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Final exam logistic

Final exam will be held in person on April 29, at 9am-12pm
Toronto local time in room MY 150 (all sections).

Exam will be 100 points in total and 180 mins long. Students are
required to be at the exam location at least 10 mins early, with
valid identification. Exam will be administered by FAS.

You can use two optional handwritten A4 aid sheets -
double-sided.

Exam covers all lectures (weeks 1-12), it is closed book/internet.

You are not responsible for the concepts introduced only in
suggested readings. However, practicing those would give you a
significant advantage.

A representative practice exam will be posted on the webpage this
week.
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Probabilistic ML Terminology

The final exam will be on the entire course; however, it will be more
weighted towards post-midterm material. For pre-midterm material,
refer to the midterm review slides on the website.

Exponential families

Directed Graphical Models

Markov Random Fields

Message passing

Belief propagation

Variable eliminitaion

Sampling methods

Markov chain Monte Carlo

Variational Inference

EM algorithm

Probabilistic PCA

Bayesian regression

Variational Autoencoders

Kernel methods

Gaussian processes

Diffusion models
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KL divergence

We measure the difference between q and p using the
Kullback-Leibler divergence

KL(q(z)∣∣p(z)) = ∫ q(z) log
q(z)
p(z)dz

or =∑
z

q(z) log
q(z)
p(z)

Properties of the KL Divergence

KL(q∣∣p) ≥ 0

KL(q∣∣p) = 0⇔ q = p

KL(q∣∣p) /= KL(p∣∣q)
KL divergence is not a metric, since it’s not symmetric
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I & M Projection

I-projection: q
∗
= arg minq∈QKL(q∣∣p) = Ex∼q(x) log

q(x)
p(x) :

▶ p ≈ q ⟹ KL(q∣∣p) small
▶ I-projection underestimates support, and does not yield the correct

moments.
▶ KL(q∣∣p) penalizes q having mass where p has none.

M-projection: q
∗
= arg minq∈QKL(p∣∣q) = Ex∼p(x) log

p(x)
q(x) :

▶ p ≈ q ⟹ KL(p∣∣q) small
▶ KL(p∣∣q) penalizes q missing mass where p has some.
▶ M-projection yields a distribution q(x) with the correct mean and

covariance.

One way to proceed is the mean-field approach where we assume:

q(x) =∏
i∈V

qi(xi)

the set Q is composed of those distributions that factor out.
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Evidence Lower Bound

ELBO is a lower bound on the (log) evidence. Maximizing the ELBO
is the same as minimizing KL(qφ(z)∣∣p(z∣x)).

KL(qφ(z)∣∣p(z∣x)) = E
z∼qφ

log
qφ(z)
p(z∣x)

= E
z∼qφ

[ log (qφ(z) ⋅
p(x)
p(z, x))]

= E
z∼qφ

[ log
qφ(z)
p(z, x)] + E

z∼qφ
log p(x)

∶= −L(φ) + log p(x)

Where L(φ) is the ELBO:

L(φ) = E
z∼qφ

[ log p(z, x) − log qφ(z)]
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ELBO

Rearranging, we get

L(φ) +KL(qφ(z)∣∣p(z∣x)) = log p(x)

Because KL(qφ(z)∣∣p(z∣x)) ≥ 0,

L(φ) ≤ log p(x)

maximizing the ELBO ⇒ minimizing KL(qφ(z)∣∣p(z∣x)).
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EM Algorithm

In practice, we are not given a complete dataset {X,Z}, but only
incomplete dataset {X}.

Our knowledge about the latent variables is given only by the
posterior distribution p(Z∣X, θ).
Because we cannot use the complete data log-likelihood, we can
consider expected complete-data log-likelihood:

Q(θ, θold) =∑
Z

p(Z∣X, θold) log p(X,Z∣θ)

In the E-step, we use the current parameters θ
old

to compute the
posterior over the latent variables p(Z∣X, θold).
In the M-step, we find the revised parameter estimate θ new by
maximizing the expected complete log-likelihood:

θ
new

= arg max
θ

Q(θ, θold)
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EM Algorithm

Given a joint distribution p(X,Z∣θ) over observed and latent
variables, the goal is to maximize the likelihood function p(X∣θ)
with respect to θ.

Initialize parameters θ
old

E-step: Compute the posterior p(Z∣X, θold) and Q(θ, θold)
M-step: Find the new estimate of parameters θ

new
:

θ
new

= arg max
θ

Q(θ, θold)

where
Q(θ, θold) =∑

Z

p(Z∣X, θold) log p(X,Z∣θ).
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Probabilistic PCA

Similar to the Gaussian mixture model, we assume continuous,
Gaussian latent variables:

z ∼ N (0, I)
x ∣ z ∼ N (Wz + µ, σ

2
I)

z

p(z)

ẑ

x2

x1

µ

p(x|ẑ)

}
ẑ|w|

w
x2

x1

µ

p(x)
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Probabilistic PCA - Maximum Likelihood

p(x ∣W,µ, σ
2) will be Gaussian (confirm this), so we just need

E[x] = E[Wz + µ + ε] = µ

Cov[x] = E[(Wz + ε)(Wz + ε)⊤]
= E[Wzz

⊤
W
⊤] + Cov[ε]

= WW
⊤
+ σ

2
I

Thus, the posterior mean

E[z ∣x] = (W⊤
W + σ

2
I)
−1

W
⊤(x − µ)

To perform MLE, we need to maximize the following:

max
W,µ,σ2

log p(x ∣W,µ, σ
2) = max

W,µ,σ2
log∫ p(x ∣ z,W,µ, σ

2)p(z) dz
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Autoencoders

Autoencoders reconstruct their input via an encoder and a decoder.

Encoder: g(x) = z ∈ F, x ∈ X
Decoder: f(z) = x̃ ∈ X
where X is the data space, and F is the feature (latent) space.
z is the code, compressed representation of the input, x. It is
important that this code is a bottleneck, i.e. that

dim F ≪ dim X

Goal: x̃ = f(g(x)) ≈ x.
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Variational Autoencoders

The mean µ controls where encoding of input is centered while the
standard deviation controls how much can the encoding vary.

Encodings are generated at random from the “circle”, the decoder
learns that all nearby points refer to the same input.
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VAE vs Amortized VAE Pipeline

For a given input (or minibatch) xi,

Standard VAE

Sample
zi ∼ qφi(z∣xi) = N (µi, σ2i I).

Amortized VAE

Sample
zi∼qφ(z∣xi)=
N (µφ(xi),Σφ(xi))

Run the code through decoder and get likelihood: pθ(x∣z).
Compute the loss function (-ELBO):

L(x; θ, φ) = −Ezφ∼qφ[ log pθ(x∣z)] +KL(qφ(z∣x)∣∣p(z))
Use gradient-based optimization to backpropogate ∂θL, ∂φL
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Bayesian Linear Regression

Prior distribution: w ∼ N (0,S)
Model (Likelihood): y ∣x,w ∼ N (w⊤ψ(x), σ2)
Assuming fixed/known S and σ

2
.
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Bayesian Linear Regression: Posterior

Deriving the posterior distribution:

log p(w ∣D) = log p(w) + log p(D ∣w) + const

= − 1

2
w
⊤
S
−1

w −
1

2σ2
∥Ψw − y∥2

+ const

= − 1

2
w
⊤
S
−1

w −
1

2σ2
(w⊤

Ψ
⊤
Ψw − 2y

⊤
Ψw + y

⊤
y) + const

= − 1

2
w
⊤ (σ−2Ψ⊤

Ψ + S
−1)w +

1

σ2
y
⊤
Ψw + const (complete the square!)

Thus w ∣D ∼ N (µ,Σ) where

µ = σ
−2

ΣΨ
⊤
y

Σ = (σ−2Ψ⊤Ψ + S
−1)

−1
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Gaussian processes

We have the linear model

y ∣x ∼ N (ŷ(x), σ2) ŷ(x) = w
⊤
ψ(x)

Given N independent observations, we have

y ∣ ŷ ∼ N (ŷ, σ2IN), ŷ ∼ N (0,K).

Therefore the marginal of y is given by

y ∼ N (0,C) C =K + σ
2
IN

where the corresponding kernel is

c(x(i)
,x

(j)) = 1
αk(x

(i)
,x

(j)) + σ2δ(x(i)
,x

(j))

δ(x,x′) = 1 if x = x
′

and δ(x,x′) = 0 otherwise.
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Gaussian processes

Denote now yN = (y(1), y(2), ..., y(N)).
We have the marginal of yN given by

yN ∼ N (0,CN) CN =KN + σ
2
IN .

This reflects the two Gaussian sources of randomness.

Goal: We want to predict for a new output y
(N+1)

given x
(N+1)

.

We showed: Since yN+1 is multivariate Gaussian, y
(N+1) ∣yN is

also Gaussian with mean and covariance

m(x(N+1)) = k
T
C
−1
N yN σ

2(x(N+1)) = c − k
T
C
−1
N k
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GPs for regression

The green curve: the true sinusoid from which the data points,
shown in blue, are obtained with additional of Gaussian noise.

The red line: mean of the Gaussian process predictive distribution.

The shaded region: plus and minus two standard deviations.
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VAE vs Diffusion Model

Diffusion models ‌and VAEs both map to isotropic Gaussian.

The latent space has the same dimension as the input space in
DMs. In VAEs, it is smaller dimensional.

The forward process is the encoder, which is fixed. This is trained
in VAEs.

The reverse process is the decoder, which is trained, similar to
the VAEs.
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Closing remarks

Continuing with machine learning:

Courses
▶ CSC 421/2516, “Neural Networks and Deep Learning”
▶ CSC 2515, “Machine Learning”
▶ CSC 2532, “Statistical Learning Theory”
▶ CSC 2541, ”Neural Network Training Dynamics”
▶ Topics courses (varies from year to year): Reinforcement Learning,

Algorithmic Fairness, Computer Vision w/ ML, NLP w/ ML,
Health w/ ML etc.

▶ Learn Statistics!

Videos from top ML conferences (NeurIPS, ICML, ICLR)

Try to reproduce results from papers
▶ If they’ve released code, you can use that as a guide if you get stuck.

Lots of excellent free resources available online!
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Summary

Review lectures.

Understand derivations.

Solve the practice final.

Fill out course evaluations!

Thanks!
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