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1. Some definitions.

• Functions. We use f : Rd → R to denote that f is a function, its argument is in Rd and
its output is real valued (or in R). We denote by ∇f(x) ∈ Rd, its gradient (See Section 3
for definition).

• `p-norms. Since we are mostly dealing with vectors in machine learning, we will use
different norms a lot. Euclidean norm, denoted as ‖ · ‖2, is the most commonly used norm.
But we can also use `p norms which are defined as

‖x‖p =

(
d∑
i=1

|xi|p
)1/p

.(1.1)

When we drop the subscript and use ‖ · ‖, this typically means the Euclidean norm ‖ · ‖2.
• Indicator function. The indicator function is defined as δ(a, b) = 1 if a = b, and δ(a, b) = 0

if a 6= b. For example, δ(2, 2) = 1 and δ(2, 2.1) = 0.
• argmin & argmax. Assume that we are trying to find the point in Rd that minimizes
f(x). This point is denoted by x∗ = argminx f(x). In general, there can be many points that
minimize the function f(x). If this is the case, argmin function returns a set of minimizers,
and notation is slightly different x∗ ∈ argminx f(x). The function argmax is similar. For
example, given a vector a ∈ Rd, let f(x) = ‖x− a‖2 be a function. Then,

a = argmin
x

f(x).(1.2)

Another example is that we have a binary classification problem over {0, 1} and we are
using a decision tree to solve it. We want to predict the class assignment of a region with 5
samples t1 = 1, t2 = 1, t3 = 0, t4 = 0, t5 = 1. Then the majority assignment based on these
samples can be found by

argmax
t∈{0,1}

5∑
i=1

δ(t, ti) = 1,(1.3)

because the summation is equal to 3 when t = 1, and 2 when t = 0.

2. Random variables and vectors. Random vectors are simply vectors with each coordi-
nate a random variable. You can think of a d-dimensional random vector X ∈ Rd as a d random
variables Xi’s stacked together to make a vector. Most probability rules we have for random
variables also hold for random vectors.
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• Density. If we have a random vector X and its each coordinate is a continuous random
variable, then we can talk about probability density function p(x) : Rd → R associated with
the random vector X. This is defined similar to the one variable case and for a set A ⊂ Rd,
it satisfies P(X ∈ A) =

∫
A p(x)dx.

For example, if we have the multivariate Gaussian random variable with mean µ ∈ Rd and
covariance Σ ∈ Rd×d, its density is given as

p(x|µ,Σ) =
1

(2π)d/2 det(Σ)1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
.(2.1)

See below for definitions of mean and variance in the multivariable setting.
If we have two random vectors X,Y ∈ Rd with joint density p(x, y), the standard rules of
conditional density apply.

X|Y ∼ p(x|y) =
p(x, y)

p(y)
.(2.2)

• Expectation. If X ∈ Rd is a random vector, its expectation

E[X] = µ ∈ Rd

is also a vector and it is defined as E[Xi] = µi. Below are some properties.

– For random vectors X,Y ∈ Rd, and a constant matrix A ∈ Rd×d, we have

E[X +AY ] = E[X] +AE[Y ].

– If we have X1, X2, ..., Xn random vectors with EXi = µ, their sample mean has the
expectation µ, i.e.,

E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E[Xi] = µ.

Note that independence is not required for the above result.

• Conditional expectation. For two random vectors X,Y with joint distribution p(x, y),
the conditional expectation of X|Y is given by

E[X|Y = y] =

∫
xp(x|y)dx.

This is like fixing the value of the random variable Y , and taking expectation of X after.
Note that in the conditional expectation, we integrate out the variable x, but the variable
we condition on is not integrated. This is why, E[X|Y = y] is a function of y.
A rule that comes up in bias-variance decomposition is the law of iterated expectation:

E[E[X|Y ]] = E[X].

This can be easily shown using the properties of the density. That is,

E[E[X|Y ]] =

∫ [∫
xp(x|y)dx

]
p(y)dy =

∫ ∫
xp(x, y)dxdy = E[X].
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• Variance. Variance of a random vector X ∈ Rd×d is defined as

Var(X) = E[(X − µ)(X − µ)T ] ∈ Rd×d.

Observe that variance of a random vector is a d × d matrix and its ij-th entry is given by
Var(X)ij = E[(Xi − µi)(Xj − µj)] ∈ R.

• Covariance. Let X,Y be two random vectors in Rd. Then their covariance is given as

Cov(X,Y ) = E[(X − µX)(Y − µy)T ] ∈ Rd×d

where µX and µY denotes the mean of X and Y respectively.
Now assume that X and Y are independent.

(a) Their covariance is zero: E[(X − µX)(Y − µy)T ] = E[(X − µX)]E[(Y − µy)T ] = 0.

(b) For a constant matrix A ∈ Rd×d, we have

Var(X +AY ) = Var(X) +AVar(Y )AT .

Next, assume that we have X1, X2, ..., Xn independent random vectors with mean µ
and covariance matrix Σ. Contrary to sample mean above, in this case independence
is required.

(c) Using the above, if X ∼ N (µ,Σ), then AX ∼ N (Aµ,AΣAT ). This follows from the
fact that linear transformation of a Gaussian random vector is again Gaussian – a
property also used in bivariate Gaussian distributions.

2.1. Maximum likelihood estimator. Assume that we observe N i.i.d. random vectors D =
{X1, X2, ..., XN} from a distribution p(x|θ). We assume that the distribution function p(x|θ) is
known, but the parameter θ is not known. For example, distribution can be Gaussian, but its
mean and variance is unknown.

Using the independence assumption, we write the joint density of N i.i.d. random vectors.

p(x1, x2, ..., xn|θ) =

N∏
i=1

p(xi|θ).

The main idea behind the maximum likelihood estimation (MLE) is that we plug in our observa-
tions D into the joint density and find the θ value that maximizes this likelihood function. That
is,

θMLE = argmax
θ

N∏
i=1

p(Xi|θ).

When finding the maximum of a function, we take its derivative and set it equal to 0. However,
derivative of products is not easy to handle; therefore, we first apply the log function which doesn’t
change the point where the maximum is attained. This transforms the product to a summation.
That is,

θMLE = argmax
θ

N∏
i=1

p(Xi|θ),= argmax
θ

log

(
N∏
i=1

p(Xi|θ)

)
,

= argmax
θ

N∑
i=1

log p(Xi|θ).
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Now, we can easily take derivatives and find the maximizer.

2.2. Maximum A posteriori Probability. Assume the previous setup that we observe N i.i.d.
random vectors D = {X1, X2, ..., XN} from a distribution p(x|θ). This time, we will also assume
that θ is a random vector and its prior distribution is given by p(θ). This means that instead
of treating the parameter θ as a constant as in MLE, we assume some prior knowledge on θ
which comes from p(θ). Maximum A posteriori Probability (MAP) estimator of θ maximizes the
posterior distribution p(θ|data) obtained by the Bayes rule

p(θ|data) =
p(data|θ)p(θ)
p(data)

.

Therefore, MAP estimator is given by

θMAP = argmax
θ

p(θ|data) = argmax
θ

p(data|θ)p(θ).

In the above maximization problem, we dropped the term in the denominator since it doesn’t
have the optimization parameter θ in it and doesn’t contribute to the minimization problem.

For example in the previous setup, MAP estimator can be written as

θMAP = argmax
θ

p(X1, .., XN |θ)p(θ) = argmax
θ

p(θ)

N∏
i=1

p(Xi|θ),

= argmax
θ

log p(θ) +
N∑
i=1

log p(Xi|θ).

3. Basic multivariable calculus. For a given function f : Rd → R, we denote its partial
derivative with respect to its i-th coordinate as ∂f(x)/∂xi ∈ R. Gradient of this function is simply
a vector with i-th coordinate ∂f(x)/∂xi ∈ R. That is,

[∇f(x)]i =
∂f(x)

∂xi
.(3.1)

The gradient of a function points in the direction of greatest increase, and its magnitude is the
rate of increase in that direction. Therefore, when you are minimizing a function, it makes sense
to move in the direction opposite to its gradient.

Similarly, we can define the second derivative of the function f , which is generally referred to
as the Hessian of f . It is a matrix and its i, j-th entry is given by

[∇2f(x)]ij =
∂2f(x)

xixj
.(3.2)

Using the above definition, for x, y ∈ Rd and A ∈ Rd×d we obtain

(a) the gradient with respect to x of xT y is y,
(b) the gradient with respect to x of xTx is 2x,
(c) the gradient with respect to x of xTAx is 2Ax,
(d) the gradient with respect to x of Ax is A.

In some cases, you can see that the above gradients are transposed. This is a matter of definition.
You should check the wikipedia page https://en.wikipedia.org/wiki/Matrix_calculus which
contains a very detailed list of rules.
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3.1. Least squares problem. In the least squares problem, we are given a target vector t ∈ RN ,
a design matrix X ∈ RN×D. We would like to find the weights w that minimizes the objective
function given by the least squares problem

minimize
w

J (w) =:
1

2
‖t−Xw‖22.

We know that a minimum occurs at a critical at which the partial derivatives are equal to 0. i.e.
∂J (w)/wj = 0 for j = 1, .., D. This is equivalent to saying the gradient ∇J (w) = 0. We can
write

J (w) =
1

2
‖t‖22 +

1

2
w>X>Xw − t>Xw.

Taking derivative with respect to the vector w and setting it equal to 0, we obtain

∇J (w) = X>Xw −X>t = 0.

If X>X is invertible, a solution to above linear system is given by

wLS = (X>X)−1X>t.
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