
CSC 412/2506:
Probabilistic Learning and Reasoning

Week 13 - 1/2: Diffusion Models

Michal Malyska

University of Toronto

Prob Learning (UofT) CSC412-Week 13-1/2 1 / 22

Overview

VAE Recap

Intuition behind diffusions

Diffusion modelling

Simplifications

Guided Diffusion

Latent / Stable diffusion

Prob Learning (UofT) CSC412-Week 13-1/2 2 / 22

Recap: Autoencoders

Autoencoders reconstruct their input via an encoder and a decoder.

Encoder: g(x) = z ∈ F, x ∈ X
Decoder: f(z) = x̃ ∈ X
where X is the data space, and F is the feature (latent) space.
z is the code, compressed representation of the input, x. It is
important that this code is a bottleneck, i.e. that

dim F ≪ dim X

Goal: x̃ = f(g(x)) ≈ x.

Prob Learning (UofT) CSC412-Week 13-1/2 3 / 22

Variational Autoencoders

Variational autoencoders (VAEs) encode inputs with uncertainty.

Unlike standard autoencoders, the encoder of a VAE outputs a
probability distribution, qϕ(z|x).
Instead of the encoder learning an encoding vector, it learns two
vectors: vector of means, µ, and another vector of standard
deviations, σ.

Prob Learning (UofT) CSC412-Week 13-1/2 4 / 22

Variational Autoencoders

The mean µ controls where encoding of input is centered while the
standard deviation controls how much can the encoding vary.

Encodings are generated at random from the “circle”, the decoder
learns that all nearby points refer to the same input.

Image credit: I. Shafkat

Prob Learning (UofT) CSC412-Week 13-1/2 5 / 22

VAE vs Amortized VAE Pipeline

For a given input (or minibatch) xi,

Standard VAE

Sample
zi ∼ qϕi

(z|xi) = N (µi, σ
2
i I).

Amortized VAE

Sample
zi∼qϕ(z|xi)=N (µϕ(xi),Σϕ(xi))

Run the code through decoder and get likelihood: pθ(x|z).
Compute the loss function:

L(x; θ, ϕ) = −Ezϕ∼qϕ

[
log pθ(x|z)

]
+KL(qϕ(z|x)||p(z))

Use gradient-based optimization to backpropogate ∇θL, ∇ϕL

Prob Learning (UofT) CSC412-Week 13-1/2 6 / 22

Physical Intuition

Observation 1: Diffusion destroys structure.

Think of a jar of water with a fresh drop of dye in it.

Dye represents the probability density

Goal: Learn structure of the probability density

If we allow the diffusion to run long enough we end up with a
uniform distribution of dye in the water.

What if we could reverse time?

Recover data distribution by starting with a uniform distribution
and running dynamics backwards

Prob Learning (UofT) CSC412-Week 13-1/2 7 / 22

Adding Gaussian Noise

In Brownian motion postion updates are small gaussians

Both forward and backward in time!

We can destroy our images with a large number of small gaussian
updates.

The reverse updates (from noise to data) should also be gaussian!

We will try to learn a model that can estimate the mean and
covariance of each step in the reverse process

Prob Learning (UofT) CSC412-Week 13-1/2 8 / 22

Forward Diffusion

Given a data point sampled from a real data distribution x0 ∼ q(x), let
us define a forward diffusion process in which we add small amount
of Gaussian noise to the sample in T steps, producing a sequence of
noisy samples x1, . . . , xT .

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI)

Prob Learning (UofT) CSC412-Week 13-1/2 9 / 22

Forward Diffusion

Can we do better than applying a gaussian 500 times in a row? Yes!
Begin by defining: αt = 1− βt, ᾱt =

∏t
s αs, ϵi ∼ N (0, I) Note that:

xt =
√

1− βtxt−1 +
√
βtϵt−1

=
√
αtxt−1 +

√
1− αtϵt−1

=
√
αtαt−1xt−2 +

√
1− αtαt−1ϵ̄t−2

= . . .

=
√
ᾱtx0 +

√
1− ᾱtϵ̄

So if we want to have a diffusion at time T we can now get there in one
single step

Prob Learning (UofT) CSC412-Week 13-1/2 10 / 22

Reverse Diffusion

Now, if we can reverse the whole process, and sample from q(xt−1|xt)
we will be able to go from N to our data distribution. We can
approach it similarily to what we did with VAEs - use a model pθ to
approximate these conditional probabilities.

pθ(x) = p(xT)

T∏
t=1

pθ(xt−1|xt)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))

Prob Learning (UofT) CSC412-Week 13-1/2 11 / 22

Reverse Diffusion

Prob Learning (UofT) CSC412-Week 13-1/2 12 / 22

Model Fitting

How do we fit the model? ELBO.

logpθ(x0) ≥ Eq

[
logp(xT) +

T∑
t=1

log
pθ(xt−1|xt)
q(xt|xt−1)

]

We can write the variational lower bound loss as:

LV LB = LT + LT−1 + · · ·+ L0

Where:

LT = DKL(q(xT |x0)||pθ(xT))
Lt = DKL(q(xt|xt+1, x0)||pθ(xt−1|xt))
L0 = −logpθ(x0|x1)

Prob Learning (UofT) CSC412-Week 13-1/2 13 / 22

Model Fitting

LT = DKL(q(xT |x0)||pθ(xT))
Lt = DKL(q(xt|xt+1, x0)||pθ(xt−1|xt))
L0 = −logpθ(x0|x1)

Notice that all the KL divergences are comparing gaussian
distributions. This means we have a closed form solution!

LT is constant and can be ignored since q has no learnable parameters,
and xT is a Gaussian noise.

Prob Learning (UofT) CSC412-Week 13-1/2 14 / 22

Parametrizing Lt

Recall that we need to learn a neural network to approximate the
conditioned probability distributions in the reverse diffusion process:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))

We would like to train µθ to predict:

µ̃t =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵt

)

Since xt is an input at training time, we reparametrize the gaussian
noise term to make it predict ϵt from the input xt at time step t:

µ̃t =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
Prob Learning (UofT) CSC412-Week 13-1/2 15 / 22

Simplification

The loss term Lt then becomes:

Lt = Ex0,ϵ

[
1

2||Σθ(xt, t)||22
||µ̃t(xt, x0)− µθ(xt, t)||2

]
= Ex0,ϵ

[
(1− αt)

2

2αt(1− ᾱt)||Σθ||22
||ϵt − ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵt, t)||2

]
In practice it has been found that the unweighted loss term performs
better:

Lsimple
t = Et∼[1,T],x0,ϵt

[
||ϵt − ϵθ(xt, t)||2

]
= Et∼[1,T],x0,ϵt

[
||ϵt − ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵt, t)||2

]

Prob Learning (UofT) CSC412-Week 13-1/2 16 / 22

Simplification

Prob Learning (UofT) CSC412-Week 13-1/2 17 / 22

Choosing βt

How do we choose the noise parameter βt ?

Prob Learning (UofT) CSC412-Week 13-1/2 18 / 22

Conditioned Generation

Generating novel images is cool, but generating novel images of specific
things is even cooler. How can we do that? We turn our diffusion
model into a conditional diffusion model:

pθ(x|y) = p(xT |y)
T∏
t=1

pθ(xt−1|xt, y)

In general we aim to learn:

∇xt logpθ(xt|y) = ∇xt log
pθ(y|xt)pθ(xt)

pθ(y)

= ∇xt logpθ(xt) +∇xt logpθ(y|xt)

which we usually modify by adding a scaling term s

∇xt logpθ(xt) + s∇xt logpθ(y|xt)

Prob Learning (UofT) CSC412-Week 13-1/2 19 / 22

Conditioned Generation

It has been shown that instead, we can use an already trained classifier
fϕ(y|xt, t) to guide the diffusion:

µt(xt|y) = µθ(xt|y) + sΣθ(xt|y)∇xt logfϕ(y|xt, t)

Or given an image embedding g(x) and text embedding h(c) model like
CLIP:

µt(xt|c) = µθ(xt|c) + sΣθ(xt|c)∇xtg(xt) · h(c)

Prob Learning (UofT) CSC412-Week 13-1/2 20 / 22

Latent Diffusion

Even for a 64x64 image, running a diffusion model for a large number
of steps will be very expensive. To combat this problem, we can train
an autoencoder, and do the diffusion in the latent space:

Prob Learning (UofT) CSC412-Week 13-1/2 21 / 22

Summary

Diffusion models work by gradually adding gaussian noise through
a series of T steps into the original image, a process known as
diffusion.

To sample new data, we approximate the reverse diffusion process
using a neural network.

The training of the model is based on maximizing the ELBO

Latent diffusion models (like stable diffusion) apply the diffusion
process on a smaller latent space for computational efficiency using
a variational autoencoder for the up and downsampling.

Prob Learning (UofT) CSC412-Week 13-1/2 22 / 22

