.0 —— linear
cosine
0.8 1
0.6 -
&
0.4
0.2 A
0.0 A
0.0 0.2 0.4 0.6 0.8 1.0
diffusion step (t/T)
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Conditioned Generation

Generating novel images is cool, but generating novel images of specific
things is even cooler. How can we do that? We turn our diffusion
model into a conditional diffusion model:

T

po(xly) = plar|y) [ po(zi-1lzi, )
t=1

In general we aim to learn:

X x
Vi, logpe(wtly) = thlogw
po(y)
= Vau,logpg (1) + Ve, logpe(y|2:)

which we usually modify by adding a scaling term s

V. logpe(xt) + sV, logpe(y|ze)
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Conditioned Generation

It has been shown that instead, we can use an already trained classifier
fs(ylxe, t) to guide the diffusion:

pe(wely) = po(ze|y) + sXo(w¢|y) Ve log fo(ylze, t)

Or given an image embedding g(z) and text embedding h(c) model like
CLIP:

pe(zelc) = po(wilc) + sXg(xtlc) Ve, g(xt) - h(c)
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Latent Diffusion

Even for a 64x64 image, running a diffusion model for a large number
of steps will be very expensive. To combat this problem, we can train
an autoencoder, and do the diffusion in the latent space:

( ) Latent Space Conditioning)
£ EER
Map

Text

Repres
entations
mages

E}
—_—
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denoising step crossattention  switch  skip connection concat




Summary

e Diffusion models work by gradually adding gaussian noise through
a series of T steps into the original image, a process known as
diffusion.

e To sample new data, we approximate the reverse diffusion process
using a neural network.

e The training of the model is based on maximizing the ELBO

e Latent diffusion models (like stable diffusion) apply the diffusion
process on a smaller latent space for computational efficiency using
a variational autoencoder for the up and downsampling.
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